首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

The purpose of this work was to develop thermal methods to identify cocrystal systems with stoichiometric diversity.

Methods

Differential scanning calorimetry (DSC) and hot stage microscopy (HSM) have been applied to study the stoichiometric diversity phenomenon on cocrystal systems of the model compound salicylic acid (SA) with different coformers (CCFs). The DSC method was particularly useful in the identification of cocrystal re-crystallization, especially to improve the temperature resolution using a slower heating rate. HSM was implemented as a complementary protocol to confirm the DSC results. The crystal structures were elucidated by single-crystal X-ray diffraction (SXRD).

Results

Two new cocrystal systems consisting of salicylic acid-benzamide (SA-BZD, 1:1, 1:2) and salicylic acid-isonicotinamide (SA-ISN, 1:1, 2:1) have been identified in the present work. The chemical structures of the newly discovered cocrystals SA-BZD (1:2) and SA-ISN (2:1) have been elucidated using X-ray single crystal and powder diffraction methods.

Conclusions

The developed thermal methods could rapidly identify cocrystal systems with stoichiometric diversity, with the potential to discover new pharmaceutical cocrystals in the future.
  相似文献   

2.

Purpose

In biopharmaceutical development, information regarding higher-order structure (HOS) is important to verify quality and characterize protein derivatives. In this study, we aimed to characterize the association between HOS and pharmacokinetic property of a stress-exposed monoclonal antibody (mAb).

Methods

Purity, primary structure, thermal stability, and HOS were evaluated for mAbs exposed to heat, photo-irradiation, and chemical oxidation. To investigate conformation of stress-exposed mAbs, hydrogen/deuterium exchange coupled with mass spectrometry (HDX–MS) was utilized.

Results

No distinct difference in secondary or tertiary structure between stress-exposed and non-stressed samples was found by conventional spectroscopic techniques. In binding activity with the neonatal Fc receptor (FcRn), however, a marked decline was observed for force-oxidized mAb and a slight decline was observed for heat- and photodegraded mAbs. Using differential scanning calorimetry, a change in thermal stability was observed in the CH2 domain for all the stress-exposed samples. Using HDX–MS analyses, individual regions with altered conformation could be identified for heat-degraded and force-oxidized samples.

Conclusions

These findings indicate that comprehensive study is important for detecting conformational changes and helpful for predicting biophysical property, and that the evaluation of HOS using several analytical techniques is indispensable for confirming biopharmaceutical quality.
  相似文献   

3.

Purpose

The objective of present study was to increase solubility and dissolution performance of a poorly water soluble antidiabetic drug, Nateglinide (NAT), through formation of inclusion complexes with hydroxypropyl-beta-cyclodextrin (HP–β–CD). The effect of L-arginine (ARG), an amino acid, on the complexation efficiency and solubility enhancing power of HP–β–CD was investigated by preparing ternary inclusion complexes.

Methods

The binary and ternary inclusion complexes were prepared by physical mixing, kneading, co-evaporation, and spray drying methods containing NAT, HP–β–CD, and ARG. The complexes were characterized by FTIR, DSC, PXRD, and 1H–NMR. Molecular modeling study revealed that introduction of ternary agent ARG have improved the interactions of NAT and HP–β–CD.

Results

The complex prepared by spray drying method showed the highest increase in solubility and dissolution rate compared to other methods. Molecular docking study revealed that ARG interactions plays an essential role in increasing the stability and solubility of the complex.

Conclusions

The present study demonstrated increase in solubility and dissolution of NAT. Hence, ternary complexes of NAT can be used as an efficient tool for the delivery of insoluble drug, NAT.
  相似文献   

4.

Purpose

Molecular understanding of phase stability and transition of the amorphous state helps in formulation and manufacturing of poorly-soluble drugs. Crystallization of a model compound, 2-phenylamino nicotinic acid (2PNA), from the amorphous state was studied using solid-state analytical methods. Our previous report suggests that 2PNA molecules mainly develop intermolecular –COOH???pyridine N (acid-pyridine) interactions in the amorphous state. In the current study, the molecular speciation is explored with regard to the phase transition from the amorphous to the crystalline state.

