首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
To assess the impact of hybrid iterative reconstruction (IR) and novel model-based iterative reconstruction (IMR) and dose reduction on prosthetic heart valve (PHV) related artifacts and objective image quality. One transcatheter and two mechanical PHVs were embedded in diluted contrast-gel, inserted in an anthropomorphic phantom and imaged stationary with retrospectively ECG-gated computed tomography. Eight acquisitions were obtained of each PHV at 120 kV, 600 mAs (routine), 300 and 150 mAs (reduced dose). Data were reconstructed with filtered back projection (FBP), IR and IMR. Hypodense and hyperdense artifact volumes were quantified using two threshold filters. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were calculated. Artifact volumes differed significantly between reconstruction algorithms for all PHVs (P < 0.005). Compared to FBP, IR decreased overall hypodense and hyperdense artifact volumes; at 150 mAs by 53 and 20 % (IR) and 67 and 23 % (IMR), respectively and significantly increased SNR and CNR at all doses (P < 0.012). Even at reduced dose, IMR resulted in higher image quality than routine dose FBP and IR. Iterative reconstruction and particularly IMR significantly reduce PHV-related artifacts and improve objective image quality in non-pulsatile conditions, even in reduced-dose images. Also, this study suggests that IMR allows for more radiation dose reduction in comparison to hybrid IR while maintaining high image quality.  相似文献   

2.
目的 探讨全模型迭代重建(IMR)算法评价125I粒子植入术后图像的应用价值。方法 收集接受125I粒子植入术及术后CT随访的16例腹部肿瘤患者,对扫描原始数据分别以滤波反投影法(FBP)、IMR和高级重建迭代(iDose4)算法进行重建,比较3种重建方法图像的噪声、伪影指数(AI)、CNR和主观评分。结果 FBP重建图像的噪声、CNR及AI分别为(58.65±4.03) HU、1.09±0.43和51.60±9.23,iDose4图像分别为(48.38±5.34) HU、1.29±0.48和43.77±4.91,IMR图像分别为(41.46±3.44) HU、1.58±0.56和38.51±4.64,3种重建方法图像的噪声、CNR及AI两两比较差异均有统计学意义(P均<0.05)。IMR图像的主观图像质量评分显著高于FBP和iDose4算法图像(调整后P<0.001,P=0.011)。结论 IMR算法获得的图像质量较高,可有效减少125I粒子伪影,为125I粒子植入术后随访与疗效评估提供了更佳方法。  相似文献   

3.
To compare coronary plaque size and composition as well as degree of coronary artery stenosis on coronary Computed Tomography angiography (CCTA) using three levels of iterative reconstruction (IR) with standard filtered back projection (FBP). In 63 consecutive patients with a clinical indication for CCTA 55 coronary plaques were analysed. Raw data were reconstructed using standard FBP and levels 2, 4 and 6 of a commercially available IR algorithm (iDose4). CT attenuation and noise were measured in the aorta and two coronary arteries. Both signal-to-noise-ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. The amount of lipid, fibrous and calcified plaque components and mean cross-sectional luminal area were analysed using dedicated software. Image noise was reduced by 41.6 % (p < 0.0001) and SNR and CNR in the aorta were improved by 73.4 % (p < 0.0001) and 72.9 % (p < 0.0001) at IR level 6, respectively. IR improved objective image quality measures more in the aorta than in the coronary arteries. Furthermore, IR had no significant effect on measurements of plaque volume and cross-sectional luminal area. The application of IR significantly improves objective image quality, and does not alter quantitative analysis of coronary plaque volume, composition and luminal area.  相似文献   

4.
We evaluated the feasibility of sub-millisievert (mSv) coronary CT angiography (CCTA) using low tube voltage, prospective ECG gating, and a knowledge-based iterative model reconstruction algorithm. Twenty-four non-obese healthy subjects (M:F 13:11; mean age 50.2 ± 7.8 years) were enrolled. Three sets of CT images were reconstructed using three different reconstruction methods: filtered back projection (FBP), iterative reconstruction (IR), and knowledge-based iterative model reconstruction (IMR). The scanning parameters were as follows: step-and-shoot axial scanning, 80 kVp, and 200 mAs. On the three sets of CT images, the attenuation and image noise values were measured at the aortic root. The signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) were calculated at the proximal right coronary artery and the left main coronary artery. The qualitative image quality of the CCTA with IMR was assessed using a 4-point grading scale (grade 1, poor; grade 4, excellent). The mean radiation dose of the CCTA was 0.89 ± 0.09 mSv. The attenuation values with IMR were not different from those of other reconstruction methods. The image noise with IMR was significantly lower than with IR and FBP. Compared to FBP, the noise reduction rate of IMR was 69 %. The SNR and CNR of CCTA with IMR were significantly higher than with FBP or IR. On the qualitative analysis with IMR, all included segments were diagnostic (grades 2, 3, and 4), and the mean image quality score was 3.6 ± 0.6. In conclusion, CCTA with low tube voltage, prospective ECG gating, and an IMR algorithm might be a feasible method that allows for sub-millisievert radiation doses and good image quality when used with non-obese subjects.  相似文献   

