首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Objective: The study was designed to evaluate bone apposition around SLA (sandblasted, large-grit and acid-etched) implants compared with modified SLA (modSLA) ones at sites with different sizes of circumferential gaps.
Material and methods: All mandibular premolars and first molars of six beagle dogs were extracted. After a healing period of 3 months, three 10-mm-long implants were inserted in each side of the mandible. One implant was inserted with a 0.5-mm and one with a 1-mm gap between the implants and bone around the coronal 5 mm of the implants. The third implant was inserted without a gap as a control. The dogs were sacrificed respectively at weeks 2, 4 and 8 after implant placement for histological and histomorphometric analyses.
Results: The histomorphometric results showed similar pattern of bone apposition for the two surfaces. At 2 and 4 weeks of healing, the percentage of newly formed bone-to-implant contact (BIC%), new bone fill (NBF%) and the distance between the most coronal position of BIC and the defect bottom (B–D) were significantly higher for modSLA ( P <0.05). At 8 weeks of healing, this difference was not significant ( P >0.05). With regard to the defect size, the histological analyses showed no significant differences between the two defect sizes at all time points ( P >0.05).
Conclusion: Significantly more bone apposition was found for the modSLA surface than for the SLA surface at early stage of healing, indicating that modSLA surface may enhance bone apposition in coronal circumferential defects at non-submerged implants. Gap size within 1 mm may not need any kind of regenerative procedures.  相似文献   

2.
OBJECTIVES: The aim of the present pilot study was to investigate initial and early tissue reactions to modified (mod) and conventional sand-blasted, large grit and acid-etched (SLA) titanium implants. MATERIAL AND METHODS: Implantation of modSLA and SLA implants was performed bilaterally in both the mandible and maxilla of dogs. The animals were sacrificed after a healing period of 1, 4, 7 and 14 days, respectively. Peri-implant tissue reactions were assessed in non-decalcified tissue sections using conventional histology (Toluidine blue-TB and Masson Goldner Trichrome stain-MG) and immunohistochemistry using monoclonal antibodies to transglutaminase II (TG) (angiogenesis) and osteocalcin (OC). Bone density (BD) and bone to implant contact (BIC) were assessed histomorphometrically. RESULTS: Day 1 revealed an early TG antigen reactivity in the provisional fibrin matrix adjacent to both implant surfaces. Day 4 was characterized by the formation of a collagen-rich connective tissue (MG), which revealed the first signs of OC synthesis adjacent to modSLA surfaces. Immunohistochemical staining for TG revealed a direct correlation between angiogenesis and new bone formation, which was clearly identifiable after 7 days by means of increasing BD, BIC and OC values. After 14 days, modSLA surfaces seemed to be surrounded by a firmly attached mature, parallel-fibered woven bone. CONCLUSIONS: Within the limits of the present study, it might be concluded that the combination of immunohistochemical and conventional histological stainings in non-decalcified tissue sections is a valuable technique to evaluate the initial and early stages of wound healing around endosseous titanium implants.  相似文献   

3.
Objective: To evaluate the effect of the timing of loading on bone‐to‐implant contact (BIC) following immediate placement of implants with a hydrophilic sandblasted, large‐grit and acid‐etched surface (modSLA) into fresh extraction sockets in a minipig model. Material and methods: Six minipigs were used in this study. In each hemi‐mandible, two conical shape implants (TE, Straumann implants) with a hydrophilic surface (modSLA) were placed in fresh extraction sockets. In one side of the mandible (control), two implants were immediately placed in fresh extraction sockets. The implants were loaded after 4 weeks of healing. At the contralateral side (test), two implants were immediately placed and loaded. After 8 weeks of healing, the animals were sacrificed and histologically analysed. Results: During the experimental period, no implants were lost and all of them presented to be osseointegrated. The percentage of BIC was similar in both groups: 66.1% and 65.1% for the control and test group, respectively. Furthermore, the distance from the shoulder of the implant to bone crest and the distance from the shoulder to the first BIC were similar in both groups. Conclusion: Immediate implant placement and loading showed similar BIC with immediate placement and delayed loading when implants with a modSLA surface were used. Both procedures showed similar buccal bone crest levels, which presented some resorption irrespective of the treatment modality. To cite this article:
Liñares A, Mardas N, Dard M, Donos N. Effect of immediate or delayed loading following immediate placement of implants with a modified surface.
Clin. Oral Impl. Res. 22 , 2011; 38–46.
doi: 10.1111/j.1600‐0501.2010.01988.x  相似文献   

