首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
CP432 is a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 agonist. CP432 stimulates trabecular and cortical bone formation and restores bone mass and bone strength in aged ovariectomized rats with established osteopenia. INTRODUCTION: The purpose of this study was to determine whether a newly discovered, nonprostanoid EP4 receptor selective prostaglandin E2 (PGE2) agonist, CP432, could produce bone anabolic effects in aged, ovariectomized (OVX) rats with established osteopenia. MATERIALS AND METHODS: CP432 at 0.3, 1, or 3 mg/kg/day was given for 6 weeks by subcutaneous injection to 12-month-old rats that had been OVX for 8.5 months. The effects on bone mass, bone formation, bone resorption, and bone strength were determined. RESULTS: Total femoral BMD increased significantly in OVX rats treated with CP432 at all doses. CP432 completely restored trabecular bone volume of the third lumbar vertebral body accompanied with a dose-dependent decrease in osteoclast number and osteoclast surface and a dose-dependent increase in mineralizing surface, mineral apposition rate, and bone formation rate-tissue reference in OVX rats. CP432 at 1 and 3 mg/kg/day significantly increased total tissue area, cortical bone area, and periosteal and endocortical bone formation in the tibial shafts compared with both sham and OVX controls. CP432 at all doses significantly and dose-dependently increased ultimate strength in the fifth lumber vertebral body compared with both sham and OVX controls. At 1 and 3 mg/kg/day, CP432 significantly increased maximal load in a three-point bending test of femoral shaft compared with both sham and OVX controls. CONCLUSIONS: CP432 completely restored trabecular and cortical bone mass and strength in established osteopenic, aged OVX rats by stimulating bone formation and inhibiting bone resorption on trabecular and cortical surfaces.  相似文献   

2.
Summary Silicon is known to ensure an essential role in the formation of cross-links between collagen and proteoglycans during bone growth. In this study, we have evaluated the short-term effects of a preventive treatment with silanol, a soluble organic silicon (Si), on trabecular bone in mature ovariectomized rats. Three-month-old rats were shamoperated (sham) or were ovariectomized (OVX) and treated with 10 g/kg/day of 170 estradiol (E2), or with 0.1 mg Si/kg/day or 1.0 mg Si/kg/day of silanol for 1 month. Plasma alkaline phosphatase and osteocalcin levels were increased by 50% in OVX rats compared with sham rats and were corrected by E2 but not by silanol treatment. The trabecular bone volume measured at the tibial metaphysis was decreased by 48%, and histomorphometric indices of bone resorption and formation were increased in OVX rats compared with sham, and these parameters were corrected by E2 treatment. Treatment of OVX rats with silanol decreased the osteoclast surface by 31% and the number of osteoclasts by 20%. The mineral apposition rate, the bone formation rate, and the osteoblast surface at the tibia metaphyseal area were increased by 30% at the higher dose of silanol compared with OVX rats. In contrast, silanol treatment had no effect on the periosteal apposition rate. The reduction of the metaphyseal bone resorption and the increased bone formation induced by silanol resulted in a slight improvement of the trabecular bone volume (+ 14%) compared with controls. The results indicate that a short-term preventive treatment with the organic silicon silanol partially prevented the trabecular bone loss in mature OVX rats by reducing bone resorption and increasing bone formation, possibly through stimulatory effects on the formation and/or the stability of the organic bone matrix.  相似文献   

3.
Summary Nandrolone decanoate (ND) is an anabolic steroid with a positive effect on bone mass in osteoporotic patients. The mechanism of action, (i.e., reduction of bone resorption and/or Stimulation of bone formation), the ultimate effect on mechanical properties, and the most effective dosage are not yet clear. To address these issues, dose-related effects of the long-term effect of ND on Serum and bone biochemistry, bone mineral content, and bone mechanical properties in ovariectomized (OVX) rats (12 weeks old at the Start of the experiment) were Studied for 6 months. The results were compared with those obtained in agematched, intact, and OVX rats. OVX caused in the femur a significant increase in net periosteal bone formation and net endosteal bone resorption of bone collagen content and torsional strength, and of Serum alkaline phosphatase, osteocalcin, and insulin-like growth factor-I (IGF-I) levels, whereas cortical bone density and calcium/creatinine and phosphorus/creatinine in 24-hour urine were Significantly reduced.Treatment of OVX rats with 1 mg ND/14 days resulted in a Significant increase in periosteal bone formation, femur length, cortical and trabecular bone mineral content and density, torsion stiffness and Strength, and bone IGF-I content, and a decrease in Serum osteocalcin, urinary calcium/creatinine levels, and bone collagen content compared with OVX controls. The higher ND dosage of 2.5 mg/14 days did not improve the results. ND treatment did not reverse all changes induced by OVX to the level of the intact controls.These results indicate that ND acts as an antiresorptive drug and as a bone formation Stimulating drug. Furthermore, the increased bone mass and bone mineral density is associated with improved bone Strength and stiffness and the presence of an increased amount of IGF-I. IGF-I is a growth factor considered to play a role in the maintenance of normal skeletal balance by a paracrine or autocrine mechanism.  相似文献   