5.
目的 探讨不同迭代重建技术在超低剂量肺动脉成像中的应用价值。方法 对30例临床疑似肺动脉栓塞患者行CT肺动脉成像,扫描采用80 kV管电压并开启自动管电流调制技术,分别采用滤波反投影法(FBP)、iDOSE4、迭代模型重建(IMR)重建图像。采用5分制评价肺动脉主干及其分支的图像质量,测量计算图像噪声值、SNR、CNR,记录CT容积剂量指数(CTDIvol)、剂量长度乘积(DLP)、计算有效剂量(ED)。比较不同重建技术图像噪声、SNR、CNR及主观图像质量。结果 30例患者的平均体质量指数(BMI)为(25.12±2.48)kg/m2;平均CTDIvol为(0.78±0.28)mGy;平均DLP为(30.46±11.34)mGy·cm,平均ED为(0.43±0.16)mSv。IMR、iDOSE4、FBP图像噪声依次增高(P<0.05),SNR、CNR依次降低(P<0.05),CT值差异无统计学意义(P>0.05)。IMR、iDOSE4图像的主观评分显著高于FBP(P<0.05);IMR、iDOSE4图像可诊断率高于FBP(P<0.05),IMR图像优良率高于iDOSE4(P<0.05)。结论 采用80 kV联合IMR可保证肺动脉成像较高的图像质量,同时大大降低患者辐射剂量。  相似文献   

6.
The purpose of this study is to compare CT images of the pancreas reconstructed with model-based iterative reconstruction (MBIR), adaptive statistical iterative reconstruction (ASiR), and filtered back projection (FBP) techniques for image quality and pancreatic duct (PD) depiction. Data from 40 patients with contrast-enhanced abdominal CT [CTDIvol: 10.3 ± 3.0 (mGy)] during the late arterial phase were reconstructed with FBP, 40% ASiR–FBP blending, and MBIR. Two radiologists assessed the depiction of the main PD, image noise, and overall image quality using 5-point scale independently. Objective CT value and noise were measured in the pancreatic parenchyma, and the contrast-to-noise ratio (CNR) of the PD was calculated. The Friedman test and post-hoc multiple comparisons with Bonferroni test following one-way ANOVA were used for qualitative and quantitative assessment, respectively. For the subjective assessment, scores for MBIR were significantly higher than those for FBP and 40% ASiR (all P < 0.001). No significant differences in CT values of the pancreatic parenchyma were noted among FBP, 40% ASiR, and MBIR images (P > 0.05). Objective image noise was significantly lower and CNR of the PD was higher with MBIR than with FBP and 40% ASiR (all P < 0.05). Our results suggest that pancreatic CT images reconstructed with MBIR have lower image noise, better image quality, and higher conspicuity and CNR of the PD compared with FBP and ASiR.  相似文献   

7.
We evaluated the image quality and diagnostic performance of late iodine enhancement computed tomography (LIE-CT) with knowledge-based iterative model reconstruction (IMR) for the detection of myocardial infarction (MI) in comparison with late gadolinium enhancement magnetic resonance imaging (LGE-MRI). The study investigated 35 patients who underwent a comprehensive cardiac CT protocol and LGE-MRI for the assessment of coronary artery disease. The CT protocol consisted of stress dynamic myocardial CT perfusion, coronary CT angiography (CTA) and LIE-CT using 256-slice CT. LIE-CT scans were acquired 5 min after CTA without additional contrast medium and reconstructed with filtered back projection (FBP), a hybrid iterative reconstruction (HIR), and IMR. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed. Sensitivity and specificity of LIE-CT for detecting MI were assessed according to the 16-segment model. Image quality scores, and diagnostic performance were compared among LIE-CT with FBP, HIR and IMR. Among the 35 patients, 139 of 560 segments showed MI in LGE-MRI. On LIE-CT with FBP, HIR, and IMR, the median SNRs were 2.1, 2.9, and 6.1; and the median CNRs were 1.7, 2.2, and 4.7, respectively. Sensitivity and specificity were 56 and 93% for FBP, 62 and 91% for HIR, and 80 and 91% for IMR. LIE-CT with IMR showed the highest image quality and sensitivity (p?<?0.05). The use of IMR enables significant improvement of image quality and diagnostic performance of LIE-CT for detecting MI in comparison with FBP and HIR.  相似文献   

