首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Missing outcome data are commonly encountered in randomized controlled trials and hence may need to be addressed in a meta‐analysis of multiple trials. A common and simple approach to deal with missing data is to restrict analysis to individuals for whom the outcome was obtained (complete case analysis). However, estimated treatment effects from complete case analyses are potentially biased if informative missing data are ignored. We develop methods for estimating meta‐analytic summary treatment effects for continuous outcomes in the presence of missing data for some of the individuals within the trials. We build on a method previously developed for binary outcomes, which quantifies the degree of departure from a missing at random assumption via the informative missingness odds ratio. Our new model quantifies the degree of departure from missing at random using either an informative missingness difference of means or an informative missingness ratio of means, both of which relate the mean value of the missing outcome data to that of the observed data. We propose estimating the treatment effects, adjusted for informative missingness, and their standard errors by a Taylor series approximation and by a Monte Carlo method. We apply the methodology to examples of both pairwise and network meta‐analysis with multi‐arm trials. © 2014 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.  相似文献   

2.
Missing outcome data are a problem commonly observed in randomized control trials that occurs as a result of participants leaving the study before its end. Missing such important information can bias the study estimates of the relative treatment effect and consequently affect the meta‐analytic results. Therefore, methods on manipulating data sets with missing participants, with regard to incorporating the missing information in the analysis so as to avoid the loss of power and minimize the bias, are of interest. We propose a meta‐analytic model that accounts for possible error in the effect sizes estimated in studies with last observation carried forward (LOCF) imputed patients. Assuming a dichotomous outcome, we decompose the probability of a successful unobserved outcome taking into account the sensitivity and specificity of the LOCF imputation process for the missing participants. We fit the proposed model within a Bayesian framework, exploring different prior formulations for sensitivity and specificity. We illustrate our methods by performing a meta‐analysis of five studies comparing the efficacy of amisulpride versus conventional drugs (flupenthixol and haloperidol) on patients diagnosed with schizophrenia. Our meta‐analytic models yield estimates similar to meta‐analysis with LOCF‐imputed patients. Allowing for uncertainty in the imputation process, precision is decreased depending on the priors used for sensitivity and specificity. Results on the significance of amisulpride versus conventional drugs differ between the standard LOCF approach and our model depending on prior beliefs on the imputation process. Our method can be regarded as a useful sensitivity analysis that can be used in the presence of concerns about the LOCF process. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

3.
When studies in meta‐analysis include different sets of confounders, simple analyses can cause a bias (omitting confounders that are missing in certain studies) or precision loss (omitting studies with incomplete confounders, i.e. a complete‐case meta‐analysis). To overcome these types of issues, a previous study proposed modelling the high correlation between partially and fully adjusted regression coefficient estimates in a bivariate meta‐analysis. When multiple differently adjusted regression coefficient estimates are available, we propose exploiting such correlations in a graphical model. Compared with a previously suggested bivariate meta‐analysis method, such a graphical model approach is likely to reduce the number of parameters in complex missing data settings by omitting the direct relationships between some of the estimates. We propose a structure‐learning rule whose justification relies on the missingness pattern being monotone. This rule was tested using epidemiological data from a multi‐centre survey. In the analysis of risk factors for early retirement, the method showed a smaller difference from a complete data odds ratio and greater precision than a commonly used complete‐case meta‐analysis. Three real‐world applications with monotone missing patterns are provided, namely, the association between (1) the fibrinogen level and coronary heart disease, (2) the intima media thickness and vascular risk and (3) allergic asthma and depressive episodes. The proposed method allows for the inclusion of published summary data, which makes it particularly suitable for applications involving both microdata and summary data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Multiple imputation is a strategy for the analysis of incomplete data such that the impact of the missingness on the power and bias of estimates is mitigated. When data from multiple studies are collated, we can propose both within‐study and multilevel imputation models to impute missing data on covariates. It is not clear how to choose between imputation models or how to combine imputation and inverse‐variance weighted meta‐analysis methods. This is especially important as often different studies measure data on different variables, meaning that we may need to impute data on a variable which is systematically missing in a particular study. In this paper, we consider a simulation analysis of sporadically missing data in a single covariate with a linear analysis model and discuss how the results would be applicable to the case of systematically missing data. We find in this context that ensuring the congeniality of the imputation and analysis models is important to give correct standard errors and confidence intervals. For example, if the analysis model allows between‐study heterogeneity of a parameter, then we should incorporate this heterogeneity into the imputation model to maintain the congeniality of the two models. In an inverse‐variance weighted meta‐analysis, we should impute missing data and apply Rubin's rules at the study level prior to meta‐analysis, rather than meta‐analyzing each of the multiple imputations and then combining the meta‐analysis estimates using Rubin's rules. We illustrate the results using data from the Emerging Risk Factors Collaboration. © 2013 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.  相似文献   