4.
OBJECTIVES: The aim of the present study was to evaluate bone regeneration in dehiscence-type defects at titanium implants with chemically modified (mod) and conventional sand-blasted/acid-etched (SLA) surfaces. MATERIAL AND METHODS: Standardized buccal dehiscence defects (height: 3 mm, width: 3 mm) were surgically created following implant site preparation in both the upper and lower jaws of four beagle dogs. modSLA and SLA implants were inserted bilaterally according to a split-mouth design. The animals were sacrificed after 2 and 12 weeks (n=2 animals each). Dissected blocks were processed for histomorphometrical analysis: defect length, new bone height (NBH), percent linear fill (PLF), percent of bone-to-implant contact (BIC-D) and area of new bone fill (BF). RESULTS: Wound healing at SLA implants was predominantly characterized by the formation of a dense connective tissue at 2 and 12 weeks, without significant increases in mean NBH, PLF, BIC-D or BF values. In contrast, modSLA implants exhibited a complete defect fill at 12 weeks following implant placement. In particular, histomorphometrical analysis revealed the following mean values at 12 weeks: NBH (3.2+/-0.3 mm), PLF (98%), BIC-D (82%) and BF (2.3+/-0.4 mm(2)). CONCLUSION: Within the limits of the present study, it was concluded that modSLA titanium surfaces may promote bone regeneration in acute-type buccal dehiscence defects at submerged implants.  相似文献   

5.
Objectives: The aim of the present study was to evaluate bone regeneration in dehiscence‐type defects at non‐submerged and submerged titanium implants with chemically modified (mod) and conventional sandblasted/acid‐etched (SLA) surfaces. Material and Methods: Standardized buccal dehiscence defects were surgically created following implant site preparation in both the upper and lower jaws of 12 beagle dogs. Both types of implants were randomly assigned to either a non‐submerged or a submerged healing procedure. After 1, 2, 4, and 8 weeks, dissected blocks were processed for histomorphometrical [e.g. new bone height (NBH), per cent linear fill (PLF), percentage of bone to implant contact (BIC‐D), area of new bone fill (BF)] and immunohistochemical analysis. Results: At 8 weeks, non‐submerged and submerged SLA implants revealed significantly lower mean NBH (1.1±0.8–1.9±1.2 mm), PLF (27.7±20.3–46.0±28.5%), BIC‐D (26.8±10.4–46.2±16.2%), and BF (1.3±0.9–3.4±2.8 mm2) values than respective modSLA implants [NBH (2.6±0.8–4.3±0.1 mm), PLF (64.2±19.4–107.2±4.7%), BIC‐D (67.5±18.8–82.1±14.8%), BF (2.9±1.0–6.7±1.1 mm2)]. Within modSLA groups, significantly highest BF values were observed at submerged implants. Conclusion: It was concluded that (i) modSLA titanium surfaces promoted bone regeneration in acute‐type buccal dehiscence defects and (ii) a submerged healing procedure improved the outcome of healing additionally.  相似文献   