Methods

Using spectroscopic techniques, the molecular interactions and structural evolvement during the recrystallization from the glassy state were investigated.

Results

The results unveiled that the structurally heterogeneous amorphous state contains acid-pyridine aggregates – either as hydrogen-bonded neutral molecules or as zwitterions – as well as a population of carboxylic acid dimers. Phase transition from the amorphous state results in crystal structures composed of carboxylic acid dimer (acid-acid) synthon or acid-pyridine chains depending on the crystallization conditions employed.

Conclusions

The study underlines the structural evolvement, as well as its impact on the metastability, of amorphous samples from local, supramolecular assemblies to long-range intermolecular ordering through crystallization.
  相似文献   

5.
6.

Purpose

The combination of morphine and gabapentin seems promising for the treatment of postoperative and neuropathic pain. Despite the well characterised pharmacodynamic interaction, little is known about possible pharmacokinetic interactions. The aim of this study was to evaluate whether co-administration of the two drugs leads to modifications of their pharmacokinetic profiles.

Methods

The pharmacokinetics of morphine, morphine-3-glucuronide and gabapentin were characterised in rats following subcutaneous injections of morphine, gabapentin or their combination. Non-linear mixed effects modelling was applied to describe the pharmacokinetics of the compounds and possible interactions.

Results

The plasma-concentration-time profiles of morphine and gabapentin were best described using a three- and a one-compartment disposition model respectively. Dose dependencies were found for morphine absorption rate and gabapentin bioavailability. Enterohepatic circulation of morphine-3-glucuronide was modelled using an oscillatory model. The combination did not lead to pharmacokinetic interactions for morphine or gabapentin but resulted in an estimated ~33% diminished morphine-3-glucuronide formation.

Conclusions

The finding of a lack of pharmacokinetic interaction strengthens the notion that the combination of the two drugs leads to better efficacy in pain treatment due to interaction at the pharmacodynamic level. The interaction found between gabapentin and morphine-3-glucuronide, the latter being inactive, might not have any clinical relevance.
  相似文献   

7.

Purpose

This study was undertaken to evaluate the biopharmaceutical properties of cyclosporine A (CsA)-loaded nano-matrix particles for inhalation.

Methods

Nano-matrix particles of CsA with mannitol (nCsAm) were prepared by a flash nano-precipitation technique employing a multi-inlet vortex mixer and evaluated in terms of physicochemical properties, anti-inflammatory effect in the rat model of airway inflammation, pharmacokinetic behavior, and distributions of CsA to side-effect-related organs after intratracheal administration.

Results

In nCsAm, spherical nano-particles of CsA were covered with mannitol and the mean particle size was 1.3 μm. The in vitro Next Generation Impactor analysis demonstrated fine inhalation performance with a fine particle fraction value of 65.8%. Intratracheal nCsAm (100 μg-CsA/rat) significantly attenuated the recruitment of inflammatory cells into the airway in the rat model of airway inflammation, followed by suppression of the inflammatory biomarkers. After intratracheal nCsAm at a pharmacologically effective dose (100 μg-CsA/rat), there was a 42–47-fold decrease in the distribution of CsA to side-effect-related organs such as the kidney and liver compared with oral CsA at a toxic dose (10 mg-CsA/kg), potentially leading to avoidance of systemic side-effects of CsA.

Conclusion

Upon these findings, nCsAm prepared with the flash nano-precipitation technique could be a novel dosage form of CsA for inhalation therapy of airway inflammation with a better safety margin.
  相似文献   

8.

Purpose

We present a framework to prioritize strategies for monoclonal antibody (mAb) second-generation process development, or post-approval optimization.

Methods

Design of experiments (DoE), in conjunction with principal component analysis (PCA), were employed to identify process parameters that had the most impact on downstream purification cost of goods. Statistically significant parameters were identified through a DoE study, while the PCA characterization was applied as an independent tool to further elucidate the relative importance of these parameters. A stochastic approach incorporating process uncertainties was used to illustrate the distribution of downstream cost of goods under different process conditions.

