首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Iwasaki Y  Kazama JJ  Yamato H  Fukagawa M 《BONE》2011,48(6):1260-1267
Bone fragility is a complication of chronic kidney disease (CKD). Patients on dialysis have higher risk of fracture than the general population, but the reason remains obscure. Bone strength is determined by bone mass and bone quality. Although factors affecting bone quality include microarchitecture, remodeling activity, mineral content, and collagen composition, it remains unclear which factor is critically important for bone strength in CKD. We conducted an in vivo study to elucidate the factors that reduce bone mechanical property in CKD. Rats underwent thyroparathyroidectomy and progressive partial nephrectomy (TPTx-Nx). Bone mechanical property, bone mineral density (BMD), and cortical bone chemical composition (all in femur) as well as histomorphometry (in tibia) were determined. The storage modulus, which is a mechanical factor, was reduced in CKD model rats compared with controls that underwent thyroparathyroidectomy alone (TPTx). There were no differences in BMD and histomorphometric parameters between groups. However, cortical bone chemical composition differed: mineral to matrix ratio and carbonate substitution increased whereas crystallinity decreased in TPTx-Nx. In addition, enzymatic crosslinks ratio and pentosidine to matrix ratio also increased. These changes were significant in TPTx-Nx rats with most impaired renal function. Stepwise multiple regression analysis identified mature to immature crosslink ratio and crystallinity as independent contributors to storage modulus. Deteriorated bone mechanical properties in CKD may be caused by changes in chemical composition of the cortical bone, and is independent of BMD or cancellous bone microarchitecture.  相似文献   

2.
3.
4.
Bone mineral density alone cannot reliably predict fracture risk in humans and laboratory animals. Therefore, other factors including the quality of organic bone matrix components and their interactions may be of crucial importance to understanding of fragility fractures. Emerging research evidence shows, that in addition to collagen, certain noncollagenous proteins (NCPs) play a significant role in the structural organization of bone and influence its mechanical properties. However, their contribution to bone strength still remains largely undefined. Collagen and NCPs undergo different post-translational modifications, which alter the quality of the extracellular matrix and the response of bone to mechanical load. The primary focus of this overview is on NCPs that, together with collagen, contribute to structural and mechanical properties of bone. Current information on several mechanisms through which some NCPs influence bone's resistance to fracture, including the role of nonenzymatic glycation, is also presented.  相似文献   

5.
6.
Microcrack accumulation in cortical bone has been implicated in skeletal fragility and stress fractures. These cracks have also been shown to affect the mechanical and material properties of cortical bone. Their growth has been linked to osteocyte apoptosis and the initiation of the remodeling process, which also has a role in their repair. Clinically, osteoporosis is diagnosed using dual energy x-ray absorptiometry. However, evidence now indicates that bone mass alone is insufficient to satisfactorily explain the skeletal fragility of osteoporosis and consideration needs to be given to bone quality in the diagnosis and treatment of the disease. Bone quality includes parameters such as trabecular and cortical microarchitecture, morphology, bone turnover, degree of mineralization of the bone matrix, and significantly, the amount of microdamage present in the bone. Current clinical treatments concentrate on the inhibition of osteoclast activity to maintain bone mass in osteoporotic patients. However, these cells have a major role in removing existing microcracks from the bone matrix, and hence the use of bone resorption-inhibiting drugs may lead to insufficient bone repair and therefore an increase in microdamage accumulation and loss of bone quality.  相似文献   

7.
骨强度不仅与骨密度(BMD)、骨微结构相关,还受骨髓微环境的影响。骨髓脂肪组织(MAT)与骨小梁、造血细胞、神经血管组织共同存在于骨髓腔中,对骨重建、骨髓造血、维持骨髓微环境的稳定起重要作用。近年研究表明,MAT可通过分泌脂联素等细胞因子参与介导代谢性疾病、血液系统肿瘤、癌症等疾病的发生发展,为疾病预防、治疗及监测提供了新的思路。本文拟对MAT生物学特性、影像学测量方法、MAT与疾病相关性及可能的作用机制予以综述。  相似文献   

8.

