首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haemophilus influenzae can utilize different protein-bound forms of heme for growth in vitro. A previous study (I. Maciver, J. L. Latimer, H. H. Liem, U. Muller-Eberhard, Z. Hrkal, and E. J. Hansen. Infect. Immun. 64:3703-3712, 1996) indicated that nontypeable H. influenzae (NTHI) strain TN106 expressed a protein that bound hemoglobin-haptoglobin and was encoded by an open reading frame (ORF) that contained a CCAA nucleotide repeat. Southern blot analysis revealed that several NTHI strains contained between three and five chromosomal DNA fragments that bound an oligonucleotide probe for CCAA repeats. Three ORFs containing CCAA repeats were identified in NTHI strain N182; two of these ORFs were arranged in tandem. The use of translational fusions involving these three ORFs and the beta-lactamase gene from pBR322 revealed that these three ORFs, designated hgbA, hgbB, and hgbC, encoded proteins that could bind hemoglobin, hemoglobin-haptoglobin, or both compounds. Monoclonal antibodies (MAbs) specific for the HgbA, HgbB, and HgbC proteins were produced by immunizing mice with synthetic peptides unique to each protein. Both HgbA and HgbB were readily detected by Western blot analysis in N182 cells grown in the presence of hemoglobin as the sole source of heme, whereas expression of HgbC was found to be much less abundant than that of HgbA and HgbB. The use of these MAbs in a colony blot radioimmunoassay analysis revealed that expression of both HgbA and HgbB was subject to phase variation. PCR and nucleotide sequence analysis were used in conjunction with Western blot analyses to demonstrate that this phase variation involved the CCAA repeats in the hgbA and hgbB ORFs.  相似文献   

2.
Haemophilus influenzae requires heme for growth and can utilize hemoglobin and hemoglobin-haptoglobin as heme sources. We previously identified two hemoglobin- and hemoglobin-haptoglobin-binding proteins, HgpA and HgpB, in H. influenzae HI689. Insertional mutation of hgpA and hgpB, either singly or together, did not abrogate the ability to utilize or bind either hemoglobin or the hemoglobin-haptoglobin complex. A hemoglobin affinity purification method was used to isolate a protein of approximately 120 kDa from the hgpA hgpB double mutant. We have cloned and sequenced the gene encoding this third hemoglobin/hemoglobin-haptoglobin binding protein and designate it hgpC. Insertional mutation of hgpC did not affect the ability of the strain to utilize either hemoglobin or hemoglobin-haptoglobin. An hgpA hgpB hgpC triple mutant constructed by insertional mutagenesis showed a reduced ability to use the hemoglobin-haptoglobin complex but was unaltered in the ability to use hemoglobin. A second class of mutants was constructed in which the entire structural gene of each of the three proteins was deleted. The hgpA hgpB hgpC complete-deletion triple mutant was unable to utilize the hemoglobin-haptoglobin complex and showed a reduced ability to use hemoglobin. We have identified three hemoglobin/hemoglobin-haptoglobin-binding proteins in Haemophilus influenzae. Any one of the three proteins is sufficient to support growth with hemoglobin-haptoglobin as the heme source, and expression of at least one of the three is essential for hemoglobin-haptoglobin utilization. Although the three proteins play a role in hemoglobin utilization, an additional hemoglobin acquisition mechanism(s) exists.  相似文献   

3.
A recombinant plasmid containing a 6.5-kb fragment of nontypeable Haemophilus influenzae (NTHI) chromosomal DNA was shown to confer a hemoglobin-haptoglobin-binding phenotype on Escherichia coli. Use of a mini-Tn10kan transposon for random insertion mutagenesis of this recombinant plasmid allowed localization of the NTHI DNA responsible for this hemoglobin-haptoglobin-binding phenotype to a 3.5-kb PstI-XhoI fragment within the 6.5-kb NTHI DNA insert. When this mutagenized NTHI DNA fragment was used to transform the wild-type NTHI strain, the resultant kanamycin-resistant mutant exhibited significantly decreased abilities to bind hemoglobin-haptoglobin and utilize it as a source of heme for aerobic growth in vitro. This mutant also lacked expression of a 115-kDa outer membrane protein that was present in the wild-type parent strain. Transformation of this mutant with wild-type NTHI chromosomal DNA restored the abilities to bind and utilize hemoglobin-haptoglobin and to express the 115-kDa outer membrane protein. Nucleotide sequence analysis of the relevant NTHI DNA revealed the presence of a gene, designated hhuA, that encoded a predicted 117,145-Da protein. The HhuA protein exhibited features typical of a TonB-dependent outer membrane receptor and had significant identity with the hemoglobin receptors of both Haemophilus ducreyi and Neisseria meningitidis.  相似文献   

