首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Purpose

To simulate the stimuli-responsive and stoichiometrically controlled doxorubicin (DOX) release from liposomes in in vivo tumor interstitial fluid (TIF), the effect of ammonia concentration and pH on the DOX release from liposomes in human plasma at 37°C was quantitatively evaluated in vitro and the release rate was calculated as a function of ammonia concentration and pH.

Methods

Human plasma samples spiked with DOX-loaded PEGylated liposomes (PLD) or Doxil®, containing ammonia (0.3–50 mM) at different pH values, were incubated at 37°C for 24 h. After incubation, the concentration of encapsulated DOX in the samples was determined by validated solid-phase extraction (SPE)-SPE-high performance liquid chromatography.

Results

Accelerated DOX release (%) from liposomes was observed as the increase of ammonia concentration and pH of the matrix, and the decrease of encapsulated DOX concentration. The release rate was expressed as a function of the ammonia concentration and pH by using Henderson-Hasselbalch equation.

Conclusions

The DOX release from PLD in TIF was expressed as a function ammonia concentration and pH at various DOX concentrations. Further, it was found that the DOX release from liposomes in a simulated TIF was more than 15 times higher than in normal plasma.
  相似文献   

2.

Purpose

Trastuzumab combined with Doxorubicin (DOX) demonstrates significant clinical activity in human epidermal growth factor receptor-2 (HER2)-positive breast cancer (BC). However, emergence of treatment resistance and trastuzumab associated cardiotoxicity remain clinical challenges. In an effort to improve patient outcome, we have developed and evaluated novel tri-functional immunoliposomes (TFIL) that target HER2-receptors on BC cells and CD3-receptors on T-lymphocytes, and deliver DOX.

Methods

Trastuzumab (anti-HER2) and OKT-3 (anti-CD3) antibodies were conjugated to liposomes using a micelle-transfer method. Cytotoxicity of targeted immunoliposomes loaded with DOX was examined in vitro on HER2-positive BC cells (BT474), with peripheral blood monocytic cells (PBMC) as immune effector cells.

Results

TFIL demonstrated high antibody-liposome conjugation ratios (100–130 μg protein/μmol phospholipid) and cargo capacity (0.21 mol:mol drug:lipid), highly efficient DOX loading (>90%), a particle size favorable for extended circulation (~150 nm), and good stability (up to 3 months at 4°C). In the presence of PBMCs, TFIL showed complete killing of BT474 cells, and were superior to mono-targeted trastuzumab-bearing liposomes, non-targeted liposomes, and free Trastuzumab and DOX.

Conclusions

Novel anti-HER2xCD3?+?DOX TFIL show promise as a means to both engage immune cells against HER2 positive breast cancer cells and deliver chemotherapy, and have the potential to improve clinical outcomes.
  相似文献   

3.

Purpose

This work was intended to develop novel doxorubicin (DOX)/zinc (II) phthalocyanine (ZnPc) co-loaded mesoporous silica (MSNs)@ calcium phosphate (CaP)@PEGylated liposome nanoparticles (NPs) that could efficiently achieve collaborative anticancer therapy by the combination of photodynamic therapy (PDT) and chemotherapy. The interlayer of CaP could be utilized to achieve pH-triggered controllable drug release, promote the cellular uptake, and induce cell apoptosis to further enhance the anticancer effects.

Methods

MSNs were first synthesized as core particles in which the pores were diffusion-filled with DOX, then the cores were coated by CaP followed by the liposome encapsulation with ZnPc to form the final DOX/ZnPc co-loaded MSNs@CaP@PEGylated liposome.

Results

A core-interlayer-shell MSNs@CaP@PEGylated liposomes was developed as a multifunctional theranostic nanoplatform. In vitro experiment indicated that CaP could not only achieve pH-triggered controllable drug release, promote the cellular uptake of the NPs, but also generate high osmotic pressure in the endo/lysosomes to induce cell apoptosis. Besides, the chemotherapy using DOX and PDT effect was achieved by the photosensitizer ZnPc. Furthermore, the MSNs@CaP@PEGylated liposomes showed outstanding tumor-targeting ability by enhanced permeability and retention (EPR) effect.