4.
Tanaka M  Mori H  Kayasuga R  Ochi Y  Kawada N  Yamada H  Kishikawa K 《BONE》2008,43(5):894-900
The present study examined the effect of the highly potent nitrogen-containing bisphosphonate, minodronic acid (ONO-5920/YM529), on bone mineral density (BMD), bone turnover, bone histomorphometry and bone strength in ovariectomized (OVX) rats. Female F344/DuCrj rats, aged 14 weeks, were OVX or sham operated. After 3 months, the OVX rats showed an increase in bone turnover, and a decrease in bone mass and bone strength. Minodronic acid was administered orally once a day for 12 months at doses of 0, 0.006, 0.03 and 0.15 mg/kg from 3 months after OVX. Minodronic acid dose-dependently inhibited the decrease in BMD of lumbar vertebrae and femur. In the femur, treatment with 0.15 mg/kg minodronic acid increased the BMD of distal and mid sites to sham levels. Minodronic acid dose-dependently suppressed OVX-induced increase in urinary deoxypyridinoline, a bone resorption marker, after a month of treatment and these effects were maintained for 12 months of treatment. Minodronic acid also decreased serum osteocalcin, a bone formation marker. In bone histomorphometric analysis after 12 months of treatment, OVX rats showed an increase in bone resorption (Oc.S/BS and N.Oc/BS) and bone formation (MS/BS and BFR/BV) at lumbar vertebral bodies. Minodronic acid suppressed the OVX-induced increase in bone turnover at tissue level. Trabecular bone volume, trabecular thickness and trabecular number of lumbar vertebral bodies were decreased after OVX. Minodronic acid increased these structural indices, indicating that it prevented the deterioration in trabecular architecture. In a mechanical test at 12 months of treatment, ultimate load of lumbar vertebral bodies and mid femur in the OVX-control group was decreased compared to the sham group. Minodronic acid prevented the reduction in bone strength at both sites. In particular, in the mid femur, treatment with 0.03 and 0.15 mg/kg minodronic acid increased bone strength to sham levels or greater. In conclusion, minodronic acid suppressed increased bone turnover, plus prevented the decrease in BMD, deterioration of bone microarchitecture and reduction in bone strength in OVX rats with established osteopenia. These results suggest that minodronic acid may be clinically useful for treatment of osteoporosis.  相似文献   

5.
Long-term effects of a new selective estrogen receptor modulator (SERM) arzoxifene were examined in ovariectomized (OVX) rats. Arzoxifene was administered postoperatively (po) at 0.1 mg/kg per day or 0.5 mg/kg per day to 4-month-old rats, starting 1 week after OVX for 12 months. At study termination, body weights for arzoxifene groups were 16-17% lower than OVX control, which was caused by mainly reduced gain of fat mass. Longitudinal analysis of the proximal tibial metaphysis (PTM) by computed tomography (CT) at 0, 2, 4, 6,9, and 12 months showed that OVX induced a 22% reduction in bone mineral density (BMD) at 2 months, which narrowed to a 12% difference between sham-operated (sham) and OVX rats by 12 months. Both doses of arzoxifene prevented the OVX-induced decline in BMD. Histomorphometry of the PTM showed that arzoxifene prevented bone loss by reducing osteoclast number in OVX rats. Arzoxifene maintained bone formation indices at sham levels and preserved trabecular number above OVX controls. Micro-CT analysis of lumbar vertebrae showed similar preservation of BMD compared with OVX, which were not different from sham. Compression testing of the vertebra and three-point bending testing of femoral shaft showed that strength and toughness were higher for arzoxifene-treated animals compared with OVX animals. Arzoxifene reduced serum cholesterol by 44-59% compared with OVX. Uteri wet weight from arzoxifene animals was 38-40% of sham compared with OVX rats, which were 29% of sham. Histology of the uterine endometrium showed that cell heights from both doses of arzoxifene were not significantly different from OVX controls. In summary, treatment of OVX rats with arzoxifene for nearly one-half of a lifetime maintained beneficial effects on cholesterol and the skeleton. These data suggest that arzoxifene may be a useful therapeutic agent for osteoporosis in postmenopausal women.  相似文献   

