首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Merozoite surface protein 1 (MSP1) is a highly polymorphic Plasmodium falciparum merozoite surface protein implicated in the invasion of human erythrocytes during the asexual cycle. It forms a complex with MSP6 and MSP7 on the merozoite surface, and this complex is released from the parasite around the time of erythrocyte invasion. MSP1 and many other merozoite surface proteins contain dimorphic elements in their protein structures, and here we show that MSP6 is also dimorphic. The sequences of eight MSP6 genes indicate that the alleles of each dimorphic form of MSP6 are highly conserved. The smaller 3D7-type MSP6 alleles are detected in parasites from all malarious regions of the world, whereas K1-type MSP6 alleles have only been detected in parasites from mainland Southeast Asia. Cleavage of MSP6, which produces the p36 fragment in 3D7-type MSP6 and associates with MSP1, also occurs in K1-type MSP6 but at a different site in the protein. Anti-3D7 MSP6 antibodies weakly inhibited erythrocyte invasion by homologous 3D7 merozoites but did not inhibit a parasite line expressing the K1-type MSP6 allele. Antibodies from hyperimmune individuals affinity purified on an MSP3 peptide cross-reacted with MSP6; therefore, MSP6 may also be a target of antibody-dependent cellular inhibition.  相似文献   

2.
MSP8 is a recently identified merozoite surface protein that shares similar structural features with the leading vaccine candidate MSP1. Both proteins contain two C-terminal epidermal growth factor (EGF)-like domains, a glycosylphosphatidylinositol (GPI) anchor attachment sequence and undergo proteolytic processing. By double recombination, we have disrupted the MSP8 gene in P. falciparum 3D7 parasites, and confirmed integration by southern hybridisation and PCR. Western blot analysis of lysates from asynchronous cultures and isolated merozoites demonstrated the absence of MSP8 in two cloned knockout lines. There was no significant difference in growth rate observed between 3D7 and the cloned DeltaMSP8 lines. Thus, unlike MSP1, MSP8 is not required for asexual stage parasite growth and replication in vitro. Further analysis of the cloned lines showed that loss of MSP8 had no effect on the levels of expression of other merozoite surface proteins including MSP1-5, 7 and 10. Stage-specific immunoblots showed that MSP8 expression commences in late rings and extends throughout the rest of the erythrocytic life cycle in the 3D7 parent line, but is absent from all stages in the DeltaMSP8 transfectants.  相似文献   

3.
Exp-1 is an antigen of Plasmodium falciparum which is transported from the parasite cell to the membrane of the parasitophorous vacuole and to membranous compartments in the erythrocyte. To investigate how this protein is transported, we studied the synthesis and membrane translocation of exp-1 in a cell-free system. The protein was translocated into canine pancreatic microsomes. Its N-terminal half was thus protected from proteinase K digestion, suggesting that exp-1 is an integral membrane protein with its N-terminus facing the lumen of the microsomes. This conclusion has been confirmed in vivo. In parasitized erythrocytes, exp-1 is membrane-associated and resistant to extraction with alkali, as would be expected for an integral membrane protein. Moreover, using segment-specific monoclonal antibodies, we have shown that here again the N-terminus of exp-1 faces the inside of vesicles, inaccessible to proteases, whereas the C-terminus is degraded. We conclude that exp-1 is an integral membrane protein and infer that it is transported by vesicles from the parasite to a compartment in the host cell cytoplasm.  相似文献   

4.
Isolation of a Plasmodium falciparum rhoptry protein   总被引:8,自引:0,他引:8  
A monoclonal antibody raised against the malaria parasite Plasmodium falciparum recognised a protein of 140000 molecular weight which was synthesized during schizogony. The protein has been purified by monoclonal antibody affinity chromatography from extracts of parasitized red cells. Antibodies against the protein have been used to determine its subcellular location. The protein is not expressed on the merozoite surface and has been located in the rhoptries, the apical organelles of the merozoite.  相似文献   