Conclusions

The novel prepared MSNs@CaP@PEGylated liposomes could serve as a promising multifunctional theranostic nanoplatform in anticancer treatment by synergic chemo-PDT and superior tumor-targeting ability.
  相似文献   

4.

Purpose

Liposomes have been developed as versatile nanocarriers for various pharmacological agents. The effect of surface charges on the cellular uptake of the liposomes has been studied by various methods using mainly fixed cells with inevitable limitations. Live cell imaging has been proposed as an alternative methods to overcome the limitations of the fixed cell-based analysis. In this study, we aimed to investigate the effects of surface charges on cellular association and internalization of the liposomes using live cell imaging.

Methods

We studied the cellular association and internalization of liposomes with different surface charge using laser scanning confocal microscopy (LSCM) equipped with live cell chamber system. Flow cytometry was also carried out using flow cytometer (FACS) for comparison.

Results

All of the cationic, neutral and anionic liposomes showed time-dependent cellular uptake through specific endocytic pathways. In glioblastoma U87MG cells, the cationic and anionic liposomes were mainly taken up via macropinocytosis, while the neutral liposomes mainly via caveolae-mediated endocytosis. In fibroblast NIH/3T3 cells, all of the three liposomes entered into the cell via clathrin-mediated endocytosis.

Conclusions

This study provides a better understanding on the cellular uptake mechanisms of the liposomes, which could contribute significantly to development of liposome-based drug delivery systems.
  相似文献   

5.

Purpose

DOX is one of the most potent anticancer drugs. But its short half-life and the occurrence of multi-drug resistance (MDR) markedly limit its clinical application. To solve these problems, we develop DOX loaded polymersomes (DOX polymersomes).

Methods

An methoxy poly(ethylene glycol)-b-poly(epsilon-caprolactone) (mPEG-b-PCL) copolymer was synthesized and used to prepare DOX polymersomes. The pharmaceutical properties of DOX polymersomes were characterized. The in vitro release profile of DOX from polymersomes was investigated. The in vitro cytotoxicity and cell uptake studies were performed on MCF-7 and MCF-7/ADR cells. The in vivo pharmacokinetic profiles were investigated on Sprague–Dawley rats.

Results

DOX polymersomes had a nano-scale particle size of about 60 nm with a hydrophobic membrane about 10 nm in thickness. Release of DOX from the polymersomes took place in a sustained manner. Cell experiments showed DOX polymersomes enhanced the cytotoxicity and the intracellular accumulation of DOX in MCF-7/ADR cells, compared with free DOX. In vivo pharmacokinetic study showed the DOX polymersomes increased the bioavailability and prolonged the circulation time in rats.

Conclusions

The entrapment of DOX in biodegradable polymersomes could enhance cytotoxicity in MCF-7/ADR cells and improve its in vivo pharmacokinetic profile.
  相似文献   

6.

Purpose

The blood brain barrier compromises glioblastoma chemotherapy. However high blood concentrations of lipophilic, alkylating drugs result in brain uptake, but cause myelosuppression. We hypothesised that nanoparticles could achieve therapeutic brain concentrations without dose-limiting myelosuppression.

Methods

Mice were dosed with either intravenous lomustine Molecular Envelope Technology (MET) nanoparticles (13 mg kg?1) or ethanolic lomustine (6.5 mg kg?1) and tissues analysed. Efficacy was assessed in an orthotopic U-87 MG glioblastoma model, following intravenous MET lomustine (daily 13 mg kg?1) or ethanolic lomustine (daily 1.2 mg kg?1 - the highest repeated dose possible). Myelosuppression and MET particle macrophage uptake were also investigated.