Background  

The definition of bone quality is evolving particularly from the perspective of anabolic agents that can enhance not only bone mineral density but also bone microarchitecture, composition, morphology, amount of microdamage, and remodeling dynamics.  相似文献   

9.
In biological tissues such as bone, cell function and activity crucially depend on the physical properties of the extracellular matrix which the cells synthesize and condition. During bone formation and remodeling, osteoblasts get embedded into the matrix they deposit and differentiate to osteocytes. These cells form a dense network throughout the entire bone material. Osteocytes are known to orchestrate bone remodeling. However, the precise role of osteocytes during mineral homeostasis and their potential influence on bone material quality remains unclear. To understand the mutual influence of osteocytes and extracellular matrix, it is crucial to reveal their network organization in relation to the properties of their surrounding material. Here we visualize and topologically quantify the osteocyte network in mineralized bone sections with confocal laser scanning microscopy. At the same region of the sample, synchrotron small‐angle X‐ray scattering is used to determine nanoscopic bone mineral particle size and arrangement relative to the cell network. Major findings are that most of the mineral particles reside within less than a micrometer from the nearest cell network channel and that mineral particle characteristics depend on the distance from the cell network. The architecture of the network reveals optimization with respect to transport costs between cells and to blood vessels. In conclusion, these findings quantitatively show that the osteocyte network provides access to a huge mineral reservoir in bone due to its dense organization. The observed correlation between the architecture of osteocyte networks and bone material properties supports the hypothesis that osteocytes interact with their mineralized vicinity and thus, participate in bone mineral homeostasis.  相似文献   

10.
Bone disease is a common disorder of bone remodeling and mineral metabolism, which affects patients with chronic kidney disease. Minor changes in the serum level of a given mineral can trigger compensatory mechanisms, making it difficult to evaluate the role of mineral disturbances in isolation. The objective of this study was to determine the isolated effects that phosphate and parathyroid hormone (PTH) have on bone tissue in rats. Male Wistar rats were subjected to parathyroidectomy and 5/6 nephrectomy or were sham-operated. Rats were fed diets in which the phosphate content was low, normal, or high. Some rats received infusion of PTH at a physiological rate, some received infusion of PTH at a supraphysiological rate, and some received infusion of vehicle only. All nephrectomized rats developed moderate renal failure. High phosphate intake decreased bone volume, and this effect was more pronounced in animals with dietary phosphate overload that received PTH infusion at a physiological rate. Phosphate overload induced hyperphosphatemia, hypocalcemia, and changes in bone microarchitecture. PTH at a supraphysiological rate minimized the phosphate-induced osteopenia. These data indicate that the management of uremia requires proper control of dietary phosphate, together with PTH adjustment, in order to ensure adequate bone remodeling.  相似文献   

11.
Imaging techniques for evaluating bone microarchitecture   总被引:2,自引:0,他引:2  
At present, fracture risk prediction in the individual patient relies chiefly on bone mineral density (BMD) measurements. However, many lines of evidence indicate that the decreased bone strength characteristic of osteoporosis is dependent not only on BMD, but also on other factors, most notably bone microarchitecture. Here, we review available tools for characterizing trabecular microarchitecture (in terms of morphology, topology, and texture) and for obtaining 2D and 3D images (using radiography, computed tomography, and magnetic resonance imaging). Bone microarchitecture imaging is a noninvasive method that may improve fracture risk prediction in the individual patient, shed light on the pathophysiology of osteoporosis, and help to monitor the effects of treatments. Among the various methods available to date, magnetic resonance imaging has the advantage of involving no radiation exposure, although its limited availability restricts its usefulness for studying vast populations. Regardless of the methods selected to assess bone microarchitecture, there is a need for validated standardized parameters capable of improving fracture risk prediction in longitudinal studies.  相似文献   

