共查询到18条相似文献,搜索用时 79 毫秒
1.
2.
3.
细心的读者会发现,自2016年1月起《海军医学杂志》发表的文章参考文献著录格式发生了改变,在原有的参考文献条目后增加了一项编码,即数字对象唯一标识符( digital object unique identifier,DOI)。随着大数据时代的来临,互联网技术及计算机技术飞速发展,很容易获取海量的空间目标数据,面对海量的空间数据,人们很难获取到所要的信息,造成了“数据丰富而信息匮乏”的现象,主要体现在找不到所要的目标,以及检索到的数据不能满足需求。分析其原因,在于空间目标存在多种编码体系,生产者和用户来自不同的领域,很难实现对目标一致的定位。因此,必须为空间目标进行统一的标识,建立数据生产者和使用者的联系。 DOI作为数字化对象的识别符,对所标识的数字对象而言,相当于人的身份证,具有唯一性[1]。 DOI一方面通过数字对象唯一性标识技术对数字对象进行识别和注册,利用目标标识检索技术准确地找到目标;另一方面通过地理本体知识的应用,建立了地理信息的语义沟通方式,按照应用本体知识重新组织生产数据,使用户全面高效地从空间数据库获取所要的信息,为空间信息共享开辟了新思路[2]。 相似文献
4.
中医临床规范术语如何为结构化电子病历(临床科研信息共享系统)提供支撑服务,不仅是周内亟待解决的问题,也是国际上面临的重要难题。研究以既往研究成果-借鉴SNOMED构建模型研制的《中医临床术语集》为基础,以中医结构化电子病历及数据挖掘平台为技术平台,通过建立术语字典这个中间体,将《中医临床术语集》中的术语集成映射到术语字典,实现了术语字典与病历模板编辑器的有机衔接,构建了中医临床规范术语在结构化电了病历中应用的办法及技术体系。 相似文献
5.
6.
7.
8.
系统阐述国外医学术语标准化建设的发展状况,分析我国当前医学术语标准化建设的现状,指出建设发展中存在的问题,总结从国外医学术语标准化建设中获得的启示,包括整体规划、增加资金投入、推动应用实施、加强国际合作、加强行业间协调、发展创新及培养高水平人才等. 相似文献
9.
目的:基于区块链技术,使临床试验数据在流转过程中可进行分步溯源,提升数据的可信度和质量。方法:运用区块链共享账本、隐私保密技术对药品在临床试验期中的流通进行登记,使临床试验全生命周期数据溯源成为可能,结合对象标识符(OID)技术对临床试验药品进行赋码,对在临床试验中流通的药品进行数据流通标记。结果:初步完成了基于区块链的临床试验研究系统的建设框架。结论:基于区块链在药物临床试验中的应用可行性研究,可有效解决临床试验数据流转管理过程中的现实痛点,包括数据信任、数据流转可追溯性、数据传输速度和数据处理质量等问题,有效提升临床试验数字化程度。 相似文献
10.
11.
SNOMED CT已经成为国际上广泛关注的一种医学参考术语与信息编码。介绍了SNOMED CT的发展历史,着重介绍与分析了其核心内容与特点,最后介绍了SNOMED CT的应用情况。 相似文献
12.
介绍医学系统命名法--临床术语(Systematized Nomenclature of Medicine-Clinical Terms,SNOMED CT)的历史发展、内容及应用情况,阐述临床路径的作用与实施原则,深入分析在临床路径中使用SNOMED CT的可能性、具体实施方法和重要意义.标准化术语的支持有利于推动临床路径的合理化调整与推广实施. 相似文献
13.
详细介绍SNOMED CT与OpenEHR的发展历史、主要内容、主要架构,通过数据类型转换、原型中的临床术语与SNOMED CT的映射、候选术语集等方法进行SNOMED CT与OpenEHR的整合,从而使原型中的术语更加规范,也为互操作提供可能。 相似文献
14.
Objective Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is the emergent international health terminology standard for encoding clinical information in electronic health records. The CORE Problem List Subset was created to facilitate the terminology’s implementation. This study evaluates the CORE Subset’s coverage and examines its growth pattern as source datasets are being incorporated.Methods Coverage of frequently used terms and the corresponding usage of the covered terms were assessed by “leave-one-out” analysis of the eight datasets constituting the current CORE Subset. The growth pattern was studied using a retrospective experiment, growing the Subset one dataset at a time and examining the relationship between the size of the starting subset and the coverage of frequently used terms in the incoming dataset. Linear regression was used to model that relationship.Results On average, the CORE Subset covered 80.3% of the frequently used terms of the left-out dataset, and the covered terms accounted for 83.7% of term usage. There was a significant positive correlation between the CORE Subset’s size and the coverage of the frequently used terms in an incoming dataset. This implies that the CORE Subset will grow at a progressively slower pace as it gets bigger.Conclusion The CORE Problem List Subset is a useful resource for the implementation of Systematized Nomenclature of Medicine Clinical Terms in electronic health records. It offers good coverage of frequently used terms, which account for a high proportion of term usage. If future datasets are incorporated into the CORE Subset, it is likely that its size will remain small and manageable. 相似文献
15.