Results

The MET formulation resulted in modest brain targeting (brain/ bone AUC0-4h ratios for MET and ethanolic lomustine?=?0.90 and 0.53 respectively and brain/ liver AUC0-4h ratios for MET and ethanolic lomustine?=?0.24 and 0.15 respectively). The MET formulation significantly increased mice (U-87 MG tumours) survival times; with MET lomustine, ethanolic lomustine and untreated mean survival times of 33.2, 22.5 and 21.3 days respectively and there were no material treatment-related differences in blood and femoral cell counts. Macrophage uptake is slower for MET nanoparticles than for liposomes.

Conclusions

Particulate drug formulations improved brain tumour therapy without major bone marrow toxicity.
  相似文献   

7.

Purpose

This study aims to develop liposomal formulations containing synergistic antibiotics of colistin and ciprofloxacin for the treatment of infections caused by multidrug-resistant Pseudomonas aeruginosa.

Methods

Colistin (Col) and ciprofloxacin (Cip) were co-encapsulated in anionic liposomes by ammonium sulfate gradient. Particle size, encapsulation efficiency, in vitro drug release and in vitro antibiotic activities were evaluated.

Results

The optimized liposomal formulation has uniform sizes of approximately 100 nm, with encapsulation efficiency of 67.0% (for colistin) and 85.2% (for ciprofloxacin). Incorporation of anionic lipid (DMPG) markedly increased encapsulation efficiency of colistin (from 5.4 to 67.0%); however, the encapsulation efficiency of ciprofloxacin was independent of DMPG ratio. Incorporation of colistin significantly accelerated the release of ciprofloxacin from the DMPG anionic liposomes. In vitro release of ciprofloxacin and colistin in the bovine serum for 2 h were above 70 and 50%. The cytotoxicity study using A549 cells showed the liposomal formulation is as non-toxic as the drug solutions. Liposomal formulations of combinations had enhanced in vitro antimicrobial activities against multidrug resistant P. aeruginosa than the monotherapies.

Conclusions

Liposomal formulations of two synergistic antibiotics was promising against multidrug resistant P. aeruginosa infections.
  相似文献   

8.

Purpose

Acute lung injury (ALI) is a fatal syndrome in critically ill patients. It is characterized by lung edema and inflammation. Numerous pro-inflammatory mediators are released into alveoli. Among them, interleukin-1beta (IL-1β) causes an increase in solute permeability across the alveolar-capillary barrier leading to edema. It activates key effector cells (alveolar epithelial and endothelial cells) releasing inflammatory chemokines and cytokines. The purpose of the study was to demonstrate that nebulized liposomes inhibit ALI in vivo.

Methods

In vivo ALI model was simulated through intra-tracheal instillation of IL-1β solution (100 μg/mL in PBS, pH 7.2, 200 μL) in male Sprague-Dawley rats. Various formulations were tested in ALI induced rats. These formulations include plain liposomes (PL), methylprednisolone sodium succinate solution (MPS solution), cRGD-peptide grafted liposomes (LcRGD) and methylprednisolone sodium succinate encapsulated and cRGD-peptide grafted liposomes (MPS-LcRGD). Formulations were nebulized in vivo in rats using micro-pump nebulizer.

Results

Liposome formulations exhibited higher levels of drug concentration in lungs. The physicochemical parameters demonstrated that the liposome formulations were stable. On the basis of aerodynamic droplet-size, nebulized formulations were estimated to deposit in different regions of respiratory tract, especially alveolar region, Among the formulations, MPS-LcRGD caused significant reduction of edema, neutrophil infiltration and inflammation biochemical marker levels.

Conclusion

From the results, it can be inferred that nebulization of targeted liposomes had facilitated spatial and temporal modulation of drug delivery resulting in alleviation of ALI.
  相似文献   

9.

Background

Proton-pump inhibitors (PPIs) are often prescribed to patients receiving dual antiplatelet therapy (DAPT). However, this class of medication, especially omeprazole, has been associated with a reduction in clopidogrel efficacy, leading many clinicians to substitute omeprazole with ranitidine.

