首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Pharmaceutical Research - Pressurized intraperitoneal aerosol chemotherapy (PIPAC) is a novel technique delivering drugs into the abdominal cavity as an aerosol under high pressure. It is...  相似文献   

2.
3.
Parkinson’s disease is an age-related degenerative disorder of the central nervous system that often impairs the sufferer’s motor skills and speech, as well as other functions. Symptoms can include tremor, stiffness, slowness of movement, and impaired balance. An estimated four million people worldwide suffer from the disease, which usually affects people over the age of 60. Presently, there is no precedent for approving any drug as having a modifying effect (i.e., slowing or delaying) for disease progression of Parkinson’s disease. Clinical trial designs such as delayed start and withdrawal are being proposed to discern symptomatic and protective effects. The current work focused on understanding the features of delayed start design using prior knowledge from published and data submitted to US Food and Drug Administration (US FDA) as part of drug approval or protocol evaluation. Clinical trial simulations were conducted to evaluate the false-positive rate, power under a new statistical analysis methodology, and various scenarios leading to patient discontinuations from clinical trials. The outcome of this work is part of the ongoing discussion between the US FDA and the pharmaceutical industry on the standards required for demonstrating disease-modifying effect using delayed start design.  相似文献   

4.
5.
Although the exact cause of neuronal loss in Parkinson’s disease is not known, evidence points to oxidative stress and the production of reactive oxygen species as the main events that occur in the substantia nigra pars compacta of the brain of parkinsonians. EGb761 is an extract of the leaves from the Ginkgo biloba tree that has been reported as an antioxidant and neuroprotective agent. The objective of this work was to perform a systematic review of the studies that analysed the effect of Ginkgo biloba extract on Parkinson’s disease or Parkinsonism. This research was conducted using the following databases: Medline, PsycInfo, Cinahl, Sigle, Lilacs, Scielo, Cochrane Library, and Embase. Initially, we selected 32 articles. After a more detailed analysis, only 10 articles remained. One of the hypotheses for the positive effect of EGb761 on Parkinson’s disease is the reduction or inhibition of monoamine-oxidase activity. This enzyme metabolises dopamine, inducing the formation of free radicals, which in turn damage nigrostriatal neurons. Another hypothesis is that the neuroprotective effect of EGb761 against 6-hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and MPP+ toxins. As there are few studies on the effect of EGb761 on humans, this review could contribute new data to further the discussion of this issue.  相似文献   

6.
Parkinson’s disease (PD) is a common progressive neurodegenerative disorder characterized by motor dysfunction, including bradykinesia, tremor, rigidity, and postural instability. Recent clinical findings recognize PD as a complex disease with diverse neuropsychiatric complications. Depression is the most frequent non-motor psychiatric symptom experienced in PD, and it is associated with poor quality of life. While the pathophysiology of PD-associated depression is not directly related to neurodegenerative processes in the substantia nigra, underlying mechanisms remain unclear and there are few symptomatic treatments. Altered adult hippocampal neurogenesis is considered crucial for the development and treatment of depression. In genetic animal models and human postmortem studies of PD, severely impaired adult neurogenesis has been observed, with patients showing hippocampal atrophy and disrupted hippocampal neurogenesis. Because adult newborn neurons appear to exert various functions, which relate to non-motor symptoms observed in PD, there might be a close correlation between malformation of newborn neurons in the adult hippocampus and depressive symptoms. Here, we discuss current concepts regarding impaired hippocampal neurogenesis and non-motor symptoms of PD, and review PD-associated pathophysiological factors regulating neurogenesis, including inflammatory signaling and autophagy. We present a novel framework for targeting adult hippocampal neurogenesis, which could provide a promising treatment for PD-associated depression.  相似文献   

7.
8.
Introduction: Currently, available therapies for Parkinson’s disease (PD) are symptomatic. Therefore, the search for neuroprotective drugs remains a top priority.

Areas covered: In this review, the potential symptomatic or disease-modifying effect of drugs targeting the Renin-Angiotensin System (RAS) in PD will be explored.