5.
Mitochondrial protein synthesis in Plasmodium falciparum   总被引:1,自引:0,他引:1  
Protein synthesis in intact Plasmodium falciparum was 333 times more sensitive to cycloheximide than to chloramphenicol. The 50% inhibitory concentration (IC50) of cycloheximide in a 27-h assay in vitro was 6 X 10(-7) M but no constant cycloheximide-insensitive fraction of total protein synthesis was observed at concentrations of this inhibitor between 10(-7) and 10(-2) M. 0.24% of total protein synthesis occurred in the presence of 10(-3) M cycloheximide but the chloramphenicol sensitivity of this fraction was similar to that of overall protein synthesis (IC50 2 X 10(-4) M). The major fraction of protein synthesis by P. falciparum, therefore, is assumed to be cytoplasmic and to occur on 80S ribosomes. Cycloheximide-insensitive, chloramphenicol-sensitive (70S ribosomal) protein synthesis being undetectable by the methods employed, mitochondrial protein synthesis in P. falciparum is presumed to constitute a considerably smaller fraction of the total protein synthetic capacity than observed in other lower eukaryotes.  相似文献   

6.
A cDNA clone expressing an antigen of Plasmodium falciparum, selected by screening an expression library cloned in Escherichia coli, encodes a portion of the protein identified as a glycophorin-binding protein [Kochan et al. (1986) Cell 44, 689-696]. Human antibodies affinity-purified on extracts from this clone were used to characterize the antigen by immunoblotting. This protein was present in all isolates tested, restricted to mature trophozoites and schizonts. It was abundant in culture supernatants at the time of merozoite release but present in minor amounts if at all in merozoites. The pattern of antigen distribution over schizont-infected cells observed by immunoelectron microscopy differed from that of the precursor of the major merozoite surface antigens in that most of the antigen appeared to be located over the erythrocyte cytoplasm without any obvious association with organelles. It thus appears unlikely that this antigen is present on the merozoite surface prior to schizont rupture.  相似文献   

7.
Erythrocyte invasion by the malaria merozoite requires the activity of merozoite proteases. We have previously identified a Plasmodium falciparum protein belonging to the superfamily of subtilisin-like serine proteases, which is expressed in a subset of secretory organelles in free merozoites. Here we describe the identification of a second P. falciparum subtilisin-like merozoite protein. Called PfSUB-2, it is encoded by a single copy gene and is expressed as a large putative type I integral membrane protein which undergoes extensive post-translational processing. The terminal processing product is expressed in an apical location in merozoites. PfSUB-2 may mediate one or more of the serine protease activities known to be associated with erythrocyte invasion.  相似文献   

8.
A gene coding for a protein containing two Scavenger Receptor Cysteine-Rich (SRCR) motifs, four Limulus factor C, Coch-5b2 and Lgl1 (LCCL) motifs; and one Polycystin-1, Lipoxygenase and Alpha Toxin (PLAT) motif was cloned from Plasmodium chabaudi and homologues identified in the P. falciparum and P. yoelii genome data bases. At least one of these sequence motifs (SRCR) has adhesive properties in other proteins, therefore, we propose to name this protein PSLAP for Plasmodium SRCR, LCCL Adhesive-like Protein. Southern blotting and chromosome analysis showed that pslap is a single copy gene on chromosome 14 in P. falciparum 3D7. pslap mRNA is strongly expressed in P. falciparum gametocytes, but was undetectable on Northern blots of RNA from the asexual blood stages. Polyclonal antibodies raised to different parts of PSLAP detected a protein expressed in late gametocytes, but not in the early stages of gametocytogenesis or asexual blood stages of P. falciparum. We suggest that PSLAP functions in the mosquito, for example, in modulation of the invertebrate host immune response or in protection against complement factors in the blood meal.  相似文献   

9.
The gene coding for a 42-kDa rhoptry protein of Plasmodium falciparum has been cloned. On the basis of prior monkey vaccination studies, this protein is regarded as an important vaccine candidate, but its identity has been the subject of considerable uncertainty. Analysis of the cloned sequence shows that it is a basic, hydrophobic protein, without repetitive elements, unrelated to any of the previously postulated gene products and shows minimal sequence diversity. The availability of the corresponding recombinant protein will enable studies of its efficacy in human vaccine trials to be undertaken.  相似文献   

10.
The human malarial parasite Plasmodium falciparum secretes a histidine-rich protein (HRP-II) from infected erythrocytes. HRP-II has a very high content of histidine (H) (34%), alanine (A) (37%) and aspartic acid (D) (10%) and many contiguous repeats of the sequences AHH and AHHAAD. The histidine content of the protein suggested the potential to bind metal ions. We have demonstrated by metal chelate chromatography an extraordinary capacity of HRP-II to bind zinc ions (Zn2+) and employed this characteristic to isolate the extracellular protein. The HRP-II was further purified by antibody affinity chromatography. The identity of the purified protein was verified by relative molecular weight on denaturing polyacrylamide gels, by reactivity with monoclonal antibodies and monospecific rabbit antiserum, and by comparison of the amino-acid analysis with that derived from the cloned gene sequence. Analysis of the sequence for periodicities using the hydrophobic moment method indicated that HRP-II may potentially form a 3/10 helix. Immunoprecipitation of HRP-II from culture supernatants of parasites metabolically labeled with tritiated sugars showed that the extracellular form of HRP-II is a glycoprotein containing galactose.  相似文献   