Objectives

Our objective was to compare the antiplatelet effect of clopidogrel before and after the addition of omeprazole or ranitidine.

Methods

We measured platelet aggregability at baseline and after 1 week of clopidogrel 75 mg daily. Subjects were then randomized in a double-blinded, double-dummy fashion to omeprazole 20 mg twice daily (bid) or ranitidine 150 mg bid. We repeated aggregability tests after 1 additional week, using VerifyNow P2Y12? (Accumetrics; San Diego, CA, USA), depicting aggregability as percent inhibition of platelet aggregation (IPA).

Results

We enrolled 41 patients in the omeprazole group and 44 in the ranitidine group. IPA was significantly decreased after the addition of omeprazole to clopidogrel (from 26.3 ± 32.9 to 17.4 ± 33.1 %; p = 0.025), with no statistical significant changes observed in the ranitidine group (from 32.6 ± 28.9 to 30.1 ± 31.3 %; p = 0.310). The comparison of IPA in both groups at the end of the follow-up showed a trend toward significance (p = 0.07, 95 % confidence interval [CI] ?1.19 to 26.59); after excluding homozygous patients for 2C19*2 genotype, the comparison of IPA between the groups reached statistical significance (32.7 ± 30.8 vs. 17.7 ± 33.4 %, respectively, for ranitidine and omeprazole groups; p = 0.04).

Conclusions

Unlike omeprazole, ranitidine did not influence platelet aggregability response to clopidogrel.

Clinical Trial Registration

NCT01896557.
  相似文献   

10.

Purpose

To fabricate an acid-cleavable PEG polymer for the development of PEG-cleavable pH-sensitive liposomes (CL-pPSL), and to investigate their ability for endosomal escape and long circulation.

Methods

PEG-benzaldehyde-hydrazone-cholesteryl hemisuccinate (PEGB-Hz-CHEMS) containing hydrazone and ester bonds was synthesised and used to fabricate a dual pH-sensitive CL-pPSL. Non-cleavable PEGylated pH-sensitive liposome (pPSL) was used as a reference and gemcitabine as a model drug. The cell uptake and endosomal escape were investigated in pancreatic cancer Mia PaCa-2 cells and pharmacokinetics were studied in rats.

Results

The CL-pPSL showed accelerated drug release at endosomal pH 5.0 compared to pPSL. Compared to pPSL, CL-pPSL released their fluorescent payload to cytosol more efficiently and showed a 1.4-fold increase in intracellular gemcitabine concentration and higher cytotoxicity. In rats, injection of gemcitabine loaded CL-pPSL resulted in a slightly smaller Vd (149?±?27 ml/kg; 170?±?30 ml/kg) and shorter terminal T1/2 (5.4?±?0.3 h; 5.8?±?0.6 h) (both p?>?0.05) but a significantly lower AUC (p?<?0.01), than pPSL, due to the lower PEGylation degree (1.7 mol%) which means a ‘mushroom’ configuration of PEG. A five-time increase in the dose with CL-pPSL resulted in a 11-fold increase in AUC and a longer T1/2 (8.2?±?0.5 h).

Conclusion

The PEG-detachment from the CL-pPSL enhanced endosome escape efficiency compared with pPSL, without significantly compromising their stealth abilities.
  相似文献   

11.

Purpose

To determine the efficacious cefazolin prophylactic dose for bariatric surgery using free subcutaneous concentrations accessed by microdialysis after 2 g or 3 g i.v. bolus dosing to morbidly obese women and POPPK modeling.

Methods

A POPPK model with variable plasma and subcutaneous tissue protein binding was developed to simultaneously describe plasma and tissue data sets. The outcomes was predicted for common surgical site infection (SSI) bacteria over 3, 4, 5 and 6 h periods postdose, as probability of target attainment (PTA) using Monte Carlo simulation.