Results

This framework offered insights on the relative contribution of each parameter to downstream cost of goods, and generated frequency distribution of the downstream cost of goods by incorporating process uncertainty. Such systematic approach to prioritize development strategies under compressed timelines could be useful for biopharmaceutical companies to achieve a competitive advantage.
  相似文献   

9.

Purpose

Carvedilol is a third generation non-cardioselective β-blocker used in the treatment of hypertension and demonstrated a potential in the treatment of cardiovascular diseases such as myocardial infarction and arrhythmias. For any drug to be therapeutically effective, it must enter the systemic circulation and to do so, it should have an optimum aqueous solubility at the site of absorption which is a major hurdle to overcome by a formulation scientist. Carvedilol belongs to BCS (biopharmaceutical classification system) class II drugs, thus having low solubility and poor bioavailability (around 25%). Hence, the purpose of this review is to elaborate on several approaches to increase the solubility, dissolution, and bioavailability of carvedilol.

Methods

Micronization, solid dispersions, cyclodextrin inclusion complex, hydrotropy, nanoformulation which include nanocrystals, nanosuspension, nanoemulsions, dendrimers, and polymeric nanoparticles. It also includes methods that have not been used on carvedilol such as cocrystallization and coamorphous technology.

Results

Several approaches have successfully increased solubility and bioavailability of carvedilol and several other unexplored methods which have the potential to improve the aqueous solubility of carvedilol but have not been applied till date have also been discussed in the review.

Conclusion

There are various approaches explored to increase the solubility of carvedilol with every technique having certain advantages and drawbacks. Micronization and nanoformulations (dendrimers, nanoemulsion, nanosuspension, nanocrystals, polymeric nanoparticles) are the most widely used technique for solubility enhancement of carvedilol on laboratory scale due to higher solubility and dissolution rate but they have poor industrial applicability due to difficulty in scale-up and low yield. Efforts are being made to carry out different solubility enhancement techniques with good industrial applicability for carvedilol, e.g., cocrystals. Cocrystals and coamorphous approach for poorly soluble drugs having similar properties to carvedilol have shown good solubility, dissolution, and bioavailability compared to few techniques discussed in this review, and are being widely explored to overcome the drawbacks associated with its method of preparation by carrying out certain advancements (e.g., hot melt extrusion and sonocrystallization) to produce carvedilol cocrystals and coamorphous compound with unique properties in future development.
  相似文献   

10.

Purpose

Busulfan-melphalan high-dose chemotherapy followed by autologous stem cell transplantation is an essential consolidation treatment of high-risk neuroblastoma in children. Main treatment limitation is hepatic veno-occlusive disease, the most severe and frequent extra-hematological toxicity. This life threatening toxicity has been related to a drug interaction between busulfan and melphalan which might be increased by prior disturbance of iron homeostasis, i.e. an increased plasma ferritin level.

Methods

We performed an experimental study of busulfan and melphalan pharmacodynamic and pharmacokinetics in iron overloaded mice.

Results

Iron excess dramatically increased the toxicity of melphalan or busulfan melphalan combination in mice but it did not modify the clearance of either busulfan or melphalan. We show that prior busulfan treatment impairs the clearance of melphalan. This clearance alteration was exacerbated in iron overloaded mice demonstrating a pharmacokinetic interaction. Additionally, iron overload increased melphalan toxicity without altering its pharmacokinetics, suggesting a pharmacodynamic interaction between iron and melphalan. Based on iron homeostasis disturbance, we postulated that prior induction of ferritin, through Nrf2 activation after oxidative stress, may be associated with the alteration of melphalan metabolism.

Conclusion

Iron overload increases melphalan and busulfan-melphalan toxicity through a pharmacodynamic interaction and reveals a pharmacokinetic drug interaction between busulfan and melphalan.
  相似文献   

11.

Purpose

The aim of the current population pharmacokinetic study was to quantify oxycodone pharmacokinetics in children ranging from preterm neonates to children up to 7 years of age.