6.
Purpose: The aim of this study was to evaluate crestal bone resorption and bone apposition resulting from immediate post‐extraction implants in the canine mandible, comparing a conditioned sandblasted acid‐etched implant surface with a non‐conditioned standard sandblasted implant surface. Material and methods: In this experimental study, third and fourth premolars and distal roots of first molars were extracted bilaterally from six Beagle dog mandibles. Each side of the mandible received three assigned dental implants, with the conditioned surface (CS) on the right side and the non‐conditioned surface (NCS) on the left. The dogs were sacrificed at 2 (n=2), 4 (n=2) and 12 weeks (n=2) after implant placement. Results: The microscopic healing patterns at 2, 4 and 12 weeks for both implant types (CS and NCS) yielded similar qualitative bone findings. The mean crestal bone resorption was found to be greater for all implants with NCS (2.28±1.9 mm) than CS (1.21±1.05 mm) at 12 weeks. The mean percentage of newly formed bone in contact with implants was greater in implants CS (44.67±0.19%) than with the NCS (36,6±0.11%). There was less bone resorption with the CS than the NCS. Conclusion: The data show significantly more bone apposition (8% more) and less crestal bone resorption (1.07 mm) with the CS than with the NCS after 12 weeks of healing. This CS can reduce the healing period and increase bone apposition in immediate implant placements. To cite this article:
Calvo‐Guirado JL, Ortiz‐Ruiz AJ, Negri B, López‐Marí L, Rodriguez‐Barba C, Schlottig F. Histological and histomorphometric evaluation of immediate implant placement on a dog model with a new implant surface treatment.
Clin. Oral Impl. Res. 21 , 2010; 308–315.
doi: 10.1111/j.1600‐0501.2009.01841.x  相似文献   

7.
Aim: The aim of this randomized-controlled clinical study was to examine stability changes of palatal implants with chemically modified sandblasted/acid-etched (modSLA) titanium surface compared with a standard SLA surface, during the early stages of bone healing.
Materials and methods: Forty adult volunteers were recruited and randomly assigned to the test group (modSLA surface) and to the control group (SLA surface). The test and control implants had the same microscopic and macroscopic topography, but differed in surface chemistry. To document implant stability changes resonance frequency analysis (RFA) was performed at implant insertion, at 7, 14, 21, 28, 35, 42, 49, 56, 70 and 84 days thereafter. RFA values were expressed as an implant stability quotient (ISQ).
Results: Immediately after implant installation, the ISQ values for both surfaces tested were not significantly different and yielded mean values of 73.8±5 for the control and 72.7±3.9 for the test surface. In the first 2 weeks after implant installation, both groups showed only small changes and thereafter a decreasing trend in the mean ISQ levels. In the test group, after 28 days a tendency towards increasing ISQ values was observed and 42 days after surgery the ISQ values corresponded to those after implant insertion. For the SLA-control group, the trend changed after 35 days and yielded ISQ values corresponding to the baseline after 63 days. After 12 weeks of observation, the test surface yielded significantly higher stability values of 77.8±1.9 compared with the control implants of 74.5±3.9, respectively.
Conclusion: The results support the potential for chemical modification of the SLA surface to positively influence the biologic process of osseointegration and to decrease the healing time.  相似文献   