6.
The effect of low-intensity, high-frequency vibration on bone mass, bone strength, and skeletal muscle mass was studied in an adult ovariectomized (OVX) rat model. One-year-old female rats were allocated randomly to the following groups: start control, sham OVX, OVX without vibration, OVX with vibration at 17 Hz (0.5g), OVX with vibration at 30 Hz (1.5g), OVX with vibration at 45 Hz (3.0g). Vibrations were given 30 min/day for 90 days. During vibration each group of rats was placed in a box on top of the vibration motor. The amplitude of the vibration motor was 1.0 mm. The animals were labeled with calcein at day 63 and with tetracycline at day 84. The tibia middiaphysis was studied by mechanical testing and dynamic histomorphometry and the femur distal metaphysis by mechanical compression. OVX without vibration increased the periosteal bone formation rate and increased the medullary cross-sectional area, i.e., increased the endocortical resorption and outward anteromedial and lateral drifts of cortical bone at the tibia middiaphysis. OVX also resulted in a reduced maximum bending stress of the tibia diaphysis and a reduced compressive stress of the femur distal metaphysis. Vibration at the highest intensity, i.e., 45 Hz, of OVX rats induced a further increase in periosteal bone formation rate and inhibited the endocortical resorption seen in OVX rats. Furthermore, vibration at 45 Hz inhibited the decline in maximum bending stress and compressive stress induced by OVX. Neither OVX nor OVX with vibration influenced skeletal muscle mass. In conclusion, the results support the idea of a possible beneficial effect of passive physical loading on the preservation of bone in OVX animals.  相似文献   

7.
Sclerostin (Scl) is an osteocyte protein that decreases bone formation, and its inhibition by neutralizing antibodies (Scl-Ab) increases bone formation, mass and strength. We investigated the effects of Scl-Ab in mature ovariectomized (OVX) rats with a mechanistic focus on longer-term responses of osteoclasts, osteoblasts and osteocytes. Four-month-old Sprague–Dawley rats had OVX or sham surgery. Two months later, sham controls received sc vehicle while OVX rats received vehicle (OVX-Veh) or Scl-Ab (25 mg/kg) once weekly for 6 or 26 weeks followed by necropsy (n = 12/group). Terminal blood was collected for biochemistry, non-adherent marrow cells were harvested from femurs for ex vivo osteoclast formation assays, and vertebrae and tibiae were collected for dynamic histomorphometry and mRNA analyses. Scl-Ab treatment led to progressively thicker but fewer trabeculae in the vertebra, leading to increased trabecular bone volume and reduced trabecular surfaces. Scl-Ab also increased cortical bone volume in the tibia, via early periosteal expansion and progressive endocortical contraction. Scl-Ab significantly reduced parameters of bone resorption at week 6 relative to OVX-Veh controls, including reduced serum TRACP-5b, reduced capacity of marrow cells to form osteoclasts ex vivo, and > 80% reductions in vertebral trabecular and tibial endocortical eroded surfaces. At week 26, serum TRACP-5b and ex vivo osteoclast formation were no longer reduced in the Scl-Ab group, but eroded surfaces remained > 80% lower than in OVX-Veh controls without evidence for altered skeletal mRNA expression of opg or rankl. Scl-Ab significantly increased parameters of bone formation at week 6 relative to OVX-Veh controls, including increases in serum P1NP and osteocalcin, and increased trabecular, endocortical and periosteal bone formation rates (BFRs). At week 26, surface-referent trabecular BFR remained significantly increased in the Scl-Ab group versus OVX-Veh controls, but after adjusting for a reduced extent of trabecular surfaces, overall (referent-independent) trabecular BFR was no longer significantly elevated. Similarly, serum P1NP and osteocalcin were no longer significantly increased in the Scl-Ab group at week 26. Tibial endocortical and periosteal BFR were increased at week 6 in the Scl-Ab group versus OVX-Veh controls, while at week 26 only endocortical BFR remained increased. The Scl-Ab group exhibited significant increments in skeletal mRNA expression of several osteocyte genes, with sost showing the greatest induction in both the tibia and vertebra. We propose that Scl-Ab administration, and/or the gains in bone volume that result, may have increased osteocytic expression of Scl as a possible means of regulating gains in bone mass.  相似文献   

