首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lafora progressive myoclonus epilepsy, caused by defective laforinor malin, insidiously present in normal teenagers with cognitivedecline, followed by rapidly intractable epilepsy, dementiaand death. Pathology reveals neurodegeneration with neurofibrillarytangle formation and Lafora bodies (LBs). LBs are deposits ofstarch-like polyglucosans, insufficiently branched and henceinsoluble glycogen molecules resulting from glycogen synthase(GS) overactivity relative to glycogen branching enzyme activity.We previously made the unexpected observation that laforin,in the absence of which polyglucosans accumulate, specificallybinds polyglucosans. This suggested that laforin's role is todetect polyglucosan appearances during glycogen synthesis andto initiate mechanisms to downregulate GS. Glycogen synthasekinase 3 (GSK3) is the principal inhibitor of GS. Dephosphorylationof GSK3 at Ser 9 activates GSK3 to inhibit GS through phosphorylationat multiple sites. Glucose-6-phosphate is a potent allostericactivator of GS. Glucose-6-phosphate levels are high when theamount of glucose increases and its activation of GS overridesany phospho-inhibition. Here, we show that laforin is a GSK3Ser 9 phosphatase, and therefore capable of inactivating GSthrough GSK3. We also show that laforin interacts with malinand that malin is an E3 ubiquitin ligase that binds GS. We proposethat laforin, in response to appearance of polyglucosans, directstwo negative feedback pathways: polyglucosan–laforin–GSK3–GSto inhibit GS activity and polyglucosan–laforin–malin–GSto remove GS through proteasomal degradation.  相似文献   

2.
Lafora disease is a fatal autosomal recessive form of progressive myoclonus epilepsy. Patients manifest myoclonus and tonic-clonic seizures, visual hallucinations, intellectual, and progressive neurologic deterioration beginning in adolescence. The two genes known to be involved in Lafora disease are EPM2A and NHLRC1 (EPM2B). The EPM2A gene encodes laforin, a dual-specificity protein phosphatase, and the NHLRC1 gene encodes malin, an E3-ubiquitin ligase. The two proteins interact with each other and, as a complex, are thought to regulate glycogen synthesis. Here, we report three Lafora families with two novel pathogenic mutations (C46Y and L261P) and two recurrent mutations (P69A and D146N) in NHLRC1. Investigation of their functional consequences in cultured mammalian cells revealed that malin(C46Y), malin(P69A), malin(D146N), and malin(L261P) mutants failed to downregulate the level of R5/PTG, a regulatory subunit of protein phosphatase 1 involved in glycogen synthesis. Abnormal accumulation of intracellular glycogen was observed with all malin mutants, reminiscent of the polyglucosan inclusions (Lafora bodies) present in patients with Lafora disease.  相似文献   

3.
Advances in the genetics of progressive myoclonus epilepsy   总被引:7,自引:0,他引:7  
The genetic progressive myoclonus epilepsies (PMEs) are clinically characterized by the triad of stimulus sensitive myoclonus (segmental lightning like muscular jerks), epilepsy (grand mal and absences) and progressive neurologic deterioration (dementia, ataxia, and various neurologic signs depending on the cause). Etiologically heterogenous, PMEs are rare and mostly autosomal recessive disorders, with the exception of autosomal dominant dentatorubral-pallidoluysian atrophy and mitochondrial encephalomyopathy with ragged red fibers (MERRF). In the last five years, specific mutations have been defined in Lafora disease (gene for laforin or dual specificity phosphatase in 6q24), Unverricht-Lundborg disease (cystatin B in 21q22.3), Jansky-Bielschowsky ceroid lipofuscinoses (CLN2 gene for tripeptidyl peptidase 1 in 11q15), Finnish variant of late infantile ceroid lipofuscinoses (CLN5 gene in 13q21-32 encodes 407 amino acids with two transmembrane helices of unknown function), juvenile ceroid lipofuscinoses or Batten disease (CLN3 gene in 16p encodes 438 amino acid protein of unknown function), a subtype of Batten disease and infantile ceroid lipofuscinoses of the Haltia-Santavuori type (both are caused by mutations in palmitoyl-protein thiosterase gene at 1p32), dentadorubropallidoluysian atrophy (CAG repeats in a gene in 12p13.31) and the mitochondrial syndrome MERRF (tRNA Lys mutation in mitochondrial DNA). In this review, we cover mainly these rapid advances.  相似文献   