5.
Outcome reporting bias (ORB) is recognized as a threat to the validity of both pairwise and network meta‐analysis (NMA). In recent years, multivariate meta‐analytic methods have been proposed to reduce the impact of ORB in the pairwise setting. These methods have shown that multivariate meta‐analysis can reduce bias and increase efficiency of pooled effect sizes. However, it is unknown whether multivariate NMA (MNMA) can similarly reduce the impact of ORB. Additionally, it is quite challenging to implement MNMA due to the fact that correlation between treatments and outcomes must be modeled; thus, the dimension of the covariance matrix and number of components to estimate grows quickly with the number of treatments and number of outcomes. To determine whether MNMA can reduce the effects of ORB on pooled treatment effect sizes, we present an extensive simulation study of Bayesian MNMA. Via simulation studies, we show that MNMA reduces the bias of pooled effect sizes under a variety of outcome missingness scenarios, including missing at random and missing not at random. Further, MNMA improves the precision of estimates, producing narrower credible intervals. We demonstrate the applicability of the approach via application of MNMA to a multi‐treatment systematic review of randomized controlled trials of anti‐depressants for the treatment of depression in older adults.  相似文献   

6.
A variable is ‘systematically missing’ if it is missing for all individuals within particular studies in an individual participant data meta‐analysis. When a systematically missing variable is a potential confounder in observational epidemiology, standard methods either fail to adjust the exposure–disease association for the potential confounder or exclude studies where it is missing. We propose a new approach to adjust for systematically missing confounders based on multiple imputation by chained equations. Systematically missing data are imputed via multilevel regression models that allow for heterogeneity between studies. A simulation study compares various choices of imputation model. An illustration is given using data from eight studies estimating the association between carotid intima media thickness and subsequent risk of cardiovascular events. Results are compared with standard methods and also with an extension of a published method that exploits the relationship between fully adjusted and partially adjusted estimated effects through a multivariate random effects meta‐analysis model. We conclude that multiple imputation provides a practicable approach that can handle arbitrary patterns of systematic missingness. Bias is reduced by including sufficient between‐study random effects in the imputation model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
We consider a study‐level meta‐analysis with a normally distributed outcome variable and possibly unequal study‐level variances, where the object of inference is the difference in means between a treatment and control group. A common complication in such an analysis is missing sample variances for some studies. A frequently used approach is to impute the weighted (by sample size) mean of the observed variances (mean imputation). Another approach is to include only those studies with variances reported (complete case analysis). Both mean imputation and complete case analysis are only valid under the missing‐completely‐at‐random assumption, and even then the inverse variance weights produced are not necessarily optimal. We propose a multiple imputation method employing gamma meta‐regression to impute the missing sample variances. Our method takes advantage of study‐level covariates that may be used to provide information about the missing data. Through simulation studies, we show that multiple imputation, when the imputation model is correctly specified, is superior to competing methods in terms of confidence interval coverage probability and type I error probability when testing a specified group difference. Finally, we describe a similar approach to handling missing variances in cross‐over studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Multivariate meta‐analysis allows the joint synthesis of multiple correlated outcomes from randomised trials, and is an alternative to a separate univariate meta‐analysis of each outcome independently. Usually not all trials report all outcomes; furthermore, outcome reporting bias (ORB) within trials, where an outcome is measured and analysed but not reported on the basis of the results, may cause a biased set of the evidence to be available for some outcomes, potentially affecting the significance and direction of meta‐analysis results. The multivariate approach, however, allows one to ‘borrow strength’ across correlated outcomes, to potentially reduce the impact of ORB. Assuming ORB missing data mechanisms, we aim to investigate the magnitude of bias in the pooled treatment effect estimates for multiple outcomes using univariate meta‐analysis, and to determine whether the ‘borrowing of strength’ from multivariate meta‐analysis can reduce the impact of ORB. A simulation study was conducted for a bivariate fixed effect meta‐analysis of two correlated outcomes. The approach is illustrated by application to a Cochrane systematic review. Results show that the ‘borrowing of strength’ from a multivariate meta‐analysis can reduce the impact of ORB on the pooled treatment effect estimates. We also examine the use of the Pearson correlation as a novel approach for dealing with missing within‐study correlations, and provide an extension to bivariate random‐effects models that reduce ORB in the presence of heterogeneity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Despite the need for sensitivity analysis to nonignorable missingness in intensive longitudinal data (ILD), such analysis is greatly hindered by novel ILD features, such as large data volume and complex nonmonotonic missing-data patterns. Likelihood of alternative models permitting nonignorable missingness often involves very high-dimensional integrals, causing curse of dimensionality and rendering solutions computationally prohibitive to obtain. We aim to overcome this challenge by developing a computationally feasible method, nonlinear indexes of local sensitivity to nonignorability (NISNI). We use linear mixed effects models for the incomplete outcome and covariates. We use Markov multinomial models to describe complex missing-data patterns and mechanisms in ILD, thereby permitting missingness probabilities to depend directly on missing data. Using a second-order Taylor series to approximate likelihood under nonignorability, we develop formulas and closed-form expressions for NISNI. Our approach permits the outcome and covariates to be missing simultaneously, as is often the case in ILD, and can capture U-shaped impact of nonignorability in the neighborhood of the missing at random model without fitting alternative models or evaluating integrals. We evaluate performance of this method using simulated data and real ILD collected by the ecological momentary assessment method.  相似文献   