8.
We conducted this study to evaluate the characteristic effects of alfacalcidol (ALF) and menatetrenone (VK) in preventing bone loss using an ovariectomized rat model of osteoporosis. Bilateral ovariectomy (OVX) or sham operation was performed on 10-month-old female Wistar rats. OVX caused a significant decrease in the bone mass and the mechanical strength of the lumbar vertebra as well as the femur 6 months after surgery. VK treatment (30 mg/kg, food intake) required a 6-month period to prevent the bone loss induced by estrogen deficiency, whereas ALF (0.1 or 0.2 mg/kg, p.o.) increased the bone mass and the mechanical strength of the lumbar vertebra as well as the femur in a 3-month treatment period, far above the level in the sham-operated rats. Neither ALF or VK caused hypercalcemia, despite administration for as long as 6 months. By doing a micro-CT analysis of the vertebral trabecular microstructure, it was revealed that ALF treatment increased the interconnections and the plate-like structures and that VK significantly increased the trabecular number. It was also indicated that the increase in spinal strength by ALF treatment was closely associated with improvement of the microstructure, but not VK. The results of histomorphometric analysis showed that ALF caused a significant suppression of bone resorption yet maintained formation in the endocortical perimeter, and also stimulated bone formation in the periosteal perimeter, thereby causing an increase in cortical area. No marked effect of VK on histomorphometric parameters was observed, whereas VK as well as ALF maintained the material strength at femoral midshaft of the normal level, suggesting that VK affected bone quality and thereby prevented the decrease in mechanical strength of femur caused by OVX. In conclusion, it was demonstrated that the two drugs, ALF and VK, differed markedly in their potency and mechanisms for improving bone strength. These results have important implications in understanding the characteristic actions of vitamin K and active vitamin D on bone metabolism.  相似文献   

9.
Strontium ranelate does not stimulate bone formation in ovariectomized rats   总被引:4,自引:4,他引:0  
INTRODUCTION: Strontium ranelate (SrR) is suggested to function as a dual-acting agent in the treatment of postmenopausal osteoporosis with anti-resorptive and anabolic skeletal benefits. We evaluated the effects of SrR on the skeleton in ovariectomized (OVX) rats and evaluated the influence of dietary calcium. METHODS: Three-month old virgin female rats underwent ovariectomy (OVX, n = 50) or SHAM surgery (SHAM, n = 10). Four weeks post-surgery, rats were treated daily by oral gavage with distilled water (10 ml/kg/day) or SrR (25 or 150 mg/kg/day) for 90 days. Separate groups of animals for each dose of SrR were fed a low (0.1%) or normal (1.19%) calcium (Ca) diet. Static and dynamic histomorphometry, DXA, mu-CT, mechanical testing, and serum and skeletal concentrations of strontium were assessed. RESULTS: SrR at doses of 25 and 150 mg/kg/day did not increase bone formation on trabecular or periosteal bone surfaces, and failed to inhibit bone resorption of trabecular bone regardless of Ca intake. There were no improvements in bone mass, volume or strength with either dose of SrR given normal Ca. CONCLUSION: These findings demonstrate that SrR at dosages of 25 and 150 mg/kg/day did not stimulate an anabolic bone response, and failed to improve the bone biomechanical properties of OVX rats.  相似文献   

10.
Effects of fluoride on bone strength and cortical bone mass remain controversial. We compared 9-month, low-dose sodium fluoride (NaF) treatment with estrogen replacement therapy. Female Wistar rats 4.5 months old were divided into baseline, sham-operated (sham), sham-treated with NaF at 0.5 mg NaF/kg/day in drinking water, and ovariectomy (OVX), OVX treated with NaF and with estrogen. Bone mass was measured by dual X-ray absorptiometry (DXA)in vitro. Dimensions of the first lumbar vertebral body (L1) were determined by radiogrammetry. The right femur was processed undecalcified to obtain a midshaft cross-section to determine cross-sectional moments of inertia (CSMIs). L1 compressive test and left femoral torsional test were performed. OVX induced significant bone loss in L1 and femoral midshaft. Bone mass was increased to a greater extent in NaF-treated rats than in rats receiving estrogen replacement therapy. Femoral CSMIs in OVX rars, both L1 sizes and femoral CSMIs in NaF-treated rats, were significantly increased. Estrogen treatment had the least dimension expansion. OVX significantly decreased L1 compressive variables. There was no statistical difference in compressive parameters between NaF-treated groups and controls. OVX significantly increased femoral torsional strength but NaF treatment did not. Bone fluoride content was significantly increased after treatment with NaF. No significant difference in bone mineralization degree (ash and calcium) was found between treated and control rats. The discrepancy that an increase in bone mass and geometric properties in both trabecular and cortical bones by low-dose, long-term NaF treatment did not increase vertebral strength nor proportionally improve femoral strength indicated that the bone intrinsic biomechanical properties could be changed by NaF treatment.  相似文献   