12.
IntroductionA variation in bone response to fluoride (F) exposure has been attributed to genetic factors. Increasing fluoride doses (0 ppm, 25 ppm, 50 ppm, 100 ppm) for three inbred mouse strains with different susceptibilities to developing dental enamel fluorosis (A/J, a “susceptible” strain; SWR/J, an “intermediate” strain; 129P3/J, a “resistant” strain) had different effects on their cortical and trabecular bone mechanical properties. In this paper, the structural and material properties of the bone were evaluated to explain the previously observed changes in mechanical properties.Materials and methodsThis study assessed the effect of increasing fluoride doses on the bone formation, microarchitecture, mineralization and microhardness of the A/J, SWR/J and 129P3/J mouse strains. Bone microarchitecture was quantified with microcomputed tomography and strut analysis. Bone formation was evaluated by static histomorphometry. Bone mineralization was quantified with backscattered electron (BSE) imaging and powder X-ray diffraction. Microhardness measurements were taken from the vertebral bodies (cortical and trabecular bones) and the cortex of the distal femur.ResultsFluoride treatment had no significant effect on bone microarchitecture for any of the strains. All three strains demonstrated a significant increase in osteoid formation at the largest fluoride dose. Vertebral body trabecular bone BSE imaging revealed significantly decreased mineralization heterogeneity in the SWR/J strain at 50 ppm and 100 ppm F. The trabecular and cortical bone mineralization profiles showed a non-significant shift towards higher mineralization with increasing F dose in the three strains. Powder X-ray diffraction showed significantly smaller crystals for the 129P3/J strain, and increased crystal width with increasing F dose for all strains. There was no effect of F on trabecular and cortical bone microhardness.ConclusionFluoride treatment had no significant effect on bone microarchitecture in these three strains. The increased osteoid formation and decreased mineralization heterogeneity support the theory that F delays mineralization of new bone. The increasing crystal width with increasing F dose confirms earlier results and correlates with most of the decreased mechanical properties. An increase in bone F may affect the mineral–organic interfacial bonding and/or bone matrix proteins, interfering with bone crystal growth inhibition on the crystallite faces as well as bonding between the mineral and organic interface. The smaller bone crystallites of the 129P3/J (resistant) strain may indicate a stronger organic/inorganic interface, reducing crystallite growth rate and increasing interfacial mechanical strength.  相似文献   

13.
All genetic and environmental factors contributing to differences in bone structure between individuals mediate their effects through the final common cellular pathway of bone modeling and remodeling. We hypothesized that genetic factors account for most of the population variance of cortical and trabecular microstructure, in particular intracortical porosity and medullary size – void volumes (porosity), which establish the internal bone surface areas or interfaces upon which modeling and remodeling deposit or remove bone to configure bone microarchitecture. Microarchitecture of the distal tibia and distal radius and remodeling markers were measured for 95 monozygotic (MZ) and 66 dizygotic (DZ) white female twin pairs aged 40 to 61 years. Images obtained using high‐resolution peripheral quantitative computed tomography were analyzed using StrAx1.0, a nonthreshold‐based software that quantifies cortical matrix and porosity. Genetic and environmental components of variance were estimated under the assumptions of the classic twin model. The data were consistent with the proportion of variance accounted for by genetic factors being: 72% to 81% (standard errors ~18%) for the distal tibial total, cortical, and medullary cross‐sectional area (CSA); 67% and 61% for total cortical porosity, before and after adjusting for total CSA, respectively; 51% for trabecular volumetric bone mineral density (vBMD; all p < 0.001). For the corresponding distal radius traits, genetic factors accounted for 47% to 68% of the variance (all p ≤ 0.001). Cross‐twin cross‐trait correlations between tibial cortical porosity and medullary CSA were higher for MZ (rMZ = 0.49) than DZ (rDZ = 0.27) pairs before (p = 0.024), but not after (p = 0.258), adjusting for total CSA. For the remodeling markers, the data were consistent with genetic factors accounting for 55% to 62% of the variance. We infer that middle‐aged women differ in their bone microarchitecture and remodeling markers more because of differences in their genetic factors than differences in their environment. © 2014 American Society for Bone and Mineral Research.  相似文献   