Methods

Data on intravenous or intramuscular oxycodone administration were obtained from three previously published studies (n?=?119). The median [range] postmenstrual age of the subjects was 299 days [170 days-7.8 years]. A population pharmacokinetic model was built using 781 measurements of oxycodone plasma concentration. The model was used to simulate repeated intravenous oxycodone administration in four representative infants covering the age range from an extremely preterm neonate to 1-year old infant.

Results

The rapid maturation of oxycodone clearance was best described with combined allometric scaling and maturation function. Central and peripheral volumes of distribution were nonlinearly related to bodyweight. The simulations on repeated intravenous administration in virtual patients indicated that oxycodone plasma concentration can be kept between 10 and 50 ng/ml with a high probability when the maintenance dose is calculated using the typical clearance and the dose interval is 4 h.

Conclusions

Oxycodone clearance matures rapidly after birth, and between-subject variability is pronounced in neonates. The pharmacokinetic model developed may be used to evaluate different multiple dosing regimens, but the safety of repeated doses should be ensured.
  相似文献   

12.

Purpose

This study aims to investigate the influence of different storage humidity conditions on crystallization and aerosol performance of inhalable spray dried amorphous powder formulations (Ciprofloxacin hydrochloride as the model drug).

Methods

The spray dried samples were stored at 20%, 55% and 75% relative humidity (RH). Crystallinity was monitored by Powder X-ray diffraction (PXRD), and particle morphology was measured by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Aerosol performance was evaluated using a multi-stage liquid impinger (MSLI).

Results

PXRD diffractograms showed the spray dried Ciprofloxacin stored at 20% RH for three weeks were amorphous; whereas those stored at 55% RH and 75% RH started crystallizing after one hour. Fine particle fraction (FPF) of the particles was improved from 28% to 42% after storage at 55% RH for three days. Such improvement was attributed to the crystallization of amorphous powders, which led to increased particle roughness and reduced particulate contact area, as visualized by SEM and quantified by AFM. A linear relationship was observed between degree of crystallinity/crystallite size and FPF (R2?=?0.94 and R2?=?0.96, respectively). However, deterioration in aerosol performance was observed after storage at 75% RH due to formation of inter-particulate liquid/solid bridges, as confirmed by SEM.

Conclusions

This study provides a fundamental understanding in moisture-induced physical and aerosol instability of the spray dried powder formulations.
  相似文献   

13.

Purpose

Volume of distribution is an important pharmacokinetic parameter in the distribution and half-life of a drug. Protein binding and lipid partitioning together determine drug distribution.

Methods

Here we present a simple relationship that estimates the volume of distribution with the fraction of drug unbound in both plasma and microsomes. Model equations are based upon a two-compartment system and the experimental fractions unbound in plasma and microsomes represent binding to plasma proteins and cellular lipids, respectively.

Results

The protein and lipid binding components were parameterized using a dataset containing human in vitro and in vivo parameters for 63 drugs. The resulting equation explains ~84% of the variance in the log of the volume of distribution with an average fold-error of 1.6, with 3 outliers.

Conclusions

These results suggest that Vss can be predicted for most drugs from plasma protein binding and microsomal partitioning.
  相似文献   

14.

Background

The search for a simple and scalable approach that can improve the two key biopharmaceutical processes (solubility and permeability) for BCS Class II and BCS Class IV has still been unmet need.

Purpose

In this study, L-lysine was investigated as a potential excipient to tackle problems with solubility and permeability. Bendazac (Class II); quercetin and rutin (Class IV) were employed.

Methods

Drugs-lysine complexes in 1:1 M ratios were prepared by co-precipitation and co-grinding; characterized for solubility, partition coefficient, DSC, FTIR, SEM, dissolution rate and permeability. Chemical stability of quercetin-lysine and rutin-lysine was studied by assessing antioxidant capacity using Trolox and CUPRAC assays.