8.
Purpose: The aim of this study was to evaluate the success rate of chemically modified and conventional sandblasted acid‐etched surface (SLA) titanium implants in irradiated oral squamous cell carcinoma patients. Material and methods: Twenty patients with a mean age of 61.1 years were treated with dental implants after ablative surgery and radio‐chemotherapy of oral cancer. All patients were non‐smokers. The placement of SLA and modSLA implants was performed bilaterally according to a split‐mouth design. All 102 implants (50 SLA, 52 modSLA) placed showed an unloaded healing time of 6 weeks in the mandible and 10 weeks in the maxilla. Mean crestal bone changes using standardized orthopantomographies and clinical parameters like pocket depths, mPII and mBI were evaluated. Results: Of 102 implants, 55 implants (27 SLA implants, 28 modSLA) were located in the maxilla and 47 implants (23 SLA, 24 modSLA) in the mandible. The average observation period was 14.4 months. The amount of bone loss at the implant shoulder of SLA implants was 0.4 mm mesial and 0.4 mm distal. The modSLA implants displayed a bone loss of mesial 0.3 mm and distal 0.3 mm. Two SLA implants were lost resulting in a success rate of 96%. The success rate of modSLA implants was 100%. Conclusion: Regarding the data found in this investigation, we can conclude that implants with chemically modified and conventional SLA titanium surface show high success rates in irradiated patients. SLA implants with or without a chemically modified surface regardless of the location can be restored with a high predictability of success at least in the short time range observed. To cite this article:
Heberer S, Kilic S, Hossamo J, Raguse J‐D, Nelson K. Rehabilitation of irradiated patients with modified and conventional sandblasted, acid‐etched implants: preliminary results of a split‐mouth study.
Clin. Oral Impl. Res. 22 , 2011; 546–551
doi: 10.1111/j.1600‐0501.2010.02050.x  相似文献   

9.
Enhanced bone apposition to a chemically modified SLA titanium surface   总被引:13,自引:0,他引:13  
Increased surface roughness of dental implants has demonstrated greater bone apposition; however, the effect of modifying surface chemistry remains unknown. In the present study, we evaluated bone apposition to a modified sandblasted/acid-etched (modSLA) titanium surface, as compared with a standard SLA surface, during early stages of bone regeneration. Experimental implants were placed in miniature pigs, creating 2 circular bone defects. Test and control implants had the same topography, but differed in surface chemistry. We created the test surface by submerging the implant in an isotonic NaCl solution following acid-etching to avoid contamination with molecules from the atmosphere. Test implants demonstrated a significantly greater mean percentage of bone-implant contact as compared with controls at 2 (49.30 vs. 29.42%; p = 0.017) and 4 wks (81.91 vs. 66.57%; p = 0.011) of healing. At 8 wks, similar results were observed. It is concluded that the modSLA surface promoted enhanced bone apposition during early stages of bone regeneration.  相似文献   

10.
The aim of the present pilot study was to histologically/immunohistochemically investigate initial and early subepithelial connective tissue attachment at transmucosal parts of modified (mod) and conventional sandblasted, large grit and acid-etched (SLA) titanium implants. Implantation of modSLA and SLA implants was performed bilaterally in both the mandible and maxilla of four beagle dogs. The implants were submerged to prevent bacterial contamination. The animals were killed after 1, 4, 7 and 14 days. Peri-implant tissue reactions were assessed histologically (Masson Goldner Trichrome stain-MG) and immunohistochemically (IH) using monoclonal antibodies to fibronectin (FN) and proliferating cell nuclear antigen (PCNA). The surgical procedure of implant submerging resulted in the formation of an artificial gap in the transmucosal area of both types of implants. After 14 days of healing, MG stain revealed the formation of well-organized collagen fibres and numerous blood vessels in a newly formed loose connective tissue zone adjacent to modSLA. While some fibres were oriented in a parallel direction, others have started to extend and attach partially perpendicular to the implant surface. In contrast, SLA implants appeared to be clearly separated by a dense connective tissue zone with parallel-running collagen fibres and rare blood vessel formation. First signs of a positive FN and PCNA staining adjacent to both implant surfaces were observed at day 4. Within the limits of a pilot study, it might be concluded that modSLA titanium surfaces might possess the potential to promote subepithelial connective tissue attachment at the transmucosal part of the implant.  相似文献   