4.
The biological function and role in pathogenesis of a Pasteurella multocida A:1 strain hemoglobin binding protein was investigated. The hgbB gene from the P. multocida A:1 strain, VP161, was cloned and characterized. hgbB was 2991 bp in length and encoded a mature length protein of 111 kDa. HgbB was predicted to be an outer membrane protein and shared 68 and 69% similarity to the hemoglobin/hemoglobin-haptoglobin binding protein, HI0712 from Haemophilus influenzae Rd and HgpC, from H. influenzae b, respectively. HgbB exhibited features typical of TonB dependent receptors, including seven conserved regions typical of these proteins, and conserved invariant residues. Escherichia coli expressing recombinant HgbB was found to bind hemoglobin in a solid phase dot blot binding assay. However, when a truncated form of the protein was expressed in E. coli, cells could no longer bind hemoglobin. Insertional inactivation of hgbB did not affect the ability of P. multocida to bind hemoglobin, nor its ability to produce disease in a mouse model. In addition, recombinant HgbB did not confer any protection against homologous or heterologous challenge.  相似文献   

5.
Haemophilus ducreyi can bind hemoglobin and use it as a source of heme, for which it has an obligate requirement. We previously identified and purified HgbA, a hemoglobin-binding outer membrane protein from H. ducreyi. In this report, we describe the molecular cloning, expression, DNA sequence, and mutagenesis of the structural gene for HgbA, hgbA. H. ducreyi and recombinant Escherichia coli expressing hgbA bound [125I]hemoglobin, establishing HgbA as a receptor. Insertions or deletions in the cloned hgbA gene abolished expression of HgbA and hemoglobin binding in E. coli. Mutagenesis of H. ducreyi by allelic exchange of insertions into hgbA abolished its ability to bind [125I]hemoglobin or utilize hemoglobin as a source of heme. The deduced protein sequence was similar to those of the TonB-dependent family of outer membrane receptors. The most similar member was HutA (heme receptor) from Vibrio cholerae. Tbp1 and Lbp1 (transferrin and lactoferrin receptors, respectively, from pathogenic Neisseria spp.) also showed very significant homology. Thus, by characterizing the hgbA locus, this work elucidates a potentially important role of HgbA in obtaining heme and/or iron from the host.  相似文献   

6.
A hemoglobin-binding protein (HgbA) from Haemophilus ducreyi was identified and purified. The 100-kDa HgbA was detected in all strains of H. ducreyi tested, and a somewhat larger hemoglobin-binding protein was found in one strain of Haemophilus influenzae. HgbA was purified and the amino acid sequence of the N terminus of HgbA revealed no significant homologies with known proteins. Two different antisera to HgbA from H. ducreyi 35000 recognized HgbA proteins from all tested H. ducreyi strains; they did not recognize proteins from the H. influenzae strain. Expression of HgbA was regulated by the level of heme but not by iron present in the medium. Animal species of hemoglobin competed with iodinated human hemoglobin for binding to whole cells of H. ducreyi and supported the growth of H. ducreyi. The lack of immunological cross-reactivity and the differences in hemoglobin specificities between the H. ducreyi and the H. influenzae hemoglobin-binding proteins suggest that they are unrelated.  相似文献   