11.
Most studies that have investigated the anabolic effects of parathyroid hormone (1-84) (PTH) or PTH fragments on the skeleton of ovariectomized (OVX) rats have evaluated the short-term effects of high-dose PTH(1-34) in young animals. This study used densitometry, histomorphometry, and biomechanical testing to evaluate the effects of 12-month daily treatment with low-dose PTH (15 or 30 μg/kg) in rats that were 10 months old at baseline, 4 months after OVX. Bone mineral density (BMD) and bone strength were reduced substantially in control OVX rats. The 15 μg/kg dose of PTH restored BMD to levels similar to those in sham animals within 6 months at the lumbar spine, distal and central femur, and whole body and maintained the BMD gain from 6 to 12 months. The 30 μg/kg dose produced greater effects. Both PTH doses normalized the trabecular bone volume-to-total volume ratio (BV/TV) at lumbar vertebra 3 but not at the proximal tibia (where baseline BV/TV was very low), solely by increasing trabecular thickness. PTH dose-dependently increased bone formation by increasing the mineralizing surface, but only the 30 μg/kg dose increased resorption. PTH increased cortical BMD, area, and thickness, primarily by increasing endocortical bone formation, and restored all measures of bone strength to levels similar to those in sham animals at all skeletal sites. PTH increased bone mass safely; there was no osteoid accumulation, mineralization defect, or marrow fibrosis and there were no abnormal cells. Thus, long-term PTH therapy normalized bone strength in the aged OVX rat, a model of postmenopausal osteoporosis, through increased bone turnover and enhanced formation of both trabecular and cortical bone.  相似文献   

12.
This study examined the effect of the highly potent nitrogen-containing bisphosphonate, minodronic acid (ONO-5920/YM529), on bone mineral density (BMD), bone turnover, bone microarchitecture and bone strength in ovariectomized (OVX) cynomolgus monkeys. Skeletally mature female cynomolgus monkeys, aged 9-17 years, were ovariectomized or sham-operated. Minodronic acid was administered orally once a day in doses of 0, 0.015, and 0.15 mg/kg from the day after surgery for 17 months. Bone resorption markers (urinary N-terminal cross-linking telopeptide of type I collagen and deoxypyridinoline), bone formation markers (serum osteocalcin and bone alkaline phosphatase) and lumbar vertebral BMD were measured at baseline and at 4, 8, 12 and 16 months after surgery. Treatment with minodronic acid dose-dependently inhibited OVX-induced increase in bone turnover markers and decrease in lumbar vertebral BMD, and minodronic acid at 0.15 mg/kg completely prevented these changes. At 17 months after surgery, minodronic acid also suppressed bone resorption (Oc.S/BS and N.Oc/BS) and bone formation (OS/BS, MS/BS, MAR, BFR/BS, and BFR/BV) in the lumbar vertebral bodies and tibia. In the mechanical tests, ultimate load on lumbar vertebral bodies and femoral neck of the OVX-control animals were significantly reduced compared to the sham animals. Minodronic acid prevented these reductions in bone strength at 0.15 mg/kg. There was significant correlation between BMD and bone strength, suggesting that the increase in bone strength was associated with the increase in BMD produced by minodronic acid. In micro-CT analysis of the lumbar vertebral bodies, minodronic acid improved trabecular architecture, converting rod structures into plate structures, and preventing the increase in trabecular disconnectivity at 0.15 mg/kg. In conclusion, similar to patients with postmenopausal osteoporosis, reduction in bone strength of lumbar vertebral bodies and femoral neck was clearly demonstrated in OVX cynomolgus monkeys. Minodronic acid prevented these reductions at a once-daily oral administration. Also, minodronic acid prevented OVX-induced changes in bone turnover, bone mass and bone microarchitecture. Long-term minodronic acid treatment was well tolerated and no adverse effects could be detected. These results suggest that minodronic acid may be a clinically useful drug for osteoporosis.  相似文献   

13.
C.M. Bagi  M. Mecham  J. Weiss  S.C. Miller   《BONE》1993,14(6):877-883
Gonadal hormone deficiency following ovariectomy and skeletal unloading by limb immobilization are useful models of osteopenia. The purpose of this study was to compare changes in cortical bone after ovariectomy (OVX) or immobilization (IMM) for 6 and 12 weeks. Comparisons were also made when rats were ovariectomized or immobilized for 6 weeks and then immobilized (OVX/IMM) and ovariectomized (IMM/OVX), respectively, for 6 more weeks. Tibias and femurs were collected and static and dynamic cortical bone indices were determined by morphometric methods. Femurs from animals OVX or IMM for 12 weeks were tested for bone stiffness by torsional testing. Six and 12 weeks after OVX, there were increases in the periosteal perimeter, cortical area, and periosteal bone formation indices, indicating that ovariectomy increased modeling-dependent bone gain on the periosteal envelope, relative to controls. Contrarily, 6 and 12 weeks after IMM, there were decreases, compared with controls, in periosteal perimeter, cortical bone area, and periosteal bone formation indices. This indicates that immobilization decreased modeling-dependent bone gain on the periosteal envelope. These differences in modeling between the animals that were OVX and IMM resulted in a smaller cortical width and minimum cortical width in the IMM compared with the OVX animals. There were significant decreases in cortical bone stiffness and minimum cortical width at the fracture site following mechanical testing in the animals IMM for 12 weeks. Both ovariectomy and immobilization increased endocortical resorption surface, endocortical perimeter and expansion of the marrow cavity. Because of suppressed periosteal bone formation with increased endocortical resorption, immobilization had a greater effect on bone loss and decreased bone stiffness than did ovariectomy. In the OVX/IMM or IMM/OVX groups, there were changes that reflected both conditions. Immobilization mitigated the increase in periosteal bone formation but tended to augment endocortical resorption following ovariectomy. These results show that ovariectomy and immobilization have envelope-specific effects on rat cortical bone.  相似文献   