Results and Conclusion

Drugs-lysine salt/complexes were confirmed. Solubility enhancement factors ranged from 68- to 433-fold increases and dissolution rates were also significantly enhanced by up to 6-times, compared with drugs alone. With the exception of rutin-lysine, Papp for bendazac-lysine and quercetin-lysine enhanced by 2.3- to 4-fold. Papp for quercetin (Class IV) benefited more than bendazac (Class II) when complexed with lysine. This study warrants the use of L-lysine as a promising excipient for enhanced solubility and permeability of Class II and Class IV, providing that the solubility of the drug is ensured at ‘the door step’ of absorption sites.
  相似文献   

15.

Purpose

To build a physiologically based pharmacokinetic (PBPK) model for fimasartan, amlodipine, and hydrochlorothiazide, and to investigate the drug–drug interaction (DDI) potentials.

Methods

The PBPK model of each drug was developed using Simcyp software (Version 15.0), based on the information obtained from literature sources and in vitro studies. The predictive performance of the model was assessed by comparing the predicted PK profiles and parameters with the observed data collected from healthy subjects after multiple oral doses of fimasartan, amlodipine, and hydrochlorothiazide. The DDI potentials after co-administration of three drugs were simulated using the final model.

Results

The predicted-to-observed ratios of all the pharmacokinetic parameters met the acceptance criterion. The PBPK model predicted no significant DDI when fimasartan was co-administered with amlodipine or hydrochlorothiazide, which is consistent with the observed clinical data. In the simulation of DDI at steady-state after co-administration of three drugs, the model predicted that fimasartan exposure would be increased by ~24.5%, while no changes were expected for the exposures of amlodipine and hydrochlorothiazide.

Conclusions

The developed PBPK model adequately predicted the pharmacokinetics of fimasartan, amlodipine, and hydrochlorothiazide, suggesting that the model can be used to further investigate the DDI potential of each drug.
  相似文献   

16.

Purpose

The ability of two semi-mechanistic simulation approaches to predict the systemic pharmacokinetics (PK) of inhaled corticosteroids (ICSs) delivered via dry powder inhalers (DPIs) was assessed for mometasone furoate, budesonide and fluticasone propionate.

Methods

Both approaches derived the total lung doses and the central to peripheral lung deposition ratios from clinically relevant cascade impactor studies, but differed in the way the pulmonary absorption rate was derived. In approach 1, the rate of in vivo drug dissolution/absorption was predicted for the included ICSs from in vitro aerodynamic particle size distribution and in vitro drug solubility estimates measured in an in vivo predictive dissolution medium. Approach 2 derived a first order absorption rate from the mean dissolution time (MDT), determined for the test formulations in an in vitro Transwell® based dissolution system.

Results

Approach 1 suggested PK profiles which agreed well with the published pharmacokinetic profiles. Similarly, within approach 2, input parameters for the pulmonary absorption rate constant derived from dissolution rate experiments were able to reasonably predict the pharmacokinetic profiles published in literature.

Conclusion

Approach 1 utilizes more complex strategies for predicting the dissolution/absorption process without providing a significant advantage over approach 2 with regard to accuracy of in vivo predictions.
  相似文献   

17.

Purpose

The effect of different irradiation doses on the structure and activity of lyophilized powders of Hen Egg-White Lysozyme (HEWL) and alcohol dehydrogenase (ADH) was investigated using these substances as models for robust and sensitive proteins, respectively. Three doses were selected to cover the ranges of radio-sterilization (25kGy), treatment of blood products (25Gy) and annual background radiation dose (approximately 2mGy). The results offer an initial screening of different irradiation doses and support the development of X-ray imaging methods as non-destructive process analytical technology (PAT) tools for detecting the visible particulate matters in such products.

Methods

HEWL and ADH were exposed to X-rays in the solid state. The effect of irradiation was determined directly after irradiation and after storage. Structural changes and degradation were investigated using SAXS, SDS-PAGE and HPLC-MS. Protein functionality was assessed via activity assays.

Results

Lower irradiation doses of 25Gy and 2mGy had no significant impact on the structure and enzyme activity. The dose of 25kGy caused a significant decrease in the enzyme activity and structural changes immediately after irradiation of ADH and after storage of irradiated HEWL at ?20°C.

Conclusion

The results emphasize the importance of careful selection of radiation doses for development of X-ray imaging methods as PAT tools inspection of solid biopharmaceutical products.
  相似文献   

18.