7.
Haemophilus influenzae has an absolute requirement for heme for aerobic growth. This organism can satisfy this requirement by synthesizing heme from iron and protoporphyrin IX (PPIX). H. influenzae type b (Hib) strain DL42 was found to be unable to form single colonies when grown on a medium containing free iron and PPIX in place of heme. In contrast, the nontypeable H. influenzae (NTHI) strain TN106 grew readily on the same medium. A genomic library from NTHI strain TN106 was used to transform Hib strain DL42, and recombinants were selected on a medium containing iron and PPIX in place of heme. A recombinant plasmid with an 11.5-kb NTHI DNA insert was shown to confer on Hib strain DL42 the ability to grow on iron and PPIX. Nucleotide sequence analysis revealed that this NTHI DNA insert contained three genes, designated hitA, hitB, and hitC, which encoded products similar to the SfuABC proteins of Serratia marcescens, which have been shown to constitute a periplasmic binding protein-dependent iron transport system in this enteric organism. The NTHI HitA protein also was 69% identical to the ferric-binding protein of Neisseria gonorrhoeae. Inactivation of the cloned NTHI hitC gene by insertion of an antibiotic resistance cartridge eliminated the ability of the recombinant plasmid to complement the growth deficiency of Hib DL42. Construction of an isogenic NTHI TN106 mutant lacking a functional hitC gene revealed that this mutation prevented this strain from growing on a medium containing iron and PPIX in place of heme. This NTHI hitC mutant was also unable to utilize either iron bound to transferrin or iron chelates. These results suggest that the products encoded by the hitABC genes are essential for the utilization of iron by NTHI.  相似文献   

8.
Protein sources of heme for Haemophilus influenzae.   总被引:14,自引:20,他引:14       下载免费PDF全文
Although Haemophilus influenzae requires heme for growth, the source of heme during invasive infections is not known. We compared heme, lactoperoxidase, catalase, cytochrome c, myoglobin, and hemoglobin as sources of heme for growth in defined media. The minimum concentration of heme permitting unrestricted growth of strain E1a, an H. influenzae type b isolate from cerebrospinal fluid, was 0.02 micrograms/ml. Using molar equivalents of heme as lactoperoxidase, catalase, cytochrome c, myoglobin, and hemoglobin, we determined that myoglobin and hemoglobin permitted unrestricted growth at this concentration. To determine the ability of host defenses to sequester heme from H. influenzae, we used affinity chromatography to purify human haptoglobin and hemopexin, serum proteins which bind hemoglobin and heme. Plate assays revealed that 12 strains of H. influenzae acquired heme from hemoglobin, hemoglobin-haptoglobin, heme-hemopexin, and heme-albumin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of outer membrane proteins of strain E1a grown in heme-replete and heme-restricted conditions revealed a heme-repressible outer membrane protein with an apparent molecular mass of 38 kilodaltons. These results demonstrated that, unlike Escherichia coli, H. influenzae may acquire heme from hemoglobin-haptoglobin. H. influenzae also may acquire heme from hemopexin and albumin, which have not been previously investigated. The role of outer membrane proteins in the acquisition of heme is not yet clear.  相似文献   

9.
Since Haemophilus influenzae lacks enzymes necessary for synthesis of the porphyrin ring, it has an absolute growth requirement for a porphyrin source. This requirement can be satisfied in vitro by hemoglobin and hemoglobin complexed to haptoglobin. The products of the hgp genes mediate the utilization of heme from hemoglobin-haptoglobin. These genes are also involved in the use of heme from hemoglobin, although additional gene products independently mediate the acquisition of heme from this substrate. Different strains of H. influenzae possess one to four hgp genes. A nontypeable H. influenzae mutant lacking all the hgp genes was constructed and compared to the wild-type strain in a chinchilla (Chinchilla lanigera) model of otitis media. Compared to the wild-type strain, the hgp-deficient mutant exhibited a significantly delayed onset of detectable middle ear infection and significantly reduced duration of infection as assessed by both video otoscopy and tympanometry and as evidenced by viable bacterial counts in middle ear effusions. In addition, the maximum bacterial load in the middle ears of chinchillas infected with the mutant strain was significantly reduced when compared to the parent. These data indicate that the hemoglobin/hemoglobin-haptoglobin binding proteins are required for bacterial proliferation during H. influenzae-induced otitis media in chinchillas.  相似文献   