14.
OVX monkeys treated for 18 months with 1 or 5 microg/kg/d teriparatide [PTH (1-34)] had significantly stronger proximal femora relative to ovariectomized controls. Teriparatide enhancement of cortical area, cortical width, and trabecular bone volume seemed to more than compensate for the dose-dependent increase in cortical porosity. Beneficial effects of teriparatide treatment on the proximal femur persisted beyond the treatment period and may extend to the marrow. INTRODUCTION: We conducted a detailed quantitative analysis of the effects of teriparatide on the proximal femur of ovariectomized monkeys. Teriparatide increased bone mass, enhanced structural architecture, and strengthened the hip, despite increasing cortical porosity. MATERIALS AND METHODS: Monkeys were treated with vehicle (sham or OVX controls), 1 microg/kg/day teriparatide [parathyroid hormone (1-34); PTH1], or 5 microg/kg/day teriparatide (PTH5) for 18 months or for 12 months followed by 6 months of treatment withdrawal (PTH1W and PTH5W, respectively). Excised proximal femora were analyzed by microCT, conventional histomorphometry, and biomechanics.RESULTS AND CONCLUSIONS: The femoral neck showed significant reduction in trabecular bone volume (BV/TV) for OVX compared with sham, whereas PTH1 BV/TV was restored to sham levels and PTH5 BV/TV was greater than sham and OVX. The withdrawal groups had BV/TVs intermediate between sham and OVX. PTH1 had trabecular number (Tb.N) greater than OVX, and PTH5 Tb.N was greater than sham and OVX. The withdrawal groups had Tb.Ns intermediate between sham and OVX. No differences between groups were observed for trabecular orientation or trabecular thickness. Teriparatide dose-dependently increased bone formation rate and activation frequency in the femoral neck. Cellular composition analyses suggested a tendency of ovariectomy to increase adiposity of marrow by 100%, whereas PTH tended to reduce adipocyte number and increase osteoblast number compared with OVX. Analyses of the cortex showed dose-dependent elevation of cortical porosity, which was consistent with enhanced bone turnover with treatment. Cortical porosity was reduced after withdrawal of teriparatide, because PTH1W cortical porosity was lower than OVX, whereas PTH5W cortical porosity was intermediate between sham and OVX. Increased cortical porosity did not weaken the proximal femora. Biomechanics showed that ovariectomy weakened proximal femora compared with sham, but PTH1, PTH5, and PTH1W were stronger than OVX and not different from sham. PTH5W strength was intermediate between sham and OVX. Therefore, teriparatide had beneficial effects on the proximal femur, despite increasing cortical porosity. Cortical porosity did not adversely affect the mechanical integrity of the proximal femora, because enhanced cortical area and trabecular bone volume more than compensated for the porosity. Much of the beneficial effects of teriparatide were retained after 6 months withdrawal from treatment. PTH effects on the femoral neck were not limited to bone but may include inhibition of OVX-stimulated adiposity of the marrow.  相似文献   

15.
Oxlund H  Andreassen TT 《BONE》2004,34(4):609-618
Statins are commonly prescribed drugs that inhibit hepatic cholesterol synthesis and thereby reduce serum cholesterol concentrations. Some of the statins are thought to possess bone anabolic properties. Effects of statin on tibia, femur, and vertebral cortical and cancellous bone were studied in ovariectomized (OVX) rats. Sixty Wistar female rats, 4 months old, were allocated into four groups: baseline control, sham + placebo group, OVX + placebo, OVX + simvastatin. Simvastatin, 20 mg/kg, or placebo was given twice daily by a gastric tube for 3 months. The rats were labeled with tetracycline at day 11 and calcein at day 4 before sacrifice. Concerning cortical bone, the tibial diaphysis bending strength was increased by 8% and the periosteal bone formation rate (BFR) at the mid-diaphysis increased by twofold in the OVX + simvastatin group compared with the OVX + placebo group, in harmony with increased serum osteocalcin concentrations. Simvastatin did not affect the endocortical bone formation. Concerning cancellous bone, the cancellous bone volumes in the proximal tibia and vertebral body were reduced in both OVX groups, but the reduction was less in the OVX + simvastatin group compared with the OVX + placebo group. This reduction in cancellous bone loss is in agreement with the 36% decreased activity of serum tartrate-resistant-acid-phosphatase 5b (TRAP-5b), indicating decreased osteoclast activity in the OVX + simvastatin group compared with the OVX + placebo group. In conclusion, simvastatin induces a moderate increase in cortical bone formation at the periosteal bone surface. The new cortical bone exhibits a normal lamellar structure, and simvastatin seems to respect the regional pattern of bone formation, bone resorption, and drift; for example, no periosteal bone formation is observed in the vertebral canal. Furthermore, simvastatin reduces the loss of cancellous bone induced by ovariectomy.  相似文献   