11.
OBJECTIVE: To study whether osseointegration once established following implant placement in a fresh extraction socket may be lost as a result of tissue modeling. MATERIAL AND METHODS: Seven beagle dogs were used. The third and fourth premolars in both quadrants of the mandible were used as experimental teeth. Buccal and lingual full-thickness flaps were elevated and distal roots were removed. Implants were installed in the fresh extraction socket. Semi-submerged healing of the implant sites was allowed. In five dogs, the experimental procedure was first performed in the right side of the mandible and 2 months later in the left mandible. These five animals were sacrificed 1 month after the final implant installation. In two dogs, the premolar sites on both sides of the mandible were treated in one surgical session and biopsies were obtained immediately after implant placement. All biopsies were processed for ground sectioning and stained. RESULTS: The void that existed between the implant and the socket walls at surgery was filled at 4 weeks with woven bone that made contact with the SLA surface. In this interval, (i) the buccal and lingual bone walls underwent marked surface resorption and (ii) the height of the thin buccal hard tissue wall was reduced. The process of healing continued, and the buccal bone crest shifted further in the apical direction. After 12 weeks, the buccal crest was located>2 mm apical of the marginal border of the SLA surface. CONCLUSION: The bone-to-implant contact that was established during the early phase of socket healing following implant installation was in part lost when the buccal bone wall underwent continued resorption.  相似文献   

12.
Objectives: The surface properties of titanium dental implants are key parameters for rapid and intimate bone–implant contact. The osseointegration of four implant surfaces was studied in the femoral epiphyses of rabbits. Material and methods: Titanium implants were either grit‐blasted with alumina or biphasic calcium phosphate (BCP) ceramic particles, coated with a thin octacalcium phosphate (OCP) layer, or prepared by large‐grit sand blasting and acid‐etched (SLA). After 2 and 8 weeks of implantation, the bone‐implant contact and bone growth inside the chambers were compared. Scanning electron microscopy (SEM) and profilometry showed distinct microtopographies. Results: The alumina‐Ti, BCP‐Ti and OCP‐Ti groups had similar average surface roughness in the 1–2 μm range whereas the SLA surface was significantly higher with a roughness averaging 4.5 μm. Concerning the osseointegration, the study demonstrated a significantly greater bone‐to‐implant contact for both the SLA and OCP‐Ti surfaces as compared with the grit‐blasted surfaces, alumina‐ and BCP‐Ti at both 2 and 8 weeks of healing. Conclusion: In this animal model, a biomimetic calcium phosphate coating gave similar osseointegration to the SLA surface. This biomimetic coating method may enhance the apposition of bone onto titanium dental implants.  相似文献   

13.
The aim of the present study was to investigate bone formation to recombinant human bone morphogenetic protein-2 (rhBMP-2)-biocoated and rhBMP-2-nonbiocoated titanium implants after implantation in dogs. Implantation of sand-blasted and acid-etched (C), chromosulfuric acid surface-enhanced (CSA), and rhBMP-2-biocoated CSA [BMP-A: noncovalently immobilized rhBMP-2 (596 ng/cm2), BMP-B: covalently immobilized rhBMP-2 (819 ng/cm2)] implants was performed in both the mandible and tibia of dogs. After 4 weeks of healing, the percentage of direct bone to implant contact (BIC) and the induced bone density (BD) at a distance of less than and greater than 1 mm adjacent to each implant was assessed. Histomorphometric analysis of implants inserted in the mandible and tibia revealed that BIC values appeared to be highest in the BMP-B group, followed by BMP-A, CSA, and C. BD as measured at a distance of <1 mm revealed obvious differences between groups: BMP-B>BMP-A>CSA>C. However, no differences between groups were observed at a distance of >1 mm. Within the limits of the present study, it may be concluded that rhBMP-2 immobilized by covalent and noncovalent methods on CSA-treated implant surfaces seemed to be stable and promoted direct bone apposition in a concentration-dependant manner.An erratum to this article can be found at  相似文献   