10.
Haemophilus influenzae can utilize iron-loaded human transferrin as an iron source for growth in vitro. H. influenzae tonB mutants, containing a chloramphenicol acetyltransferase gene within their tonB genes, could bind iron-charged human transferrin to their cell surfaces, but they were unable to utilize this serum glycoprotein as the sole source of iron for growth in vitro. In contrast, these tonB mutants were able to utilize an iron chelate (ferric ammonium citrate) for growth. Transformation of a tonB mutant with a plasmid encoding a wild-type H. influenzae tonB gene restored the ability of a tonB mutant to utilize iron-charged human transferrin. These results indicate that the uptake of iron from human transferrin by H. influenzae is a TonB-dependent process.  相似文献   

11.
The majority of in vitro-grown Neisseria gonorrhoeae strains were unable to use hemoglobin as the sole source of iron for growth (Hgb-), but a minor population was able to do so (Hgb+). The ability of Hgb+ gonococci to utilize hemoglobin as the iron source was associated with the expression of an iron-repressible 89-kDa hemoglobin-binding protein in the outer membrane. The N-terminal amino acid sequence of this protein revealed amino acids, from positions 2 to 16, identical to those of HpuB, an 85 kDa iron-regulated hemoglobin-haptoglobin utilization outer membrane protein of Neisseria meningitidis. Isogenic mutants constructed by allelic replacement with a meningococcal hpu::mini-Tn3erm construct no longer expressed the 89-kDa protein. Mutants could not utilize hemoglobin to support growth but still grew on heme. Thus, the gonococcal HpuB homolog is a functional hemoglobin receptor and is essential for growth with hemoglobin.  相似文献   

12.
Haemophilus influenzae requires heme for growth and can utilize both hemoglobin and hemoglobin-haptoglobin as heme sources. We previously identified a hemoglobin- and hemoglobin-haptoglobin-binding protein, HgpA, in H. influenzae HI689. Mutation of hgpA did not affect binding or utilization of either heme source. The hgpA mutant exhibited loss of a 120-kDa protein and increased expression of a 115-kDa protein. These data suggested that at least one other gene product is involved in binding of these heme sources by H. influenzae. A 3.2-kbp PCR product derived from HI689 was cloned. The nucleotide sequence indicated a separate, distinct gene with high homology to hgpA, which would encode a 115-kDa protein. Primers were designed for directional cloning of the structural gene in the correct reading frame. Sonicates of induced Escherichia coli harboring the cloned open reading frame bound both hemoglobin and hemoglobin-haptoglobin. An insertion/deletion mutant of H. influenzae at the newly identified locus, designated hgpB, was constructed. The 115-kDa protein was not detected in the mutant after affinity purification using biotinylated hemoglobin. An hgpA hgpB double-mutant strain exhibited a reduced ability to utilize hemoglobin-haptoglobin, although it was unaltered in the ability to utilize hemoglobin. Affinity isolation of hemoglobin-binding proteins from the double mutant resulted in isolation of an approximately 120-kDa protein. Internal peptide sequencing revealed this protein to be a third distinct protein, highly homologous to HgpA and HgpB. In summary a second hemoglobin- and hemoglobin-haptoglobin-binding protein of H. influenzae has been identified and characterized, and the presence of an additional protein of similar function has been revealed.  相似文献   