16.
The purpose of this study was to evaluate if long-term (6 months) treatment with lasofoxifene (LAS), a new selective estrogen receptor modulator (SERM), can protect against age-related changes in bone mass and bone strength in intact aged male rats. Sprague-Dawley male rats at 15 months of age were treated (daily oral gavage) with either vehicle (n = 12) or LAS at 0.01 mg/kg per day (n = 12) or 0.1 mg/kg per day (n = 11) for 6 months. A group of 15 rats was necropsied at 15 months of age and served as basal controls. No significant change was found in body weight between basal and vehicle controls. However, an age-related increase in fat body mass (+42%) and decrease in lean body mass (-8.5%) was observed in controls. Compared with vehicle controls, LAS at both doses significantly decreased body weight and fat body mass but did not affect lean body mass. No significant difference was found in prostate wet weight among all groups. Total serum cholesterol was significantly decreased in all LAS-treated rats compared with both the basal and the vehicle controls. Both doses of LAS treatment completely prevented the age-related increase in serum osteocalcin. Peripheral quantitative computerized tomography (pQCT) analysis at the distal femoral metaphysis indicated that the age-related decrease in total density, trabecular density, and cortical thickness was completely prevented by treatment with LAS at 0.01 mg/kg per day or 0.1 mg/kg per day. Histomorphometric analysis of proximal tibial cancellous bone showed an age-related decrease in trabecular bone volume (TBV; -46%), trabecular number (Tb.N), wall thickness (W.Th), mineral apposition rate, and bone formation rate-tissue area referent. Moreover, an age-related increase in trabecular separation (Tb.Sp) and eroded surface was observed. LAS at 0.01 mg/kg per day or 0.1 mg/kg per day completely prevented these age-related changes in bone mass, bone structure, and bone turnover. Similarly, the age-related decrease in TBV and trabecular thickness (Tb.Th) and the age-related increase in osteoclast number (Oc.N) and osteoclast surface (Oc.S) in the third lumbar vertebral cancellous bone were completely prevented by treatment with LAS at both doses. Further, LAS at both doses completely prevented the age-related decrease in ultimate strength (-47%) and stiffness (-37%) of the fifth lumbar vertebral body. These results show that treatment with LAS for 6 months in male rats completely prevents the age-related decreases in bone mass and bone strength by inhibiting the increased bone resorption and bone turnover associated with aging. Further, LAS reduced total serum cholesterol and did not affect the prostate weight in these rats. Our data support the potential use of a SERM for protecting against the age-related changes in bone and serum cholesterol in elderly men.  相似文献   

17.
The purpose of this study was to evaluate the effects of withdrawal of minodronic acid (MIN) for 3 months after 12 months of treatment in ovariectomized (OVX) rat. OVX rats were orally treated with MIN (6, 30, and 150 µg/kg/day) for 12 months and necropsied on the day after the last dosing or following 3 months of withdrawal. Lumbar and femoral BMD were decreased in OVX controls. MIN dose-dependently increased BMD. Withdrawal eliminated the effect of MIN on BMD loss after treatment at 6 µg/kg, but not after treatment at 30 and 150 µg/kg. In MIN-treated rats, trabecular thinning occurred during withdrawal after treatment at 6 µg/kg, but the trabecular microstructure was maintained at 30 and 150 µg/kg. In a mechanical test of the femoral diaphysis, stiffness of in OVX controls was decreased but ultimate load was similar to that in sham after withdrawal. MIN increased ultimate load and stiffness, but endosteal length decreased after withdrawal. Suppression of bone turnover by MIN based on bone turnover markers and histomorphometric indices was attenuated by withdrawal after treatment at 6 and 30 µg/kg and partially at 150 µg/kg. The MIN concentration in the humerus decreased during withdrawal, and half-life at 30 µg/kg was shorter than that at 150 µg/kg. These results show that the antiresorptive action of MIN was dose-dependently attenuated by 3-month withdrawal in a rat OVX model. An absence of BMD increase was only observed at a low dose but decreases in antiresorptive activity occurred over a wide dose range.  相似文献   