14.
The aim of this study was to evaluate the influence of implant microstructure on the osseointegration of immediate implants placed into infected sites. During 12 weeks, periodontitis was induced in six dogs in the areas of the first to fourth mandibular premolars of both sides. The teeth were extracted and the implants were placed immediately. Implant placement was randomly assigned so that for each side in the mandible a different implant surface, a new grit-blasted/acid-etched group 1 or titanium plasma spray surface group 2 was used, totaling 36 implants in the experiment. The animals were killed 12 weeks after implant placement. Two histomorphometric analyses were performed: percentage of bone/implant contact (BIC) and analyses of the bone density in adjacent and distant areas from the implant surface. The results showed that the percentages of BIC were 52.7% and 42.7% for groups 1 and 2, respectively. The bone density analysis revealed that the percentages of bone in the adjacent areas were 66.6% and 58.8%, and in the distant areas from the implants were 58.7% and 55.8% for groups 1 and 2, respectively. The mean differences of BIC were verified through the Mann-Whitney test and differences in bone density through the Kruskal-Wallis test. The differences were not statistically significant (P>0.05). In conclusion, osseointegration of implants placed into a more challenging healing situation such as immediate implants into periodontally compromised sites was successful for both surfaces; however, the grit-blasted/acid-etched surface, although not statistically significant, had a slightly better performance when compared to the titanium plasma spray surface for all the parameters studied.  相似文献   

15.
BACKGROUND: Mechanical properties and biocompatibility make zirconia ceramics suitable implant material. The characteristics of tooth-color like, the ability to be machined and the low plaque affinity make zirconia especially suitable as a dental implant material. The influence of surface modification on the osseointegration of this material has not been extensively investigated. PURPOSE: Long-term investigations with titanium implants have shown superior biomechanical results with the sandblasted acid-etched (SLA) surface, demonstrating a high bone-implant interaction. The objective of this study was to compare two different zirconia surface topographies biomechanically and histologically with the well-documented titanium SLA surface. MATERIAL AND METHODS: Zirconia implants with either a machined (ZrO2m) or a sandblasted (rough, ZrO2r) surface were manufactured with the exact same cylindrical shape with a standard ITI thread configuration as the SLA titanium implants. The incisors 2 and 3 were removed from both sides of the maxillae of 13 adult miniature pigs and the tissues left to heal for 6 months. After this time period the animals received a total of 78 implants using a randomized scheme, with the titanium SLA implant used as an only individual reference. After healing periods of 4, 8, and 12 weeks 20, 24, and 25 implants, respectively, were subjected to removal torque tests (RTQ) as the main biomechanical analysis of the of the study. A fewer number was resected on bloc, embedded in methylmethacrylat and analyzed for their direct bone apposition under a light microscope. RESULTS: Surface analysis revealed the highest surface roughness for the SLA-implant, followed by ZrO2r and ZrO2m. The turned ZrO2m implants showed statistically significant lower RTQ values than the other two implants types after 8 and 12 weeks, while the SLA implant showed significantly higher RTQs values than ZrO2r surface after 8 weeks. Differences in the bone apposition were observed in the histomorphometric analysis using light microscopy for all surfaces at any time point. CONCLUSION: The findings suggest that ZrO2r implants can achieve a higher stability in bone than ZrO2m implants. Roughening the turned zirconia implants enhances bone apposition and has a beneficial effect on the interfacial shear strength.  相似文献   