13.
The etiologic agent of chancroid is Haemophilus ducreyi. To fulfill its obligate requirement for heme, H. ducreyi uses two TonB-dependent receptors: the hemoglobin receptor (HgbA) and a receptor for free heme (TdhA). Expression of HgbA is necessary for H. ducreyi to survive and initiate disease in a human model of chancroid. In this study, we used a swine model of H. ducreyi infection to demonstrate that an experimental HgbA vaccine efficiently prevents chancroid, as determined by several parameters. Histological sections of immunized animals lacked typical microscopic features of chancroid. All inoculated sites from mock-immunized pigs yielded viable H. ducreyi cells, whereas no viable H. ducreyi cells were recovered from inoculated sites of HgbA-immunized pigs. Antibodies from sera of HgbA-immunized animals bound to and initiated antibody-dependent bactericidal activity against homologous H. ducreyi strain 35000HP and heterologous strain CIP542 ATCC; however, an isogenic hgbA mutant of 35000HP was not killed, proving specificity. Anti-HgbA immunoglobulin G blocked hemoglobin binding to the HgbA receptor, suggesting a novel mechanism of protection through the limitation of heme/iron acquisition by H. ducreyi. Such a vaccine strategy might be applied to other bacterial pathogens with strict heme/iron requirements. Taken together, these data suggest continuing the development of an HgbA subunit vaccine to prevent chancroid.  相似文献   

14.
Haemophilus ducreyi, the etiologic agent of chancroid, has an obligate requirement for heme. Heme is acquired by H. ducreyi from its human host via TonB-dependent transporters expressed at its bacterial surface. Of 3 TonB-dependent transporters encoded in the genome of H. ducreyi, only the hemoglobin receptor, HgbA, is required to establish infection during the early stages of the experimental human model of chancroid. Active immunization with a native preparation of HgbA (nHgbA) confers complete protection in the experimental swine model of chancroid, using either Freund's or monophosphoryl lipid A as adjuvants. To determine if transfer of anti-nHgbA serum is sufficient to confer protection, a passive immunization experiment using pooled nHgbA antiserum was conducted in the experimental swine model of chancroid. Pigs receiving this pooled nHgbA antiserum were protected from a homologous, but not a heterologous, challenge. Passively transferred polyclonal antibodies elicited to nHgbA bound the surface of H. ducreyi and partially blocked hemoglobin binding by nHgbA, but were not bactericidal. Taken together, these data suggest that the humoral immune response to the HgbA vaccine is protective against an H. ducreyi infection, possibly by preventing acquisition of the essential nutrient heme.  相似文献   

15.
Haemophilus influenzae requires an exogenous heme source for aerobic growth in vitro. Hemoglobin or hemoglobin-haptoglobin satisfies this requirement. Heme acquisition from hemoglobin-haptoglobin is mediated by proteins encoded by hgp genes. Both Hgps and additional proteins, including those encoded by the hxu operon, provide independent pathways for hemoglobin utilization. Recently we showed that deletion of the set of three hgp genes from a nontypeable strain (86-028NP) of H. influenzae attenuated virulence in the chinchilla otitis media model of noninvasive disease. The present study was undertaken to investigate the role of the hgp genes in virulence of the wild-type serotype b clinical isolate HI689 in the infant rat model of hematogenous meningitis, an established model of invasive disease requiring aerobic growth. Bacteremia of high titer and long duration (>14 days) and histopathologically confirmed meningitis occurred in >95% of infant rats challenged at 5 days of age with strain HI689. While mutations disrupting either the Hgp- or Hxu-mediated pathway of heme acquisition had no effect on virulence in infant rats, an isogenic mutant deficient for both pathways was unable to sustain bacteremia or produce meningitis. In contrast, mutations disrupting either pathway decreased the limited ability of H. influenzae to initiate and sustain bacteremia in weanling rats. Biochemical and growth studies also indicated that infant rat plasma contains multiple heme sources that change with age. Taken together, these data indicate that both the hgp genes and the hxuC gene are virulence determinants in the rat model of human invasive disease.  相似文献   

16.
Haemophilus ducreyi exhibits a requirement for exogenously supplied heme for aerobic growth in vitro. Nine of ten wild-type isolates of H. ducreyi were shown to contain a readily detectable hemoglobin-binding activity. Spontaneous hemoglobin-binding-negative mutants of two of these wild-type isolates lost the ability to express an outer membrane protein with an apparent molecular mass of approximately 100 kDa. Similarly, the single wild-type isolate that lacked the ability to bind hemoglobin also appeared to lack expression of this same 100-kDa protein. A monoclonal antibody (5A9) to this 100-kDa protein was used to identify a recombinant clone which possessed an H. ducreyi chromosomal fragment containing the gene encoding the 100-kDa protein; this protein was designated hemoglobin utilization protein A (HupA). Nucleotide sequence analysis of the hupA gene revealed that the predicted protein, with a calculated molecular mass of 108 kDa, was similar to TonB-dependent outer membrane proteins of other bacteria. Increasing the concentration of heme in the growth medium resulted in decreased expression of the HupA protein. Mutant analysis was used to prove that the HupA protein was essential for the utilization by H. ducreyi of both hemoglobin and hemoglobin-haptoglobin as sources of heme in vitro. In addition, it was found that an isogenic hupA mutant was less virulent than the wild-type parent strain in the temperature-dependent rabbit model for dermal lesion production by H. ducreyi.  相似文献   