10.
Missing outcomes are a commonly occurring problem for cluster randomised trials, which can lead to biased and inefficient inference if ignored or handled inappropriately. Two approaches for analysing such trials are cluster‐level analysis and individual‐level analysis. In this study, we assessed the performance of unadjusted cluster‐level analysis, baseline covariate‐adjusted cluster‐level analysis, random effects logistic regression and generalised estimating equations when binary outcomes are missing under a baseline covariate‐dependent missingness mechanism. Missing outcomes were handled using complete records analysis and multilevel multiple imputation. We analytically show that cluster‐level analyses for estimating risk ratio using complete records are valid if the true data generating model has log link and the intervention groups have the same missingness mechanism and the same covariate effect in the outcome model. We performed a simulation study considering four different scenarios, depending on whether the missingness mechanisms are the same or different between the intervention groups and whether there is an interaction between intervention group and baseline covariate in the outcome model. On the basis of the simulation study and analytical results, we give guidance on the conditions under which each approach is valid. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.  相似文献   

11.
Meta‐analysis of individual participant data (IPD) is increasingly utilised to improve the estimation of treatment effects, particularly among different participant subgroups. An important concern in IPD meta‐analysis relates to partially or completely missing outcomes for some studies, a problem exacerbated when interest is on multiple discrete and continuous outcomes. When leveraging information from incomplete correlated outcomes across studies, the fully observed outcomes may provide important information about the incompleteness of the other outcomes. In this paper, we compare two models for handling incomplete continuous and binary outcomes in IPD meta‐analysis: a joint hierarchical model and a sequence of full conditional mixed models. We illustrate how these approaches incorporate the correlation across the multiple outcomes and the between‐study heterogeneity when addressing the missing data. Simulations characterise the performance of the methods across a range of scenarios which differ according to the proportion and type of missingness, strength of correlation between outcomes and the number of studies. The joint model provided confidence interval coverage consistently closer to nominal levels and lower mean squared error compared with the fully conditional approach across the scenarios considered. Methods are illustrated in a meta‐analysis of randomised controlled trials comparing the effectiveness of implantable cardioverter‐defibrillator devices alone to implantable cardioverter‐defibrillator combined with cardiac resynchronisation therapy for treating patients with chronic heart failure. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.  相似文献   