Expert opinion: The importance of nigrostriatal local RAS has only begun to be unraveled in the last decades. On one hand, there is a complex feedback cycle between RAS and dopamine (DA). On the other hand, RAS affects dopaminergic neurons vulnerability. Neuroprotective effects in animal PD models have been shown for the angiotensin-converting enzyme (ACE) inhibitors captopril and perindopril, and the AT1 receptor antagonists losartan, candesartan and telmisartan. These effects appear to be mediated by a reduction in the overproduction of reactive oxygen species. In a proof-of-concept, randomized, double-blind, crossover study in PD patients, perindopril enhanced the effect of levodopa without inducing dyskinesias. There has not been any clinical trial exploring the neuroprotective effect of RAS drugs, but one cohort study in hypertensive patients suggested a protective effect of ACE inhibitors on PD risk. RAS is a promising target for symptomatic and neuroprotective therapies in PD. Further studies in PD animal models and patients are warranted.  相似文献   


9.
One of the most promising therapeutic targets for potential diseasemodifying treatment of Parkinson’s disease (PD) is leucine-rich repeat kinase 2 (LRRK2). Specifically, targeting LRRK2’s kinase function has generated a lot of interest from both industry and academia. This work has yielded several published studies showing the feasibility of developing potent, selective and brain permeable LRRK2 kinase inhibitors. The availability of these experimental drugs is contributing to filling in the gaps in our knowledge on the safety and efficacy of LRRK2 kinase inhibition. Recent studies of LRRK2 kinase inhibition in preclinical models point to potential undesired effects in peripheral tissues such as lung and kidney. Also, while strategies are now emerging to measure target engagement of LRRK2 inhibitors, there remains an important need to expand efficacy studies in preclinical models of progressive PD. Future work in the LRRK2 inhibition field must therefore be directed towards developing molecules and treatment regimens which demonstrate efficacy in mammalian models of disease in conditions where safety liabilities are reduced to a minimum.  相似文献   

10.
Parkinson's disease (PD) is a neurodegenerative disease characterized by tremor, rigidity, bradykinesia, and gait impairment. So far, very few pharmacological agents have been isolated or developed that effectively inhibit the progression of PD. However, several studies have demonstrated that inflammatory processes play critical roles in PD. Therefore, anti-inflammatory agents may suppress disease progression in PD. 11-Dehydrosinulariolide was isolated from cultured soft corals. The anti-inflammatory effect of this molecule has been observed through suppression of the expression of two main pro-inflammatory proteins: inducible nitric oxide synthase and cyclooxygenase-2, in lipopolysaccharide-stimulated macrophage cells. We also found that 11-dehydrosinulariolide significantly reduced 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and apoptosis in a human neuroblastoma cell line (SH-SY5Y). The pharmacological activity of this compound has been studied, and it is associated with the inhibition of 6-OHDA-induced activation of caspase-3 and translocation of nuclear factor kappa B. 11-Dehydrosinulariolide increased the activation of survival-signaling phospho-Akt but not phospho-ERK. The neuroprotective effect of 11-dehydrosinulariolide was assessed here using 6-OHDA-treated SH-SY5Y cells, wherein neuroprotection is mediated through regulation of phosphatidylinositol 3-kinase (PI3K). Furthermore, 11-dehydrosinulariolide caused a significant decrease in caspase-3/7 activity in comparison to the 6-OHDA-treated group, indicating that 11-dehydrosinulariolide has neuroprotective properties. We conclude that 11-dehydrosinulariolide is a promising candidate for the treatment of Parkinson's disease through its anti-apoptotic and anti-inflammatory action via PI3K signaling.  相似文献   

11.
Effective therapeutic options for Alzheimer’s disease (AD) are limited and much research is currently ongoing. The high attrition rate in drug development is a critical issue. Here, the quantitative pharmacology approach (QP-A) and model-based drug development (MBDD) provide a valuable opportunity to support early selection of the most promising compound and facilitate a fast, efficient, and rational drug development process. The aim of this analysis was to exemplify the QP-A by eventually predicting the clinical outcome of a proof-of-concept (PoC) trial of tesofensine in AD patients from two small phase IIa trials. Retrospective population pharmacokinetic/pharmacodynamic (PK/PD) modeling of tesofensine, its metabolite M1, and assessment scale-cognitive subscale data from two 4-week placebo-controlled studies in 62 mild AD patients was performed using non-linear mixed effects modeling. The final PK/PD model was used to predict data of a negative 14-week phase IIb PoC trial (430 AD patients). For the PK, one-compartment models for tesofensine and M1 with first-order absorption and elimination were sufficient. An extended Emax model including disease progression best described the PK/PD relationship using effect compartments. The placebo effect was also implemented in the final PK/PD model based on a published placebo model developed in a large AD cohort. Various internal evaluation techniques confirmed the reliability and predictive performance of the PK/PD model, which also successfully predicted the 14-week PoC data. For tesofensine, the dose concentration–effect relationship has successfully been described in mild AD patients demonstrating the supportive value of PK/PD models in QP-A/MBDD in early phases of clinical development for decision-making.  相似文献   