Results

CFZ 2 g warrant up to 5 h SSI prophylaxis for bacteria with MICs ≤1 mg/L such as Escherichia coli and Staphylococcus aureus. For species such as Klebsiella pneumoniae, which present MIC distribution frequency of 2 mg/L, the maintenance of PTA?≥?90% occurs with a 3 g dose for surgeries lasting up to 5 h, and 2 g dose provide an adequate response up to 4 h (PTA of 89%).

Conclusions

Effectiveness of CFZ 2 g is similar to 3 g against bacteria with a MIC up to 2 mg/L, especially if the surgery does not last for more than 4 h.
  相似文献   

12.
13.

Purposes

To develop pH-sensitive liposomes (PSL) containing a high content of gemcitabine; and to investigate whether drug loading (DL) would alter the in vitro and pharmacokinetic properties.

Methods

PSL with a high DL were obtained using a modified small-volume incubation method. The DL effects on drug release rate and in vitro cytotoxicity of PSL were evaluated using MIA PaCa-2 pancreatic cancer cells and their pharmacokinetics investigated in rats.

Results

The highest DL of 4.5?±?0.1% was achieved for gemcitabine in PSL with 145?±?5 nm diameter. DL did not alter the in vitro release rate from PSL. The IC50 (48 h) of PSL (DL 0.5 and 4.5%) and non pH-sensitive liposomes (NPSL, DL 4.2%) were 1.1?±?0.1, 0.7?±?0.1 and 37.0?±?7.5 μM, respectively. The PSL resulted in a 4.2-fold increase in its elimination half-life (6.2 h) compared to gemcitabine solution (1.4 h) in rats. No significant difference in pharmacokinetic parameters was observed between the two PSL (DL 0.5 and 4.5%).

Conclusion

The PSL offered advantages over NPSL in restoring the sensitivity of pancreatic cancer cells to gemcitabine without requiring a high DL. DL in the PSL did not alter release rate, cytotoxicity or their long-circulating properties.
Graphical Abstract ?
  相似文献   

14.

Purpose

Etidocaine (EDC) is a long lasting local anesthetic, which alleged toxicity has restricted its clinical use. Liposomes can prolong the analgesia time and reduce the toxicity of local anesthetics. Ionic gradient liposomes (IGL) have been proposed to increase the upload and prolong the drug release, from liposomes.

Methods

First, a HPLC method for EDC quantification was validated. Then, large unilamellar vesicles composed of hydrogenated soy phosphatidylcholine:cholesterol with 250 mM (NH4)2SO4 - inside gradient - were prepared for the encapsulation of 0.5% EDC. Dynamic light scattering, nanotracking analysis, transmission electron microscopy and electron paramagnetic resonance were used to characterize: nanoparticles size, polydispersity, zeta potential, concentration, morphology and membrane fluidity. Release kinetics and in vitro cytotoxicity tests were also performed.

Results

IGLEDC showed average diameters of 172.3?±?2.6 nm, low PDI (0.12?±?0.01), mean particle concentration of 6.3?±?0.5?×?1012/mL and negative zeta values (?10.2?±?0.4 mV); parameters that remain stable during storage at 4°C. The formulation, with 40% encapsulation efficiency, induced the sustained release of EDC (ca. 24 h), while reducing its toxicity to human fibroblasts.

Conclusion

A novel formulation is proposed for etidocaine that promotes sustained release and reduces its cytotoxicity. IGLEDC can come to be a tool to reintroduce etidocaine in clinical use.
  相似文献   

15.

Introduction

Arginine vasopressin-stimulated reabsorption of urea occurs in the collecting duct via increased expression of the urea transporter.

Objective

The aim of this study was to evaluate whether the blood urea nitrogen/creatinine (BUN/Cr) ratio is useful for predicting tolvaptan response in patients with decompensated heart failure (HF).

Methods

Among 71 consecutive patients with HF who received oral tolvaptan between 2010 and 2014, we retrospectively studied 33 patients with decompensated HF without any mechanical circulatory assistance or inotropic support who had already been treated with loop diuretics. A responder to tolvaptan was defined as an individual who experienced a ≥30 % increase in their respective 24-h urine volume.