12.
We studied bias due to missing exposure data in the proportional hazards regression model when using complete-case analysis (CCA). Eleven missing data scenarios were considered: one with missing completely at random (MCAR), four missing at random (MAR), and six non-ignorable missingness scenarios, with a variety of hazard ratios, censoring fractions, missingness fractions and sample sizes. When missingness was MCAR or dependent only on the exposure, there was negligible bias (2-3 per cent) that was similar to the difference between the estimate in the full data set with no missing data and the true parameter. In contrast, substantial bias occurred when missingness was dependent on outcome or both outcome and exposure. For models with hazard ratio of 3.5, a sample size of 400, 20 per cent censoring and 40 per cent missing data, the relative bias for the hazard ratio ranged between 7 per cent and 64 per cent. We observed important differences in the direction and magnitude of biases under the various missing data mechanisms. For example, in scenarios where missingness was associated with longer or shorter follow-up, the biases were notably different, although both mechanisms are MAR. The hazard ratio was underestimated (with larger bias) when missingness was associated with longer follow-up and overestimated (with smaller bias) when associated with shorter follow-up. If it is known that missingness is associated with a less frequently observed outcome or with both the outcome and exposure, CCA may result in an invalid inference and other methods for handling missing data should be considered.  相似文献   

13.
Missing outcome data is a crucial threat to the validity of treatment effect estimates from randomized trials. The outcome distributions of participants with missing and observed data are often different, which increases bias. Causal inference methods may aid in reducing the bias and improving efficiency by incorporating baseline variables into the analysis. In particular, doubly robust estimators incorporate 2 nuisance parameters: the outcome regression and the missingness mechanism (ie, the probability of missingness conditional on treatment assignment and baseline variables), to adjust for differences in the observed and unobserved groups that can be explained by observed covariates. To consistently estimate the treatment effect, one of these nuisance parameters must be consistently estimated. Traditionally, nuisance parameters are estimated using parametric models, which often precludes consistency, particularly in moderate to high dimensions. Recent research on missing data has focused on data‐adaptive estimation to help achieve consistency, but the large sample properties of such methods are poorly understood. In this article, we discuss a doubly robust estimator that is consistent and asymptotically normal under data‐adaptive estimation of the nuisance parameters. We provide a formula for an asymptotically exact confidence interval under minimal assumptions. We show that our proposed estimator has smaller finite‐sample bias compared to standard doubly robust estimators. We present a simulation study demonstrating the enhanced performance of our estimators in terms of bias, efficiency, and coverage of the confidence intervals. We present the results of an illustrative example: a randomized, double‐blind phase 2/3 trial of antiretroviral therapy in HIV‐infected persons.  相似文献   