12.
Neuroinflammation underlies the pathogenesis of various neurodegenerative disorders including Parkinson’s disease (PD). Despite intense investigations, no effective therapy is available to stop its onset or halt its progression. RNS60 is a novel therapeutic containing charge-stabilized nanobubbles in saline, generated by subjecting normal saline to Taylor-Couette-Poiseuille flow under elevated oxygen pressure. Recently, we have delineated that RNS60 inhibits the expression of proinflammatory molecules in glial cells via type 1A phosphatidylinositol-3 kinase (PI3K)-mediated upregulation of IκBα. In this study, we demonstrate that RNS60 inhibited the expression of proinflammatory molecules in cultured microglial cells stimulated by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridium ion (MPP+) and in vivo in the nigra of MPTP-intoxicated mice. While investigating the underlying mechanisms, we found that MPTP intoxication rapidly stimulated the activation of type IB PI3K p110γ in the nigra, while suppressing the activation of type IA PI3K p110α/β. Interestingly, RNS60 treatment suppressed the activation of p110γ PI3K, while inducing the activation of p110α/β PI3K in the nigra of MPTP-intoxicated mice. Accordingly, RNS60 treatment increased the level of IκBα and inhibited the activation of NF-κB in the SNpc of MPTP-intoxicated mice. These findings paralleled dopaminergic neuronal protection, normalized striatal neurotransmitters, and improved motor functions in MPTP-intoxicated mice. These results strongly suggest a promising therapeutic role of this simple modified saline in PD and other neuroinflammatory disorders.  相似文献   

13.
Background Smoking cessation represents one of the best means of preventing smoking-related complications. In recent years, a majority of hospitals have implemented smoke-free policies, making support for smoker patients a necessary and indispensable task. The clinical pharmacist is well-positioned to provide this kind of support, given a good understanding of the medical condition and pharmacotherapy of hospitalized patients and the possibility to acquire specific smoking cessation training. Objectives This study aimed to evaluate the impact of a smoking cessation intervention for hospitalized patients by a clinical pharmacist previously trained for smoking cessation counselling. Setting Internal medicine department of a Swiss regional hospital. Method Smoker patients hospitalized in this department were included in the study from mid-September 2012 to mid-January 2013, according to the inclusion criteria. Moderate-intensity smoking cessation interventions based on smoking counselling and motivational interviewing techniques were used, and a follow-up telephone call at least 1 month after discharge was made. Patients’ pharmacotherapy was analysed with regards to interactions with tobacco smoke. Main outcome measures Motivational stage, abstinence at follow-up, change of readiness to quit between hospital visit and follow-up, patients’ evaluation of the programme, pharmacotherapy interventions. Results One hundred smoker patients were screened, of whom 41 received the intervention and 40 received a follow-up contact. At least 1 month after discharge, the readiness to quit of 53 % of patients improved and 33 % of patients declared themselves abstinent. Even though 35 % of patients declared having mild to moderate withdrawal symptoms in hospital, only 15 % were interested in receiving nicotine replacement therapy. Study participants evaluated the intervention positively. Conclusion A moderate-intensity smoking cessation intervention in hospitalized patients was associated with a higher quit rate than in control groups from other studies, and their readiness to quit generally improved at least 1 month after hospital discharge. A clinical pharmacist trained for smoking cessation counselling can play a key role in providing such interventions, including the assessment of pharmacotherapy interactions with tobacco smoke.  相似文献   

14.
This symposium reviewed the issues of non-oral therapy in the late stage Parkinson’s disease (PD). The accepted standard treatment of PD is oral levodopa or oral dopamine agonists. However, the long-term complications and limitations of this treatment might be improved by changing therapy from the present pulsatile stimulation to a more constant stimulation of central dopamine receptors. Stimulation of these receptors may be possible with non-oral drug delivery treatments. Many of these non-oral options have been evaluated during the last few decades to find a more continuous drug delivery. The non-oral treatment options include invasive measures such as intraduodenal levodopa, subcutaneous apomorphin and most recently, the non-invasive transdermal (patch) delivery system, with the novel dopamine agonist rotigotine (Aderis Pharmaceuticals Inc.). The benefits of the non-oral, more continuous dopaminergic treatment of PD needs to be demonstrated in clinical trials and long-term clinical practice, before they can be considered as potential replacements of the standard oral therapy.  相似文献   