11.
Rosette formation in 154 fresh Plasmodium falciparum isolates from Kenyan children with mild (n = 54), moderate (n = 64), or severe (n = 36) malaria was studied to determine whether the ability to form rosettes in vitro is correlated with malaria severity. There was a wide distribution of rosette frequencies within each clinical category; however, a clear trend towards higher rosette frequency with increasing severity of disease was seen, with the median rosette frequency of the mild-malaria group (1%; range, 0 to 82%) being significantly lower than those of the moderate-malaria group (5%; range, 0 to 45%; Mann-Whitney U test, P < 0.02) and the severe-malaria group (7%; range, 0 to 97%; Mann-Whitney U test, P < 0.003). Within the severe-malaria category there was no difference in rosetting among isolates from cerebral malaria patients or those with other forms of severe malaria. We also examined the ABO blood groups of the patients from whom isolates were obtained and found that isolates from group O patients (median rosette frequency, 2%; range 0 to 45%) rosetted less well than those from group A (median, 7%; range 0 to 82%; Mann-Whitney U test, P < 0.01) or group AB (median, 11%; range 0 to 94%; Mann-Whitney U test, P < 0.03). We therefore confirm that rosetting is associated with severe malaria and provide further evidence that rosetting is influenced by ABO blood group type. Whether rosetting itself plays a direct role in the pathogenesis of severe malaria or is a marker for some other causal factor remains unknown.  相似文献   

12.
We have investigated the widely held view that malaria parasites induce pro-inflammatory cytokines primarily through an endotoxin-like stimulatory effect on macrophages. We report that the pattern of cytokine production by non-immune human peripheral blood mononuclear cells following stimulation by Plasmodium falciparum-infected erythrocytes (Pfe) in vitro differs considerably from that induced by bacterial endotoxin. The Pfe-induced TNF response at day 1 is associated with a much higher level of IFN-gamma production and a much lower level of IL-12 p40 and IL-10 expression than a comparable endotoxin-induced TNF response. Both CD3(+) and CD14(+) populations are required for this early TNF response to Pfe, whereas the endotoxin-induced response is unaffected by depletion of the CD3(+) population. Pfe fails to stimulate the monocyte-like cell line MonoMac6 to express pro-inflammatory cytokines. These findings suggest that the early inflammatory response to malaria is critically dependent on lymphocyte subpopulations that play a lesser role in the response to bacterial endotoxin.  相似文献   

13.
The malaria parasite Plasmodium falciparum utilizes molecules present on the surface of uninfected red blood cells (RBC) for rosette formation, and a dependency on ABO antigens has been previously shown. In this study, the antirosetting effect of immune sera was related to the blood group of the infected human host. Sera from malaria-immune blood group A (or B) individuals were less prone to disrupt rosettes from clinical isolates of blood group A (or B) patients than to disrupt rosettes from isolates of blood group O patients. All fresh clinical isolates and laboratory strains exhibited distinct ABO blood group preferences, indicating that utilization of blood group antigens is a general feature of P. falciparum rosetting. Soluble A antigen strongly inhibited rosette formation when the parasite was cultivated in A RBC, while inhibition by glycosaminoglycans decreased. Furthermore, a soluble A antigen conjugate bound to the cell surface of parasitized RBC. Selective enzymatic digestion of blood group A antigen from the uninfected RBC surfaces totally abolished the preference of the parasite to form rosettes with these RBC, but rosettes could still form. Altogether, present data suggest an important role for A and B antigens as coreceptors in P. falciparum rosetting.  相似文献   