17.
The ability to bind extracellular matrix proteins is a critical virulence determinant for skin pathogens. Haemophilus ducreyi, the etiological agent of the genital ulcer disease chancroid, binds extracellular matrix components, including fibronectin (FN). We investigated H. ducreyi FN binding and report several important findings about this interaction. First, FN binding by H. ducreyi was greatly increased in bacteria grown on heme and almost completely inhibited by hemoglobin. Second, wild-type strain 35000HP bound significantly more FN than did a dsrA mutant in two different FN binding assays. Third, the expression of dsrA in the dsrA mutant restored FN binding and conferred the ability to bind FN to a non-FN-binding Haemophilus influenzae strain. Fourth, an anti-DsrA monoclonal antibody partially blocked FN binding by H. ducreyi. The hemoglobin receptor, the collagen-binding protein, the H. ducreyi lectin, the fine-tangle pili, and the outer membrane protein OmpA2 were not involved in H. ducreyi FN binding, since single mutants bound FN as well as the parent strain did. However, the major outer membrane protein may have a minor role in FN binding by H. ducreyi, since a double dsrA momp mutant bound less FN than did the single dsrA mutant. Finally, despite major sequence differences, DsrA proteins from both class I and class II H. ducreyi strains mediated FN and vitronectin binding. We concluded that DsrA is the major factor involved in FN binding by both classes of H. ducreyi strains.  相似文献   

18.
Haemophilus influenzae, a strict human pathogen, acquires iron in vivo through the direct binding and removal of iron from human transferrin by an as yet uncharacterized process at the bacterial cell surface. In this study, the tbpA and tbpB genes of H. influenzae, encoding the transferrin-binding proteins Tbp1 and Tbp2, respectively, were cloned and sequenced. Alignments of the H. influenzae Tbp1 and Tbp2 protein sequences with those of related proteins from heterologous species were analyzed. On the basis of similarities between these and previously characterized proteins, Tbp1 appears to be a member of the TonB-dependent family of outer membrane proteins while Tbp2 is lipid modified by signal peptidase II. Isogenic mutants deficient in expression of Tbp1 or Tbp2 or both proteins were prepared by insertion of the Tn903 kanamycin resistance cassette into cloned sequences and reintroduction of the interrupted sequences into the wild-type chromosome. Binding assays with the mutants showed that a significant reduction in transferrin-binding ability resulted from the loss of either of the Tbps and a complete loss of binding was evident when neither protein was expressed. Loss of either Tbp2 or both proteins correlated with an inability to grow on media supplemented with transferrin-bound iron as the sole source of iron, whereas the Tbp1+ Tbp2- mutant was able to grow only at high transferrin concentrations.  相似文献   

19.
Iron acquisition by Haemophilus influenzae.   总被引:31,自引:19,他引:12       下载免费PDF全文
The mechanisms for acquisition of iron by Haemophilus influenzae and their role in pathogenesis are not known. Heme and nonheme sources of iron were evaluated for their effect on growth of type b and nontypable strains of H. influenzae in an iron-restricted, defined medium. All 13 strains acquired iron from heme, hemoglobin, hemoglobin-haptoglobin, and heme-hemopexin. Among nonheme sources of protein-bound iron, growth of H. influenzae was enhanced by partially saturated human transferrin but not by lactoferrin or ferritin. Purified ferrienterochelin and ferridesferrioxamine failed to provide iron to H. influenzae, and the supernatants of H. influenzae E1a grown in iron-restricted medium failed to enhance iron-restricted growth of siderophore-dependent strains of Escherichia coli, Salmonella typhimurium, and Arthrobacter terregens. Marked alterations in the profile of outer membrane proteins of H. influenzae were observed when the level of free iron was varied between 1 microM and 1 mM. Catechols were not detected in the supernatants of strain E1a; however, iron-related hydroxamate production was detected by two biochemical assays. We conclude that the sources of iron for H. influenzae are diverse. The significance of hydroxamate production and iron-related outer membrane proteins to H. influenzae iron acquisition is not yet clear.  相似文献   