4.
In vitro studies have shown that cystatin C (CysC) is neuroprotective. Here we demonstrate that CysC is neuroprotective in vivo, in a mouse model of the inherited neurodegenerative disorder, progressive myoclonic epilepsy type 1 (EPM1). Loss-of-function mutations in the cystatin B (CysB) gene, an intracellular cysteine protease inhibitor, lead to this human disease. A CysB-knockout (CysBKO) mouse model develops symptoms that mimic EPM1. CysB deficiency in these mice results in enhanced cathepsin B and D activities, indicating lysosomal dysfunction. We show that expression of CysC is enhanced in the brains of CysBKO mice. Crossbreeding of CysBKO mice with either CysC-overexpressing transgenic mice or CysC-knockout mice demonstrates that clinical symptoms and neuropathologies, including motor coordination disorder, cerebellar atrophy, neuronal loss in the cerebellum and cerebral cortex, and gliosis caused by CysB deficiency, are rescued by CysC overexpression and exacerbated by CysC deficiency. Thus, CysC effectively rescues the CysB loss-of-function mutations, facilitating the reversal of pathophysiological changes and suggesting a novel therapeutic intervention for patients with EPM1 and other neurodegenerative disorders.  相似文献   

5.
Lafora disease (LD) is a fatal and the most common form of adolescent-onset progressive epilepsy. Fulminant endoplasmic reticulum (ER)-associated depositions of starch-like long-stranded, poorly branched glycogen molecules [known as polyglucosans, which accumulate to form Lafora bodies (LBs)] are seen in neuronal perikarya and dendrites, liver, skeletal muscle and heart. The disease is caused by loss of function of the laforin dual-specificity phosphatase or the malin E3 ubiquitin ligase. Towards understanding the pathogenesis of polyglucosans in LD, we generated a transgenic mouse overexpressing inactivated laforin to trap normal laforin's unknown substrate. The trap was successful and LBs formed in liver, muscle, neuronal perikarya and dendrites. Using immunogold electron microscopy, we show that laforin is found in close proximity to the ER surrounding the polyglucosan accumulations. In neurons, it compartmentalizes to perikaryon and dendrites and not to axons. Importantly, it binds polyglucosans, establishing for the first time a direct association between the disease-defining storage product and disease protein. It preferentially binds polyglucosans over glycogen in vivo and starch over glycogen in vitro, suggesting that laforin's role begins after the appearance of polyglucosans and that the laforin pathway is involved in monitoring for and then preventing the formation of polyglucosans. In addition, we show that the laforin interacting protein, EPM2AIP1, also localizes on the polyglucosan masses, and we confirm laforin's intense binding to LBs in human LD biopsy material.  相似文献   

6.
7.
8.
9.
10.
Progressive myoclonus epilepsy of the Lafora type (Lafora'sdisease) is an autosomal recessive disease characterized byepilepsy, myoclonus, dementia, and periodic acid-Schiff-positiveintracellular inclusion bodies. The inclusion deposits consistof branched polysaccharides (polyglucosans) but the responsiblebiochemical defect has not been identified. Onset is duringlate childhood or adolescence and the disease leads to a fataloutcome within a decade of first symptoms. We studied nine familiesin which Lafora’s disease had been proven by biopsy inat least one member. In order to locate the responsible gene,we screened the human genome with microsatellite markers spacedan average of 13 cM. We used linkage analysis in all nine familiesand homozygosity mapping in four consanguineous families todefine the Lafora‘s disease gene region. Two point linkageanalysis resulted in a total peak lod score of 10.54 for markerD6S311. Six additional chromosome 6q23–25 microsatellitesyielded lod scores ranging from 5.92 to 9.60 at  相似文献   

11.
The progressive myoclonus epilepsy of the Lafora type (LD; MIM 254780) is a rare autosomal recessive disorder characterized by epilepsy, myoclonus, progressive neurological deterioration, and the presence of periodic acid-Schiff-positive polyglucosan inclusions (Lafora bodies). Mutations in the EPM2A gene have recently been found to cause LD and about 30 or more mutations have been reported thus far. LD is relatively common in countries of the Mediterranean Basin, the Middle East, India, and Pakistan. Although a few sporadic cases with the typical LD phenotype have also been reported in the Far East including Korea and Japan, a recent effort to find mutations in Japanese LD families was not successful. In the present study, we report two novel mutations in a Korean girl with LD; a 1-bp insertion mutation (c.223insC; G75fsX107) in exon 1 and a missense mutation (c.559A>G; T187A) in exon 3 of the EPM2A gene. To our knowledge, this is the first report of a genetically confirmed case of LD in Koreans and also in the Far East.  相似文献   