Jonathan M Mortensen Evan P Minty Michael Januszyk Timothy E Sweeney Alan L Rector Natalya F Noy Mark A Musen 《J Am Med Inform Assoc》2015,22(3):640-648
Objectives The verification of biomedical ontologies is an arduous process that typically involves peer review by subject-matter experts. This work evaluated the ability of crowdsourcing methods to detect errors in SNOMED CT (Systematized Nomenclature of Medicine Clinical Terms) and to address the challenges of scalable ontology verification.Methods We developed a methodology to crowdsource ontology verification that uses micro-tasking combined with a Bayesian classifier. We then conducted a prospective study in which both the crowd and domain experts verified a subset of SNOMED CT comprising 200 taxonomic relationships.Results The crowd identified errors as well as any single expert at about one-quarter of the cost. The inter-rater agreement (κ) between the crowd and the experts was 0.58; the inter-rater agreement between experts themselves was 0.59, suggesting that the crowd is nearly indistinguishable from any one expert. Furthermore, the crowd identified 39 previously undiscovered, critical errors in SNOMED CT (eg, ‘septic shock is a soft-tissue infection’).Discussion The results show that the crowd can indeed identify errors in SNOMED CT that experts also find, and the results suggest that our method will likely perform well on similar ontologies. The crowd may be particularly useful in situations where an expert is unavailable, budget is limited, or an ontology is too large for manual error checking. Finally, our results suggest that the online anonymous crowd could successfully complete other domain-specific tasks.Conclusions We have demonstrated that the crowd can address the challenges of scalable ontology verification, completing not only intuitive, common-sense tasks, but also expert-level, knowledge-intensive tasks. 相似文献
16.
目的 对新版医学系统命名法-临床术语(Systematized Nomenclature of Medicine-Clinical Terms,SNOMED CT)中的国际药物模型进行介绍,为我国药物模型的构建提供参考.方法 对2018年7月更新的SNOMED CT国际药物模型的设计理念、药物分类体系进行介绍,并以含氨... 相似文献
17.
目的探讨16排螺旋CT灌注成像联合血管成像对缺血性脑卒中的诊断价值。方法使用西门予16排螺旋CT对40例临床诊断为缺血性脑卒中患者行NNCT+CTP+CTA检查,所有患者入院24h内完成该“一站式”检查。经西门子后处理软件进行评估。结果灌注异常区的CBF(t=2.45)、CBV(t=3.07)、MTT(t=2.89)三组参数值与对侧相比差异有统计学意义(P〈0.05);颈内动脉狭窄12处:中度狭窄4处,重度狭窄及闭塞8处;颅内动脉狭窄25处:中度8处,重度狭窄及闭塞17处。颈内动脉及颅内动脉均狭窄6例。灌注异常区的灌注参数仅MTT值异常与颈内动脉狭窄程度具有低的正相关性,Pearson相关系数r值=0.523〉0.5,P=0.012。供血动脉狭窄程度与脑组织缺血程度不成正比。结论“一站式”CT检查能灵敏而准确地反映脑组织血流动力学变化及有效地判断头颈动脉系统是否存在狭窄和闭塞、确定病变部位和测量狭窄程度。 相似文献
18.
目的探讨血管外皮瘤的CT和MRI表现。方法 1例进行上腹部CT及MRI扫描;5例行MRI扫描,并回顾性分析6例经组织学证实的血管外皮瘤的CT及MRI表现。结果 4例血管外皮瘤位于颅内,1例发生于颈椎椎管,1例发生于肝脏。CT及MRI表现:1例肝脏血管外皮瘤CT平扫为类圆形稍低密度,其MR平扫表现为边界模糊的稍长T1长T2信号,增强后均显示均匀显著强化;4例颅内脑外血管外皮瘤及1例颈椎椎间孔血管外皮瘤MRI表现:与脑灰质比较,病灶均呈类圆形等T1、等T2信号;增强后均显著均匀强化。结论 1例肝脏血管外皮瘤CT和MRI增强后显著强化,强化时间持续7分钟以上是肝血管外皮瘤较典型的影像表现,颈部及颅内血管外皮瘤MRI平扫为稍长T1稍长T2信号;增强后持续均匀强化。 相似文献