16.
Objectives: Chemical modification of the already proven sand‐blasted and acid‐etched (SLA) implant had increased its surface wettability and consequent early‐term osseointegration characteristics. The aim of this clinical trial was to compare the stability changes, success, survival, peri‐implant parameters and marginal bone loss (MBL) of the early‐loaded standard (SLA) and modified sand‐blasted, acid‐etched (modSLA) implants. Material and methods: A total of 96 SLA and modSLA implants were placed in a bi‐lateral, cross‐arch position to the jaws of 22 patients. Resonance frequency analysis (RFA) was used to measure the implant stability in the surgery and following healing after 1, 3 and 6 weeks. At the stage of loading, a panoramic X‐ray was obtained and RFA measurement was repeated for all implants. Implants were restored by metal–ceramic crowns and followed for 1 year to determine the success, survival rate, peri‐implant parameters and MBL. Results were compared by one‐ and two‐way ANOVA, log‐rank test and generalized linear mixed models (P<0.05). Results: One modSLA implant was lost after 3 weeks following the surgery yielding to a 100 and 97.91% success rate for SLA and modSLA implants, respectively (P=0.323). At the loading stage, modSLA implants showed significantly lower MBL (0.18 ± 0.05 mm) than SLA implants (0.22 ± 0.06 mm; P=0.002). In the loading stage, RFA value of the modSLA implants (60.42 ± 6.82) was significantly higher than the both implant types in the surgical stage (55.46 ± 8.29 and 56.68 ± 8.19), and following 1 (56.08 ± 7.01 and 55.60 ± 9.07) and 3 weeks of healing (55.94 ± 5.95 and 55.40 ± 6.50 for SLA and modSLA implants, respectively). Conclusions: modSLA implants demonstrated a better stability and a reduced MBL at the loading stage. Both SLA and modSLA implants demonstrated a favorable success and survival at the end of 15‐month follow‐up. To cite this article :
Karabuda ZC, Abdel‐Haq J. Arιsan V. Stability, marginal bone loss and survival of standard and modified sand‐blasted, acid‐etched implants in bilateral edentulous spaces: a prospective 15‐month evaluation.
Clin. Oral Impl. Res. 22 , 2011; 840–849
doi: 10.1111/j.1600‐0501.2010.02065.x  相似文献   

17.
Recently, a chemically modified ultra-hydrophilic sand-blasted, large grit and acid-etched (modSLA) titanium surface has been introduced in order to enhance bone apposition. Indeed, preliminary preclinical and clinical data have indicated that modSLA implants may enhance bone apposition during early stages of wound healing. These positive effects on bone regeneration might be probably mainly due to the hydrophilic surface properties noted for modSLA which ensured a stabilization of the blood clot. The aim of the present review article is to evaluate, based on the currently available evidence, the potential impact of modSLA surfaces for implant dentistry.  相似文献   

18.
Microrough titanium (Ti) surfaces of dental implants have demonstrated more rapid and greater bone apposition when compared with machined Ti surfaces. However, further enhancement of osteoblastic activity and bone apposition by bio-functionalizing the implant surface with a monomolecular adsorbed layer of a co-polymer - i.e., poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its derivatives (PLL-g-PEG/PEG-peptide) - has never been investigated. The aim of the present study was to examine early bone apposition to a modified sandblasted and acid-etched (SLA) surface coated with an Arg-Gly-Asp (RGD)-peptide-modified polymer (PLL-g-PEG/PEG-RGD) in the maxillae of miniature pigs, and to compare it with the standard SLA surface. Test and control implants had the same microrough topography (SLA), but differed in their surface chemistry (polymer coatings). The following surfaces were examined histomorphometrically: (i) control - SLA without coating; (ii) (PLL-g-PEG); (iii) (PLL-g-PEG/PEG-RDG) (RDG, Arg-Asp-Gly); and (iv) (PLL-g-PEG/PEG-RGD). At 2 weeks, RGD-coated implants demonstrated significantly higher percentages of bone-to-implant contact as compared with controls (61.68% vs. 43.62%; P < 0.001). It can be concluded that the (PLL-g-PEG/PEG-RGD) coatings may promote enhanced bone apposition during the early stages of bone regeneration.  相似文献   