14.
In postmenopausal women with osteoporosis, denosumab (DMAb) therapy through 10 years resulted in significantly higher degree of mineralization of bone, with a subsequent increase from years 2–3 to year 5 and no further difference between years 5 and 10. Our aim was to assess the variables reflecting the quality of bone mineral and organic matrix (Fourier transform infrared microspectroscopy), and the microhardness of bone (Vickers microindentation). Cross-sectional assessments were performed in blinded fashion on iliac bone biopsies from osteoporotic women (72 from FREEDOM trial, 49 from FREEDOM Extension trial), separately in cortical and cancellous compartments. After 2–3 years of DMAb, mineral/matrix ratio and microhardness of cortical bone were significantly higher compared with placebo, whereas mineral maturity, mineral crystallinity, mineral carbonation, and collagen maturity were not different in both bone compartments. Through 5 years of DMAb, mineral carbonation was significantly lower and mineral/matrix ratio, mineral maturity, and crystallinity were significantly higher versus 2–3 years and were not different between 5 and 10 years, with the exception of mineral maturity in cancellous bone. These data support a transition of mineral to more mature crystals (within physiological range) and the completeness of secondary mineralization within 5 years of DMAb treatment. Microhardness in cortical and cancellous compartments was significantly lower at 5 years of DMAb versus 2–3 years and was not different from years 5 to 10. The lower microhardness at years 5 and 10 is likely the result of maturation of the organic matrix in a persistently low state of bone remodeling over 5 and 10 years. © 2022 American Society for Bone and Mineral Research (ASBMR).  相似文献   

15.
16.
Bone structure, composition, and mineralization   总被引:3,自引:0,他引:3  
Bone structure and function are dependent on complex interactions between cells, matrix, cell-derived factors, and systemic factors. The deposition of mineral in bone, which enables the skeleton to function properly, is described as a four-step process of matrix modification, crystal nucleation, crystal growth, and remodeling. Insight into the function of bone components in the mineralization process is provided by in vitro studies and analysis of abnormal calcifications.  相似文献   

17.
Bone remodeling, a combination of bone resorption and formation, requires precise regulation of cellular and molecular signaling to maintain proper bone quality. Whereas osteoblasts deposit and osteoclasts resorb bone matrix, osteocytes both dynamically resorb and replace perilacunar bone matrix. Osteocytes secrete proteases like matrix metalloproteinase-13 (MMP13) to maintain the material quality of bone matrix through perilacunar remodeling (PLR). Deregulated bone remodeling impairs bone quality and can compromise hearing since the auditory transduction mechanism is within bone. Understanding the mechanisms regulating cochlear bone provides unique ways to assess bone quality independent of other aspects that contribute to bone mechanical behavior. Cochlear bone is singular in its regulation of remodeling by expressing high levels of osteoprotegerin. Since cochlear bone expresses a key PLR enzyme, MMP13, we examined whether cochlear bone relies on, or is protected from, osteocyte-mediated PLR to maintain hearing and bone quality using a mouse model lacking MMP13 (MMP13−/−). We investigated the canalicular network, collagen organization, lacunar volume via micro-computed tomography, and dynamic histomorphometry. Despite finding defects in these hallmarks of PLR in MMP13−/− long bones, cochlear bone revealed no differences in these markers, nor hearing loss as measured by auditory brainstem response (ABR) or distortion product oto-acoustic emissions (DPOAEs), between wild type and MMP13−/− mice. Dynamic histomorphometry revealed abundant PLR by tibial osteocytes, but near absence in cochlear bone. Cochlear suppression of PLR corresponds to repression of several key PLR genes in the cochlea relative to long bones. These data suggest that cochlear bone uniquely maintains bone quality and hearing independent of MMP13-mediated osteocytic PLR. Furthermore, the cochlea employs parallel mechanisms to inhibit remodeling by osteoclasts and osteoblasts, and by osteocytes, to protect hearing. Understanding the cellular and molecular mechanisms that confer site-specific control of bone remodeling has the potential to elucidate new pathways that are deregulated in skeletal disease.  相似文献   