20.
HgbA is the sole TonB-dependent receptor for hemoglobin (Hb) acquisition of Haemophilus ducreyi. Binding of Hb to HgbA is the initial step in heme acquisition from Hb. To better understand this step, we mutagenized hgbA by deletion of each of the 11 putative surface-exposed loops and expressed each of the mutant proteins in trans in host strain H. ducreyi FX547 hgbA. All mutant proteins were expressed, exported, and detected on the surface by anti-HgbA immunoglobulin G (IgG). Deletion of sequences in loops 5 and 7 of HgbA abolished Hb binding in two different formats. In contrast, HgbA proteins containing deletions in the other nine loops retained the ability to bind Hb. None of the clones expressing mutant proteins were able to grow on plates containing low concentrations of Hb. Previously we demonstrated in a swine model of chancroid infection that an HgbA vaccine conferred complete protection from a challenge infection. Using anti-HgbA IgG from this study and the above deletion mutants, we show that loops 4, 5, and 7 of HgbA were immunogenic and surface exposed and that IgG directed against loops 4 and 5 blocked Hb binding. Furthermore, loop 6 was cleaved by protease on intact H. ducreyi, suggesting surface exposure. These data implicate a central domain of HgbA (in respect to the primary amino acid sequence) as important in Hb binding and suggest that this region of the molecule might have potential as a subunit vaccine.Haemophilus ducreyi is the etiologic agent of chancroid, one of the genital ulcer diseases. Genital ulcer diseases are important risk factors for the heterosexual transmission of human immunodeficiency virus (22). Elimination of chancroid, through either vaccination or diagnosis and antibiotic treatment of core groups, could potentially slow human immunodeficiency virus transmission where both diseases are endemic (26, 27). HgbA is a highly effective vaccine in the swine model of chancroid infection (1), and it is conceivable that an HgbA vaccine might be used for the control of chancroid in humans.H. ducreyi infects only humans under natural conditions and has a small genome relative to those of other organisms that are environmentally diverse (2; http://cmr.jcvi.org/cgi-bin/CMR/GenomePage.cgi?org=nthd01). H. ducreyi lacks the genetic machinery to synthesize heme, and it must obtain heme from its host (3). Heme/iron compounds are transported across the outer membrane in gram-negative bacteria by a class of outer membrane proteins (OMPs) termed TonB-dependent receptors (TB-DRs) (19). During our studies of heme acquisition in H. ducreyi, we identified HgbA (10, 12), one of three TB-DRs in H. ducreyi in type strain 35000HP (17, 29; http://cmr.jcvi.org/cgi-bin/CMR/GenomePage.cgi?org=nthd01). Whereas HgbA expression is required for the establishment of a human experimental infection (4), neither of the other TB-DRs is required for infection (17). Thus, in the human model of experimental chancroid infection, HgbA is the most important TB-DR of H. ducreyi and hemoglobin (Hb) is the most important source of heme/iron.Since HgbA is an important vaccine candidate for chancroid, understanding its structure and functional domains may greatly impact its effectiveness in vaccine applications. A better understanding of the involvement of surface-exposed loops of HgbA in the initial Hb-binding step might simplify the development of an HgbA vaccine. One objective of this study was to identify surface-exposed loops required for Hb binding. The second objective of this study was to identify which loops of the protective HgbA immunogen, used in the previous vaccine trial, were immunogenic. Finally we sought to determine which loops of HgbA are required for the utilization of heme from Hb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号