19.
Objective: The aim of this pilot study was to compare the early‐term osseointegration characteristics of standard (SLA) and modified sand‐blasted and acid‐etched (modSLA) implants in an experimental animal model. Material and methods: A total of 30 SLA and modSLA implants were placed to the tibiae of three sheep and the insertion torque value (ITV) and resonance frequency analysis (RFA) measurements were performed. RFA measurement was repeated on 3 and 6 weeks healed implants after which the animals were sacrificed for histomorphometric analysis. Bone‐to‐implant contact was assessed on the non‐decalcified sections. Six weeks healed implants were also subjected to the reverse torque test (RTT). Results were analyzed by the Friedman test, Kruskal–Wallis test and Spearman rank correlation test. Results: All implants reached to a strong primary stability with a mean 36.13 ± 2.47 and 35.47 ± 2.85 N/cm ITV. In the surgical stage, RFA values for SLA and modSLA implants were found to be 72.27 ± 3.17 and 71.6 ± 2.87, respectively. After 3 weeks of healing, mean BIC% (80.64 ± 13.89%) and RFA value (76.8 ± 1.14) of modSLA implants were significantly higher (P=0.0002) than that of SLA implants (64.39 ± 21.2 BIC% and 74.2 ± 4.76 RFA). However, no statistically significant difference between SLA and modSLA implants was recorded after 6 weeks of healing. Both implants revealed similar results in the RTT test (115.2 ± 4.14 and 117 ± 4.47 N/cm for SLA and modSLA implants, respectively). No correlation was found between RFA and BIC%. Conclusion: Within the limits of this pilot study, it can be concluded that modSLA implants achieve a higher bone contact and stability at earlier time points when compared with SLA implants. To cite this article:
Abdel‐Haq J, Karabuda CZ, Arιsan V, Mutlu Z, Kürkçü M. Osseointegration and stability of a modified sand‐blasted acid‐etched implant: an experimental pilot study in sheep.
Clin. Oral Impl. Res. 22 , 2011; 265–274.
doi: 10.1111/j.1600‐0501.2010.01990.x  相似文献   

20.
BACKGROUND: Conventionally, endosseous dental implants have required 3 to 6 months of uninterrupted healing based on observations for dental implants that were characterized by a relatively smooth machined surface. Many studies have since demonstrated that implants with a roughened surface resulted in greater bone apposition, earlier bone contact, and a stronger bond between the implant and the bone, suggesting that implants with roughened surfaces could be loaded earlier than 3 to 6 months. Formal clinical studies confirmed that implants with rough surfaces can have abutments placed and be loaded occlusally as early as 6 weeks postplacement. The purpose of this prospective, human clinical investigation was to evaluate a large number of implants with a specific rough surface (sand-blasted acid-etched [SLA]) placed in everyday practice under routine private-practice conditions. METHODS: A prospective, multicenter, human clinical observational study was initiated with the goal of recruiting a minimum of 500 patients and 800 implants. The implants were to be placed and restored in predominantly private-practice settings around the world. Ninety-two practitioners in 16 countries agreed to participate, and 86 followed the study design. Patients had to be in good health, have sufficient bone to encase the implant, and agree to return for recall appointments. Exclusion criteria included heavy smoking (>10 cigarettes a day) and bone augmentation procedures at the implant site. All implants were two-piece (an abutment was to be placed after 6 weeks of healing) and were characterized by the presence of a transmucosal polished collar. Each implant had an SLA surface. All implants were positioned using a non-submerged (single-stage) surgical technique. Survival and success rates were calculated by life-table analyses. RESULTS: A total of 706 patients were enrolled and 1,406 implants were placed. In the final analyses, 590 patients with 990 implants (70.4% of those enrolled) met all inclusion criteria, including placement of an abutment and provisional restoration within 63 days of surgical placement. The majority of implants were 10 and 12 mm long (78.7%) and were placed in type II and III bone (87%). Seventy-three percent of the implants were placed in the mandible, and 27% were placed in the maxilla. The cumulative survival rate was 99.56% at 3 years and 99.26% at 5 years. The overall success rate was 99.12% at 3 years and 97.38% after 5 years. CONCLUSIONS: Under private-practice conditions, implants with an SLA surface could be placed and restored predictably within 6 to 8 weeks. Data from this prospective, multicenter, human observational study reinforced the results of more formal clinical studies and demonstrated that implants with the SLA surface can be restored in patients in approximately half of the time of conventional healing periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号