12.
13.
Loss-of-function mutations in the cystatin B (CSTB), a cysteine protease inhibitor, gene underlie progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1), characterized by myoclonic and tonic-clonic seizures, ataxia and a progressive course. A minisatellite repeat expansion in the promoter region of the CSTB gene is the most common mutation in EPM1 patients and leads to reduced mRNA levels. Seven other mutations altering the structure of CSTB, or predicting altered splicing, have been described. Using a novel monoclonal CSTB antibody and organelle-specific markers in human primary myoblasts, we show here that endogenous CSTB localizes not only to the nucleus and cytoplasm but also associates with lysosomes. Upon differentiation to myotubes, CSTB becomes excluded from the nucleus and lysosomes, suggesting that the subcellular distribution of CSTB is dependent on the differentiation status of the cell. Four patient mutations altering the CSTB polypeptide were transiently expressed in BHK-21 cells. The p.Lys73fsX2-truncated mutant protein shows diffuse cytoplasmic and nuclear distribution, whereas p.Arg68X is rapidly degraded. Two missense mutations, the previously described p.Gly4Arg affecting the highly conserved glycine, critical for cathepsin binding, and a novel mutation, p.Gln71Pro, fail to associate with lysosomes. These data imply an important lysosome-associated physiological function for CSTB and suggest that loss of this association contributes to the molecular pathogenesis of EPM1.  相似文献   

14.
Cystatin B is an anti-proteolytic polypeptide implicated in progressive myoclonus epilepsy (EPM1), a degenerative disease of the central nervous system. The knock-out mouse model of the disease shows apoptosis of the cerebellar granule cells. We have identified five recombinant proteins interacting with cystatin B and none of them is a protease. We show that three of these proteins (RACK-1, beta-spectrin and NF-L) co-immunoprecipitate with cystatin B in rat cerebellum. Confocal immunofluorescence analysis shows that the same proteins are present in the granule cells of developing cerebellum, as well as in Purkinje cells of adult rat cerebellum. We propose that a cystatin B multiprotein complex has a specific cerebellar function and that the loss of this function might contribute to the disease in EPM1 patients.  相似文献   

15.
The progressive myoclonus epilepsy of Lafora type is an autosomal recessive disorder caused by mutations in the EPM2A gene. EPM2A is predicted to encode a putative tyrosine phosphatase protein, named laforin, whose full sequence has not yet been reported. In order to understand the function of the EPM2A gene, we isolated a full-length cDNA, raised an antibody and characterized its protein product. The full-length clone predicts a 38 kDa laforin that was very close to the size detected in transfected cells. Recombinant laforin was able to hydrolyze phosphotyrosine as well as phosphoserine/threonine substrates, demonstrating that laforin is an active dual-specificity phosphatase. Biochemical, immunofluorescence and electron microscopic studies on the full-length laforin expressed in HeLa cells revealed that laforin is a cytoplasmic protein associated with polyribosomes, possibly through a conformation-dependent protein-protein interaction. We analyzed the intracellular targeting of two laforin mutants with missense mutations. Expression of both mutants resulted in ubiquitin-positive perinuclear aggregates suggesting that they were misfolded proteins targeted for degradation. Our results suggest that laforin is involved in translational regulation and that protein misfolding may be one of the molecular bases of the Lafora disease phenotype caused by missense mutations in the EPM2A gene.  相似文献   

16.
Progressive Myoclonus Epilepsy (PME) of the Lafora type is an autosomal recessive disease, which presents in teenage years with myoclonia and generalized seizures leading to death within a decade of onset. It is characterized by pathognomonic inclusions, Lafora bodies (LB), in neurons and other cell types. Two genes causing Lafora disease (LD), EPM2A on chromosome 6q24 and NHLRC1 (EPM2B) on chromosome 6p22.3 have been identified, and our recent results indicate there is at least one other gene causing the disease. The EPM2A gene product, laforin, is a protein tyrosine phosphatase (PTP) with a carbohydrate‐binding domain (CBD) in the N‐terminus. NHLRC1 encodes a protein named malin, containing a zinc finger of the RING type in the N‐terminal half and 6 NHL‐repeat domains in the C‐terminal direction. To date 43 different variations in EPM2A and 23 in NHLRC1 are known, including missense, nonsense, frameshift, and deletions. We have developed a human LD mutation database using a new generic biological database cross‐referencing platform. The database, which currently contains 66 entries is accessible on the World Wide Web ( http://projects.tcag.ca/lafora ). Entries can be submitted via the curator of the database or via a web‐based form. © 2005 Wiley‐Liss, Inc.  相似文献   