18.
常规补充钙和维生素D可防治骨质疏松,进一步减少骨质疏松性骨折发病率。骨强度由骨密度和骨质量决定,骨密度由高度矿化的无机盐(钙、磷、镁等)组成,骨质量主要由有机骨基质胶原纤维组成,而胶原蛋白合成必需有微量元素参加,特别是铜、锰和锌。本文主要介绍镁、锌、铜、锰对骨质 疏松症和骨质疏松性骨折防治的作用和临床研究,提出骨质疏松性骨折防治的新概念:补充韧骨元素镁、锌、铜、锰。  相似文献   

19.
Roux-en-Y gastric bypass (RYGB) instigates high-turnover bone loss in the initial 5 years after surgery, whereas skeletal changes after adjustable gastric banding (AGB) are less pronounced. Long-term skeletal data are scarce, and the mechanisms of bone loss remain unclear. We sought to examine bone density and microarchitecture in RYGB and AGB patients a decade after surgery and to determine whether prior published reports of bone loss represent an appropriate adaptation to new postsurgical weight. In this cross-sectional study, 25 RYGB and 25 AGB subjects who had bariatric surgery ≥10 years ago were matched 1:1 with nonsurgical controls for age, sex, and current body mass index (BMI). We obtained bone mineral density (BMD) by dual-energy X-ray absorptiometry (DXA), volumetric BMD and microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT), trabecular morphology by individual trabecular segmentation, and metabolic bone laboratory results. As compared with BMI-matched controls, RYGB subjects had significantly lower hip BMD, and lower total volumetric BMD at the distal radius and tibia. Substantial deficits in cortical and trabecular microarchitecture were observed in the RYGB group compared to controls, with reduced trabecular plate bone volume fraction and estimated failure load at both the radius and tibia, respectively. Bone turnover markers CTX and P1NP were 99% and 77% higher in the RYGB group than controls, respectively, with no differences in serum calcium, 25-hydroxyvitamin D, or parathyroid hormone. In contrast, the AGB group did not differ from their BMI-matched controls in any measured bone density, microarchitecture, or laboratory parameter. Thus, RYGB, but not AGB, is associated with lower than expected hip and peripheral BMD for the new weight setpoint, as well as deleterious changes in bone microarchitecture. These findings suggest that pathophysiologic processes other than mechanical unloading or secondary hyperparathyroidism contribute to bone loss after RYGB, and have important clinical implications for the long-term care of RYGB patients. © 2020 American Society for Bone and Mineral Research.  相似文献   

20.
The term renal osteodystrophy refers to changes in bone morphology induced by chronic kidney disease (CKD) and represents the skeletal component of the entity ‘chronic kidney disease – mineral and bone disorder’. Changes in turnover, mineralization, mass and microarchitecture impair bone quality, compromising strength and increasing susceptibility to fractures. Fractures are more common in CKD compared with the general population and result in increased morbidity and mortality. Screening for fracture risk and management of renal osteodystrophy are hindered by the complex, and still only partially understood, pathophysiology and the inadequacy of currently available diagnostic methods. Bone densitometry and bone turnover markers, although potentially helpful, have significant limitations in patients with CKD, and the ‘gold standard’ test of bone biopsy is infrequently performed in routine clinical practice. However, recent advances in high‐resolution bone microarchitecture imaging may offer greater potential for quantification and assessment of bone structure and strength and, when used in conjunction with serum biomarkers, may allow non‐invasive testing for a diagnostic virtual bone biopsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号