15.
16.
Transforming growth factor (TGF)-β1 is a pleiotropic cytokine with immunosuppressive and anti-inflammatory properties. Recently we have shown that TGF-β1 pretreatment in vitro protects against 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neuronal loss that characterizes in Parkinson’s disease (PD). Herein, we aimed to demonstrate that TGF-β1 administration in vivo after MPP+ toxicity has neuroprotection that is achieved by a mediation of microglia. A rat model of PD was prepared by injecting MPP+ unilaterally in the striatum. At 14 days after MPP+ injection, TGF-β1 was administrated in the right lateral cerebral ventricle. Primary ventral mesencephalic (VM) neurons and cerebral cortical microglia were treated by MPP+, respectively, and TGF-β1 was applied to neuronal or microglial cultures at 1 h after MPP+ treatment. As expected, MPP+ resulted in decrease in TGF-β1 production in the substantia nigra and in primary VM neurons and microglia. TGF-β1 intracerebroventricular administration alleviated MPP+-induced PD-like changes in pathology, motor coordination and behavior. Meanwhile, TGF-β1 ameliorated MPP+-induced microglial activation and inflammatory cytokine production in vivo. Interestingly, TGF-β1 treatment was not able to ameliorate MPP+-induced dopaminergic neuronal loss and caspase-3/9 activation in mono-neuron cultures, but TGF-β1 alleviated MPP+-induced microglial activation and inflammatory cytokine production in microglia-enriched cultures. This effect of TGF-β1 inhibiting microglial inflammatory response was blocked by Smad3 inhibitor SIS3. Importantly, neuronal exposure to supernatants of primary microglia that had been treated with TGF-β1 reduced dopaminergic neuronal loss and caspase-3/9 activation induced by MPP+-treated microglial supernatants. These findings establish that TGF-β1 exerts neuroprotective property in PD by inhibiting microglial inflammatory response via Smad3 signaling.  相似文献   

17.
Mitochondrial dysfunction, oxidative stress and neuroinflammation have been implicated as key mediators contributing to the progressive degeneration of dopaminergic neurons in Parkinson’s disease (PD). Currently, we lack a pharmacological agent that can intervene in all key pathological mechanisms, which would offer better neuroprotective efficacy than a compound that targets a single degenerative mechanism. Herein, we investigated whether mito-apocynin (Mito-Apo), a newly-synthesized and orally available derivative of apocynin that targets mitochondria, protects against oxidative damage, glial-mediated inflammation and nigrostriatal neurodegeneration in cellular and animal models of PD. Mito-Apo treatment in primary mesencephalic cultures significantly attenuated the 1-methyl-4-phenylpyridinium (MPP+)-induced loss of tyrosine hydroxylase (TH)-positive neuronal cells and neurites. Mito-Apo also diminished MPP+-induced increases in glial cell activation and inducible nitric oxide synthase (iNOS) expression. Additionally, Mito-Apo decreased nitrotyrosine (3-NT) and 4-hydroxynonenol (4-HNE) levels in primary mesencephalic cultures. Importantly, we assessed the neuroprotective property of Mito-Apo in the MPTP mouse model of PD, wherein it restored the behavioral performance of MPTP-treated mice. Immunohistological analysis of nigral dopaminergic neurons and monoamine measurement further confirmed the neuroprotective effect of Mito-Apo against MPTP-induced nigrostriatal dopaminergic neuronal loss. Mito-Apo showed excellent brain bioavailability and also markedly attenuated MPTP-induced oxidative markers in the substantia nigra (SN). Furthermore, oral administration of Mito-Apo significantly suppressed MPTP-induced glial cell activation, upregulation of proinflammatory cytokines, iNOS and gp91phox in IBA1-positive cells of SN. Collectively, these results demonstrate that the novel mitochondria-targeted compound Mito-Apo exhibits profound neuroprotective effects in cellular and pre-clinical animal models of PD by attenuating oxidative damage and neuroinflammatory processes.  相似文献   