Purpose

To evaluate the potential of levofloxacin intranasal administration as a promising alternative approach to treat local infections such as chronic rhinosinusitis, by delivering drug concentrations directly to the site of infection.

Methods

Drug concentrations were measured in plasma, olfactory bulb and nasal mucosa of anterior (ANM) and posterior regions after intranasal (0.24 mg/kg) and intravenous (10 mg/kg) administration to rats, and pharmacokinetic parameters were compared between routes. For intranasal administration a thermoreversible in-situ gel was used.

Results

Plasma and olfactory bulb exposure to levofloxacin was minimal following intranasal dose, preventing systemic and central nervous system adverse effects. Levofloxacin concentration-time profile in ANM revealed higher concentrations during the first 60 min of the study following intranasal administration than the corresponding ones obtained after intravenous administration. A rapid and continuous decay of levofloxacin concentration in this nasal region was observed after intranasal delivery, resulting in much lower values at the last sampling time-points.

Conclusion

The higher dose-normalized concentrations and pharmacokinetic exposure parameters of levofloxacin in ANM after intranasal administration, demonstrates that intranasal delivery of the formulated gel is, by itself, advantageous for delivering levofloxacin to biophase and thus an attractive approach in management of chronic rhinosinusitis.
  相似文献   

19.

Purpose

To explain thermal stability enhancement of an organic compound, sucralose, with cyclodextrin based metal organic frameworks.

Methods

Micron and nanometer sized basic CD-MOFs were successfully synthesized by a modified vapor diffusion method and further neutralized with glacial acetic acid. Sucralose was loaded into CD-MOFs by incubating CD-MOFs with sucralose ethanol solutions. Thermal stabilities of sucralose-loaded basic CD-MOFs and neutralized CD-MOFs were investigated using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and high performance liquid chromatography with evaporative light-scattering detection (HPLC-ELSD).

Results

Scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) results showed that basic CD-MOFs were cubic crystals with smooth surface and uniform sizes. The basic CD-MOFs maintained their crystalline structure after neutralization. HPLC-ELSD analysis indicated that the CD-MOF crystal size had significant influence on sucralose loading (SL). The maximal SL of micron CD-MOFs (CD-MOF-Micro) was 17.5?±?0.9% (w/w). In contrast, 27.9?±?1.4% of sucralose could be loaded in nanometer-sized basic CD-MOFs (CD-MOF-Nano). Molecular docking modeling showed that sucralose molecules preferentially located inside the cavities of γ-CDs pairs in CD-MOFs. Raw sucralose decomposed fast at 90°C, with 86.2?±?0.2% of the compound degraded within only 1 h. Remarkably, sucralose stability was dramatically improved after loading in neutralized CD-MOFs, with only 13.7?±?0.7% degradation at 90°C within 24 h.

Conclusions

CD-MOFs efficiently incorporated sucralose and maintained its integrity upon heating at elevated temperatures.
  相似文献   

20.

Purpose

Predicting target site drug concentration in the brain is of key importance for the successful development of drugs acting on the central nervous system. We propose a generic mathematical model to describe the pharmacokinetics in brain compartments, and apply this model to predict human brain disposition.

Methods

A mathematical model consisting of several physiological brain compartments in the rat was developed using rich concentration-time profiles from nine structurally diverse drugs in plasma, brain extracellular fluid, and two cerebrospinal fluid compartments. The effect of active drug transporters was also accounted for. Subsequently, the model was translated to predict human concentration-time profiles for acetaminophen and morphine, by scaling or replacing system- and drug-specific parameters in the model.

Results

A common model structure was identified that adequately described the rat pharmacokinetic profiles for each of the nine drugs across brain compartments, with good precision of structural model parameters (relative standard error <37.5%). The model predicted the human concentration-time profiles in different brain compartments well (symmetric mean absolute percentage error <90%).

Conclusions

A multi-compartmental brain pharmacokinetic model was developed and its structure could adequately describe data across nine different drugs. The model could be successfully translated to predict human brain concentrations.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号