Results

Among the 33 patients, 21 met the criteria of a responder. The area under the receiver operating characteristic curves of BUN/Cr and BUN were 0.790 and 0.714, respectively, and the respective cut-off values for responders to tolvaptan were 23.8 and 49.0. BUN/Cr and BUN retained their significant relationships with the responder status (odds ratio for BUN/Cr >23.8: 20.9; 95 % confidence interval [CI] 2.7–531.1; p = 0.002; odds ratio for BUN ≥49: 7.7; 95 % CI 1.4–65.8; p = 0.02).

Conclusion

Our results suggest that high BUN/Cr may be a predictor of response to tolvaptan in decompensated HF patients. A prospective study with a large sample size is required to confirm this preliminary finding.
  相似文献   

16.

Purpose

This study was conducted to characterize UV imaging as a platform for performing in vitro release studies using Nicorette® nicotine patches as a model drug delivery system.

Methods

The rate of nicotine release from 2 mm diameter patch samples (Nicorette®) into 0.067 M phosphate buffer, pH 7.40, was studied by UV imaging (Actipix SDI300 dissolution imaging system) at 254 nm. The release rates were compared to those obtained using the paddle-over-disk method.

Results

Calibration curves were successfully established which allowed temporally and spatially resolved quantification of nicotine. Release profiles obtained from UV imaging were in qualitative agreement with results from the paddle-over-disk release method.

Conclusion

Visualization as well as quantification of nicotine concentration gradients was achieved by UV imaging in real time. UV imaging has the potential to become an important technology platform for conducting in vitro drug release studies.
  相似文献   

17.

Background

Diverticular disease is a significant burden on healthcare systems that is managed, surgically or medically, mainly as an emergency or acute condition. There are no standardized treatment recommendations for symptomatic uncomplicated disease. We hypothesized that a probiotic would reduce abdominal pain in such patients.

Methods

We conducted a single-center, double-blind, placebo-controlled trial of probiotic treatment (Symprove) in adult patients with moderate-to-severe chronic, non-acute symptomatic diverticular disease. 143 patients were randomized to receive 1 mL/kg/day of probiotic liquid (N = 72) or placebo (N = 71) daily for 3 months. The primary endpoint was abdominal pain severity. Secondary endpoints consisted of the change in the frequency of eight abdominal symptoms and the level of intestinal inflammation (fecal calprotectin).

Results

120 patients completed the trial. Abdominal pain score, the primary end point, decreased in both groups, but no significant difference between the groups was found (P = 0.11). In relation to placebo, the probiotic significantly decreased the frequency of four of the eight secondary endpoints: constipation, diarrhea, mucorrhea, and back pain (P < 0.04). No significant differences were found in frequency of abdominal pain, PR bleeding, dysuria, and bloating.

Conclusions

Multi-strain liquid probiotic did not improve abdominal pain scores significantly, but significantly improved the frequency of four other symptoms associated with chronic, non-acute symptomatic diverticular disease.
  相似文献   

18.

Propose

Tin complexes demonstrate antiproliferative activities in some case higher than cisplatin, with IC50 at the low micromolar range. We have previously showed that the cyclic trinuclear complex of Sn(IV) bearing an aromatic oximehydroxamic acid group [nBu2Sn(L)]3 (L=N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) (MG85) shows high anti-proliferative activity, induces apoptosis and oxidative stress, and causes destabilization of tubulin microtubules, particularly in colorectal carcinoma cells. Despite the great efficacy towards cancer cells, this complex still shows some cytotoxicity to healthy cells. Targeted delivery of this complex specifically towards cancer cells might foster cancer treatment.

Methods

MG85 complex was encapsulated into liposomal formulation with and without an active targeting moiety and cancer and healthy cells cytotoxicity was evaluated.