14.
We explore the ‘reassessment’ design in a logistic regression setting, where a second wave of sampling is applied to recover a portion of the missing data on a binary exposure and/or outcome variable. We construct a joint likelihood function based on the original model of interest and a model for the missing data mechanism, with emphasis on non‐ignorable missingness. The estimation is carried out by numerical maximization of the joint likelihood function with close approximation of the accompanying Hessian matrix, using sharable programs that take advantage of general optimization routines in standard software. We show how likelihood ratio tests can be used for model selection and how they facilitate direct hypothesis testing for whether missingness is at random. Examples and simulations are presented to demonstrate the performance of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A popular method for analysing repeated‐measures data is generalized estimating equations (GEE). When response data are missing at random (MAR), two modifications of GEE use inverse‐probability weighting and imputation. The weighted GEE (WGEE) method involves weighting observations by their inverse probability of being observed, according to some assumed missingness model. Imputation methods involve filling in missing observations with values predicted by an assumed imputation model. WGEE are consistent when the data are MAR and the dropout model is correctly specified. Imputation methods are consistent when the data are MAR and the imputation model is correctly specified. Recently, doubly robust (DR) methods have been developed. These involve both a model for probability of missingness and an imputation model for the expectation of each missing observation, and are consistent when either is correct. We describe DR GEE, and illustrate their use on simulated data. We also analyse the INITIO randomized clinical trial of HIV therapy allowing for MAR dropout. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we consider a full likelihood method to analyze continuous longitudinal responses with non‐ignorable non‐monotone missing data. We consider a transition probability model for the missingness mechanism. A first‐order Markov dependence structure is assumed for both the missingness mechanism and observed data. This process fits the natural data structure in the longitudinal framework. Our main interest is in estimating the parameters of the marginal model and evaluating the missing‐at‐random assumption in the Effects of Public Information Study, a cancer‐related study recently conducted at the University of Pennsylvania. We also present a simulation study to assess the performance of the model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Nonresponses and missing data are common in observational studies. Ignoring or inadequately handling missing data may lead to biased parameter estimation, incorrect standard errors and, as a consequence, incorrect statistical inference and conclusions. We present a strategy for modelling non‐ignorable missingness where the probability of nonresponse depends on the outcome. Using a simple case of logistic regression, we quantify the bias in regression estimates and show the observed likelihood is non‐identifiable under non‐ignorable missing data mechanism. We then adopt a selection model factorisation of the joint distribution as the basis for a sensitivity analysis to study changes in estimated parameters and the robustness of study conclusions against different assumptions. A Bayesian framework for model estimation is used as it provides a flexible approach for incorporating different missing data assumptions and conducting sensitivity analysis. Using simulated data, we explore the performance of the Bayesian selection model in correcting for bias in a logistic regression. We then implement our strategy using survey data from the 45 and Up Study to investigate factors associated with worsening health from the baseline to follow‐up survey. Our findings have practical implications for the use of the 45 and Up Study data to answer important research questions relating to health and quality‐of‐life. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Mixed treatment comparison (MTC) meta‐analyses estimate relative treatment effects from networks of evidence while preserving randomisation. We extend the MTC framework to allow for repeated measurements of a continuous endpoint that varies over time. We used, as a case study, a systematic review and meta‐analysis of intraocular pressure (IOP) measurements from randomised controlled trials evaluating topical ocular hypotensives in primary open‐angle glaucoma or ocular hypertension because IOP varies over the day and over the treatment course, and repeated measurements are frequently reported. We adopted models for conducting MTC in W inBUGS (The BUGS Project, Cambridge, UK) to allow for repeated IOP measurements and to impute missing standard deviations of the raw data using the predictive distribution from observations with standard deviations. A flexible model with an unconstrained baseline for IOP variations over time and time‐invariant random treatment effects fitted the data well. We also adopted repeated measures models to allow for class effects; assuming treatment effects to be exchangeable within classes slightly improved model fit but could bias estimated treatment effects if exchangeability assumptions were not valid. We enabled all timepoints to be included in the analysis, allowing for repeated measures to increase precision around treatment effects and avoid bias associated with selecting timepoints for meta‐analysis.The methods we developed for modelling repeated measures and allowing for missing data may be adapted for use in other MTC meta‐analyses. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Analysis of a randomized trial with missing outcome data involves untestable assumptions, such as the missing at random (MAR) assumption. Estimated treatment effects are potentially biased if these assumptions are wrong. We quantify the degree of departure from the MAR assumption by the informative missingness odds ratio (IMOR). We incorporate prior beliefs about the IMOR in a Bayesian pattern-mixture model and derive a point estimate and standard error that take account of the uncertainty about the IMOR. In meta-analysis, this model should be used for four separate sensitivity analyses which explore the impact of IMORs that either agree or contrast across trial arms on pooled results via their effects on point estimates or on standard errors. We also propose a variance inflation factor that can be used to assess the influence of trials with many missing outcomes on the meta-analysis. We illustrate the methods using a meta-analysis on psychiatric interventions in deliberate self-harm.  相似文献   

20.
In this paper, we present a unified modeling framework to combine aggregated data from randomized controlled trials (RCTs) with individual participant data (IPD) from observational studies. Rather than simply pooling the available evidence into an overall treatment effect, adjusted for potential confounding, the intention of this work is to explore treatment effects in specific patient populations reflected by the IPD. In this way, by collecting IPD, we can potentially gain new insights from RCTs' results, which cannot be seen using only a meta‐analysis of RCTs. We present a new Bayesian hierarchical meta‐regression model, which combines submodels, representing different types of data into a coherent analysis. Predictors of baseline risk are estimated from the individual data. Simultaneously, a bivariate random effects distribution of baseline risk and treatment effects is estimated from the combined individual and aggregate data. Therefore, given a subgroup of interest, the estimated treatment effect can be calculated through its correlation with baseline risk. We highlight different types of model parameters: those that are the focus of inference (e.g., treatment effect in a subgroup of patients) and those that are used to adjust for biases introduced by data collection processes (e.g., internal or external validity). The model is applied to a case study where RCTs' results, investigating efficacy in the treatment of diabetic foot problems, are extrapolated to groups of patients treated in medical routine and who were enrolled in a prospective cohort study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号