18.
This article proposes several new indices that measure the heterogeneity for individual studies in a meta-analysis. These indices directly assess how inconsistent an individual study is compared to the rest of studies used in the meta-analysis, that is, how much impact the specific study has on the scientific conclusion of the meta-analysis and further on the generalization of the conclusion. The proposed indices can be intuitively interpreted as the proportion of total variance from all studies in a meta-analysis that can be accounted for by the heterogeneity from specific studies. Further, each proposed index over all the studies sums to the collective measure of heterogeneity for the meta-analysis. Therefore our proposed study-specific indices of heterogeneity can be regarded as a generalization of the collective index of heterogeneity in meta-analyses proposed by various authors. We examine the difference among the proposed study-specific measures of heterogeneity and assess the variation associated with each proposed index of heterogeneity through a large simulation study. Finally, we demonstrate the proposed methodology by assessing the effect of individual studies on the overall estimate to the difference of an antecedent biomarker of Alzheimer’s disease (AD) between different Apolipoprotein E (ApoE) genotypes.  相似文献   

19.

Background:

Neuropsychiatric signs are critical in primary caregiving of Alzheimer patients and have not yet been fully inves tigated in murine models.

Methods:

18-month-old 3×Tg-AD male mice and their wild-type male littermates (non-Tg) were used. The open field test and the elevated plus maze test were used to evaluate anxiety-like behaviors, whereas the Porsolt forced swim test, the tail suspension test, and the sucrose preference test for antidepressant/depression-coping behaviors. Neurochemical study was conducted by microdialysis in freely-moving mice, analyzing the basal and K+-stimulated monoamine output in the frontal cortex and ventral hippocampus. Moreover by immunohistochemistry, we analysed the expression of Tyrosin hydroxylase and Tryptophan hydroxylase, which play a key role in the synthesis of monoamines.

Results:

Aged 3×Tg-AD mice exhibited a higher duration of immobility in the forced swim and tail suspension tests (predictors of depression-like behavior) which was not attenuated by a noradrenaline reuptake inhibitor, desipramine. In the sucrose preference test, 3×Tg-AD mice showed a significantly lower sucrose preference compared to the non-Tg group, without any difference in total fluid intake. In contrast, the motor functions and anxiety-related emotional responses of 3×Tg-AD mice were normal, as detected by the open-field and elevated plus-maze tests. To strengthen these results, we then evaluated the monoaminergic neurotransmissions by in vivo microdialysis and immunohistochemistry. In particular, with the exception of the basal hippocampal dopamine levels, 3×Tg-AD mice exhibited a lower basal extracellular output of amines in the frontal cortex and ventral hippocampus and also a decreased extracellular response to K+ stimulation. Such alterations occur with obvious local amyloid-β and tau pathologies and without gross alterations in the expression of Tyrosin and Tryptophan hydroxylase.

Conclusions:

These results suggest that 3×Tg-AD mice exhibit changes in depression-related behavior involving aminergic neurotrasmitters and provide an animal model for investigating AD with depression.  相似文献   

20.
Microglia-mediated neuroinflammation has been described as a common hallmark of Parkinson’s disease (PD) and is believed to further exacerbate the progressive degeneration of dopaminergic neurons. Current therapies are unable to prevent the disease progression. A significant association has been demonstrated between PD and low levels of vitamin D in patients serum, and vitamin D supplement appears to have a beneficial clinical effect. Herein, we investigated whether vitamin D administered orally in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced preclinical animal model of PD protects against glia-mediated inflammation and nigrostriatal neurodegeneration. Vitamin D significantly attenuated the MPTP-induced loss of tyrosine hydrlase (TH)-positive neuronal cells, microglial cell activation (Iba1-immunoreactive), inducible nitric oxide synthase (iNOS) and TLR-4 expression, typical hallmarks of the pro-inflammatory (M1) activation of microglia. Additionally, Vitamin D was able to decrease pro-inflammatory cytokines mRNA expression in distinct brain areas of the MPTP mouse. Importantly, we also assessed the anti-inflammatory property of vitamin D in the MPTP mouse, in which it upregulated the anti-inflammatory cytokines (IL-10, IL-4 and TGF-β) mRNA expression as well as increasing the expression of CD163, CD206 and CD204, typical hallmarks of alternative activation of microglia for anti-inflammatory signalling (M2). Collectively, these results demonstrate that vitamin D exhibits substantial neuroprotective effects in this PD animal model, by attenuating pro-inflammatory and up-regulating anti-inflammatory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号