Results

Encapsulation of MG85 complex in targeting PEGylated liposomes enhanced colorectal carcinoma (HCT116) cancer cell death when compared to free complex, whilst decreasing cytotoxicity in non-tumor cells. Labeling of liposomes with Rhodamine allowed assessing internalization in cells, which showed significant cell uptake after 6 h of incubation. Cetuximab was used as targeting moiety in the PEGylated liposomes that displayed higher internalization rate in HCT116 cells when compared with non-targeted liposomes, which seems to internalize via active binding of Cetuximab to cells.

Conclusions

The proposed formulation open new avenues in the design of innovative transition metal-based vectorization systems that may be further extended to other novel metal complexes towards the improvement of their anti-cancer efficacy, which is usually hampered by solubility issues and/or toxicity to healthy tissues.
  相似文献   

19.

Purpose

To develop vincristine (VCR) and doxorubicin (DOX) co-encapsulated thermo-sensitive liposomes (VD-TSL) against drug resistance, with increased tumor inhibition rate and decreased system toxicity, improving drug targeting efficiency upon mild hyperthermia (HT) in solid tumor.

Methods

Based on similar physicochemical properties, VCR and DOX were co-loaded in TSL with pH gradient active loading method and characterized. The time-dependent drug release profiles at 37 and 42°C were assessed by HPLC. Then we analysed the phospholipids in filtrate after ultrafiltration and studied VD-TSL stability in mimic in vivo conditions and long-time storage conditions (4°C and ?20°C). Cytotoxic effect was studied on PANC and sw-620 using MTT. Intracellular drug delivery was studied by confocal microscopy on HT-1080. In vivo imaging of TSL pharmacokinetic and biodistribution was performed on MCF-7 tumor-bearing nude mice. And therapeutic efficacy on these xenograft models were followed under HT.

Results

VD-TSL had excellent particle distribution (about 90 nm), high entrapment efficiency (>95%), obvious thermo-sensitive property, and good stability. MTT proved VD-TSL had strongest cell lethality compared with other formulations. Confocal microscopy demonstrated specific accumulation of drugs in tumor cells. In vivo imaging proved the targeting efficiency of TSL under hyperthermia. Then therapeutic efficacy revealed synergism of VCR and DOX co-loaded in TSL, together with HT.

Conclusion

VD-TSL could increase drug efficacy and decrease system toxicity, by making good use of synergism of VCR and DOX, as well as high targeting efficiency of TSL.
  相似文献   

20.

Purpose

Deoxypodophyllotoxin (DPT) is a new potential anti-tumor drug with nearly no water solubility and low permeability. Hence, we prepared a poly (ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) modified long-circulation liposomes for enhanced solubility and anti-tumor capacity of DPT with clinical expectation.

Method and Result

DPT-loaded long-circulation liposomes (DPT-LCLPs) were prepared by thin-film dispersion method, and characteristics including particle size, zeta potential and entrapment efficiency of re-dissolution after lyophilization were 110.5?±?4.5 nm, ?15.06?±?1.14 mV, and 92.45?±?5.21 %, respectively. TEM images showed that DPT-LCLPs appeared as spherical or ellipsoidal in shape with multilayer membrane. Moreover, sensitive liquid chromatography method was developed for quantification of DPT concentration in rat plasma with diazepam as internal standard (IS), and the results revealed that two-compartment intravenous model analysis was better with respect to data fitted by Kinetica 4.4 program. The terminal phase half-life (T 1/2β) of DPT-LCLPs group was estimated to be approximately 155 min; AUC0?τ was more than three times higher than that of control group, demonstrating a prolonged circulation time due to PEG modification. In vivo investigation on Heps tumor-xenografted mice, DPT-LCLPs group indicated higher anti-tumor efficacy with dose-dependence, comparing to Etoposide and control group.

Conclusion

PEG-modified liposomes highly improved the solubility and blood circulation of DPT with simple preparation for potentially enhanced anti-cancer therapy.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号