17.
Progressive myoclonus epilepsy of the Lafora type or Lafora disease (EPM2; McKusick no. 254780) is an autosomal recessive disorder characterized by epilepsy, myoclonus, progressive neurological deterioration and glycogen-like intracellular inclusion bodies (Lafora bodies). A gene for EPM2 previously has been mapped to chromosome 6q23- q25 using linkage analysis and homozygosity mapping. Here we report the positional cloning of the 6q EPM2 gene. A microdeletion within the EPM2 critical region, present inhomozygosis in an affected individual, was found to disrupt a novel gene encoding a putative protein tyrosine phosphatase (PTPase). The gene, denoted EPM2, presents alternative splicing in the 5' and 3' end regions. Mutational analysis revealed that EPM2 patients are homozygous for loss-of-function mutations in EPM2. These findings suggest that Lafora disease results from the mutational inactivation of a PTPase activity that may be important in the control of glycogen metabolism.   相似文献   

18.
Background: Lafora disease is a progressive myoclonus epilepsy with polyglucosan accumulations and a peculiar neurodegeneration with generalised organellar disintegration. It causes severe seizures, leading to dementia and eventually death in early adulthood.

Methods: One Lafora disease gene, EPM2A, has been identified on chromosome 6q24. Locus heterogeneity led us to search for a second gene using a genome wide linkage scan in French-Canadian families.

Results: We mapped a second Lafora disease locus, EPM2B, to a 2.2 Mb region at 6p22, a region known to code for several proteins, including kinesins. Kinesins are microtubule dependent motor proteins that are involved in transporting cellular components. In neurones, they play a major role in axonal and dendritic transport.

Conclusion: Analysis of the present locus in other non-EPM2A families will reveal whether there is further locus heterogeneity. Identification of the disease gene will be of major importance towards our understanding of the pathogenesis of Lafora disease.

  相似文献   

19.
Neuroserpin encephalopathy is an autosomal-dominant degenerative disease associated with mutations in the Proteinase Inhibitor 12 (PI12) gene. A 26-year-old male presented with progressive myoclonus epilepsy and declining mental status. He had failed in university studies because of impaired attention, memory and concentration. Generalized seizures started to occur approximately once a month, and he developed myoclonus and progressive gait disturbances. Neuroimaging revealed mild atrophy and multiple periventricular white matter lesions, consistent with demyelination. He progressively declined and died at age 34. Neuropathologic examination revealed widespread involvement of the cerebral cortex by numerous round eosinophilic inclusions in neuronal perikarya and neuropil, predominantly within the deep cortical layers. Numerous inclusions were also found in the basal ganglia, thalamus, hippocampus, brain stem, spinal gray matter, and dorsal root ganglia. They were essentially absent from the cerebellum. The inclusions were immunopositive for antibodies raised against neuroserpin. The white matter lesions showed histologic features compatible with multiple sclerosis. Genetic analysis revealed a nucleotide substitution in codon 47 in one allele of the PI12 gene, resulting in a proline for leucine amino acid substitution (L47P). In summary, we report a case of neuroserpin encephalopathy associated with a novel PI12 mutation and complicated by coexistent multiple sclerosis.  相似文献   

20.
The gene for Progressive myoclonus epilepsy of Unverricht- Lundborgtype (EPM1) has previously been mapped by linkage to markerson chromosome 21q22.3. By analyzing crossover events in multiplexdisease families with newly detected markers from the regionwe were able to narrow the localization of EPM1 to an intervalof approximately 7 cM, between locl D21S212 and CD18. To furtherrefine the localization of the EPM1 gene we applied linkagedisequilibrium mapping In 38 Finnish families, consisting of12 with multiple affected children and 26 with a single affectedchild. Based on existing knowledge about the structure and historyof the Isolated Finnish population, we estimated genetic distancesbased on strong linkage disequilibrium to several marker lociand found that EPM1 resides within 0.3 cM or less of loci PFKL,D21S25 and D21S154. As this genetic distance translates intoa likely physical distance of 300 kb or less, these data providea basis for highly focused attempts to clone EPM1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号