18.
Because cancellous bone loss occurs following ovariectomy (OVX) in rats, this has become a popular model to explore therapeutic modalities for postmenopausal bone loss in humans. The purpose of this study was to determine intestinal calcium absorption in situ and organ-, tissue-, envelope-, and site-specific changes in osseous tissues at six weeks after OVX in rats using chemical, biochemical, absorptiometric, microradiographic, and morphometric methods. There were no changes in intestinal absorption of calcium, but duodenal weight per length was significantly increased in the OVX animals compared with age-matched, sham-operated controls. There was an increase in wet bone weight, but decreases in ash/dry bone weight, total bone Ca, and Ca per ash weight in the OVX animals. There were significant decreases in the OVX animals in metaphyseal bone mineral content, as determined by photon absorptiometry and metaphyseal cancellous bone volume. The perimeter to area ratio of the metaphyseal cancellous bone in the OVX animals was increased compared with controls. Endochondral growth rates were increased in the OVX animals, attributable to an increased growth plate hypertrophic cell size and rate of chondrocyte proliferation. In the OVX animals there was an increase in modeling in the formation mode of the periosteal surface at the tibio-fibular junction. Increased periosteal modeling in the formation mode was also observed in the body of the mandible, suggesting that the changes in periosteal bone formation are not strictly coupled with changes in endochondral growth. There was an increase in modeling in the resorption mode of the endocortical surface at the tibio-fibular junction in the OVX animals. There was increased bone turnover in the OVX animals compared with controls on the endosteal surface, as indicated by increases in both formation and resorption indices, including an increase in the osteoclast population. In the long bones, OVX results in larger bones due to increases in endochondral growth and modeling in the formation mode at the periosteal surfaces, with a loss of cancellous bone and total bone calcium due to increased resorption on the endocortical surfaces and turnover (increased formation and resorption) on endosteal surfaces. This study emphasizes that osseous tissue changes following OVX in rats are tissue-specific, envelop-specific, and site-specific.  相似文献   

19.
Clodronate Prevents Bone Loss in Aged Ovariectomized Rats   总被引:1,自引:1,他引:0  
The purpose of this study was to investigate the ability of clodronate to prevent ovariectomy (OVX)-induced osteopenia in aged rats. Fourteen-month-old female Sprague-Dawley rats (n = 166) were randomized into six groups. One group was sacrificed at the start of the study, four groups were ovariectomized, and one group was sham-operated (Sham). The OVX rats were given subcutaneously either vehicle (veh) or clodronate at doses of 3, 7, or 25 mg/kg once a week for 3 months, and the Sham rats were given the vehicle. At all dose levels clodronate inhibited trabecular bone loss in the distal femur and in the fourth lumbar vertebral body (L4), and decreased bone resorption as evidenced by urinary deoxypyridinoline excretion. The lowest dose of clodronate preserved serum osteocalcin and endosteal bone formation of secondary spongiosa in L4 at the level of the Sham/veh group. The OVX-induced increase in periosteal bone formation of femoral diaphysis was unaffected by two smaller doses of clodronate, but was decreased to the level of Sham rats after the highest dose. After 3 mg/kg clodronate, the percentage of femoral cortical bone area and the mean relative cortical thickness were higher compared with the OVX/veh group. There was a good positive correlation between the maximum load in three-point bending of the tibia and tibial ash weight. Normal lamellar pattern of newly formed cancellous and cortical bone was found after clodronate treatment. No signs of adverse accumulation of osteoid or any deleterious effect on mechanical strength of long bones and lumbar vertebrae were found. Received: 28 August 1996 / Accepted: 5 March 1997  相似文献   

20.
Fracture healing was studied in male, adult Sprague-Dawley rats. Closed bilateral tibial fractures were observed to be clinically stable after 3 weeks. Parathyroidectomy (PTX) resulted in impaired fracture healing and several delayed unions. Fracture tensile strength, elastic stiffness and failure energy were significantly lower at the beginning of the healing period compared to that of control fracture rats. Treatment with low doses (60 ng/kg/day) of 1,25-dihydroxycholecalciferol (l,25(OH)2D3) increased early fracture bone formation and mineralization. However, these events did not result in a corresponding increase of tensile strength or failure energy compared with that of the controls. Increased bone turnover seemed to be the dominant characteristic and resulted in early resorption of periosteal callus. Toward the end of the healing period, fracture strength measured as tensile strength and failure energy actually decreased compared to that of the control rats. Elastic stiffness initially rose above control values due to increased mineralization, but declined later to control values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号