14.
A sustained elevation of free Ca(2+) is observed on the rupture and release of merozoites of Plasmodium falciparum from the erythrocytes. The immunoelectron micrographs demonstrate that calmodulin is localized in merozoites. To elucidate the Ca(2+) signal of P. falciparum invasion, we attempted to characterize P. falciparum protein kinase 2 (PfPK2), which is homologous to human calcium calmodulin-dependent protein kinase (CaMK). PfPK2 was purified as a fusion protein that was labeled with [gamma-(32)P]ATP; this labeling was then eliminated by phosphatase. This phosphorylation was eliminated when the putative catalytic lysine residue of PfPK2 was replaced with alanine. PfPK2 phosphorylated histone II(AS) as a representative substrate in a Ca(2+)- and calmodulin-dependent manner. Calmodulin antagonists inhibited the phosphorylation of PfPK2 in vitro and markedly decreased the parasitemia of ring forms in an invasion assay, whereas CaMKII-specific inhibitors had no effect. PfPK2 was localized in the merozoites in the culture of P. falciparum. Thus, purified PfPK2 possesses protein kinase activity in a Ca(2+)- and calmodulin-dependent manner and the catalytic lysine of this protein was determined. These data suggest that PfPK2 is the Plasmodium protein kinase expressed in the merozoites during the invasion stage.  相似文献   

15.
16.
A cDNA clone expressing a rhoptry protein of Plasmodium falciparum   总被引:7,自引:0,他引:7  
Antibodies from immune humans were used to select a cDNA clone expressing an asexual blood stage antigen of Plasmodium falciparum. The expressed fused polypeptide was used as an affinity reagent to purify human antibodies specific for the corresponding parasite antigen. Western blotting and immunoelectronmicroscopy demonstrated that the antigen was a 105 kDa protein located in the rhoptries of merozoites. The cDNA encodes the carboxy terminus of the rhoptry antigen, a sequence rich both in charged and hydroxy amino acids.  相似文献   

17.
A fibronectin binding protein (FnBp) was identified in 3H isoleucine labeled P. falciparum schizonts using affinity chromatography on human fibronectin (Fn) coupled to Sepharose 4B. After incubation of Nonidet-P 40 parasite lysate with Fn-Sepharose, elution was performed with SDS-PAGE buffer. Analysis of FnBp by SDS-PAGE demonstrated a major band which migrated with an apparent Mr of 70,000 under reducing conditions. This band was not found when human or rabbit IgG coupled Sepharose 4B were used instead of Fn as control.  相似文献   

18.
19.
Isoprenylated proteins have important functions in cell growth and differentiation of eukaryotic cells. Inhibitors of protein prenylation in malaria have recently shown strong promise as effective antimalarials. In studying protein prenylation in the malaria protozoan parasite Plasmodium falciparum, we have shown earlier that the incubation of P. falciparum cells with (3)H-prenol precursors resulted in various size classes of labeled proteins. To understand the physiological function of prenylated proteins of malaria parasites, that are targets of prenyltransferase inhibitors, we searched the PlasmoDB database for proteins containing the C-terminus prenylation motif. We have identified, among other potentially prenylated proteins, an orthologue of a PRL (protein of regenerating liver) subgroup protein tyrosine phosphatases, termed PfPRL. Here, we show that PfPRL is expressed in the parasite's intraerythrocytic stages, where it partially associates with endoplasmic reticulum and within a subcompartment of the food vacuole. Additionally, PfPRL targeting parallels that of apical membrane antigen-1 in developing merozoites. Recombinant PfPRL shows phosphatase activity that is preferentially inhibited by a tyrosine phosphatase inhibitor suggesting that PfPRL functions as a tyrosine phosphatase. Recombinant PfPRL can also be farnesylated in vitro. Inhibition of malarial farnesyltransferase activity can be achieved with the heptapetide RKCHFM, which corresponds to the C-terminus of PfPRL. This study provides the first evidence for expression of enzymatically active PRL-related protein tyrosine phosphatases in malarial parasites, and demonstrates the potential of peptides derived from Plasmodium prenylated proteins as malarial farnesyltransferase inhibitors.  相似文献   

20.
A monoclonal antibody (24C6 4F12) raised against Plasmodium falciparum culture supernatant antigens gave a multiple dot picture on schizonts when assayed by immunofluorescence on P. falciparum erythrocytic stages. The corresponding antigen was localized in the peduncle of rhoptries by immunoelectronmicroscopy. On Western blots of P. falciparum schizonts, a major antigen of 225 kDa and a minor one of 240 kDa were recognized by this McAb. Pulse chase analysis of [35S]methionine biosynthetic labeling of P. falciparum culture demonstrated that the 240 kDa molecule was the precursor of the 225 kDa and that its processing occurred between 0 and 4 h after synthesis. Biosynthesis of the 240-225 kDa antigen occurred only during schizogony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号