8.
Iterative reconstruction techniques for coronary CT angiography have been introduced as an alternative for traditional filter back projection (FBP) to reduce image noise, allowing improved image quality and a potential for dose reduction. However, the impact of iterative reconstruction on the coronary artery calcium score is not fully known. In 112 consecutive stable patients with suspected coronary artery disease, the coronary calcium scores were assessed. Comparisons were made between the Agatston, volume and mass scores obtained with traditional FBP, and by using adaptive statistical iterative reconstruction (ASIR). A significant reduction of the Agatston score, volume score and mass score was observed for ASIR when compared to FBP, with median differences of resp. 26, 5 mm3 and 1 mg. Using the ASIR reconstruction, the number of patients with a calcium score of zero increased by 13 %. Iterative CT reconstruction significantly reduces the Agatston, volume and mass scores. Since the calcium score is used as a prognostic tool for coronary artery disease, caution must be taken when using iterative reconstruction.  相似文献   

9.
目的 探讨低剂量扫描联合迭代模型重建技术在胸部CT双期增强检查中的可行性。方法 130例拟诊为肺部占位的患者接受胸部双期增强扫描,随机分为A组和B组,每组65例。A组扫描采用管电压100 kV,自动管电流调制技术,图像质量指数10;B组管电压80 kV,自动管电流调制技术,图像质量指数8。A组图像采用混合迭代重建技术(iDose4)重建,B组图像采用迭代模型重建技术(IMR)重建。比较两组图像肺动脉(PA)期及支气管动脉(BA)期的客观图像质量、主观图像质量和血管显示优良率并计算辐射剂量。结果 A组有效辐射剂量为(3.30±0.89)mSv,B组为(1.27±0.19)mSv,B组较A组下降61.52%(P<0.001)。PA期和BA期,B组图像噪声显著低于A组,CNR显著高于A组(P均<0.001);两组肺窗和纵隔窗主观图像质量均达到较高评分,双期血管显示优良率均较高,差异无统计学意义(P均>0.05)。结论 采用迭代模型重建技术,低剂量胸部双期增强扫描可在较常规剂量降低61.52%的条件下,保证图像质量并满足诊断要求。  相似文献   

10.

Purpose

To compare radiologists’ diagnostic performance and confidence, and subjective image quality between filtered back projection (FBP) and iterative reconstruction (IR) at 2-mSv appendiceal CT.

Methods

The institutional review board approved this retrospective study and waived the requirement for informed consent. We included 107 adolescents and young adults (age, 29.8 ± 8.5 years; 64 females) undergoing 2-mSv CT for suspected appendicitis. Appendicitis was pathologically confirmed in 42 patients. Seven readers with different experience levels independently reviewed the CT images reconstructed using FBP and IR (iDose4, Philips). They rated both the likelihood of appendicitis and subjective image quality on 5-point Likert scales. Diagnostic confidence was assessed using the likelihood of appendicitis, proportion of indeterminate interpretations, and 3-point normal appendix visualization score. We used receiver operating characteristic analyses, Wilcoxon’s signed-rank tests, and McNemar’s tests.

Results

The pooled area under the receiver operating characteristic curve (AUC) was 0.96 for both FBP and IR (95% CI for the difference, ?0.02, 0.02; P = 0.73). The AUC difference was not significant in any of the individual readers (P ≥ 0.21). For the majority of the readers, the diagnostic confidence was not significantly different between the two reconstruction methods. Subjective image quality tended to be higher with IR for all readers (P ≤ 0.70), showing significant differences for four readers (P ≤ 0.040).

Conclusion

When diagnosing appendicitis at 2-mSv CT in adolescents and young adults, FBP and IR were comparable in radiologists’ diagnostic performance and confidence while IR exhibited higher subjective image quality than FBP.
  相似文献   

11.
To compare the image quality of coronary CT angiography (CTA) studies between standard filtered back projection (FBP) and adaptive iterative dose reduction in three-dimensions (AIDR3D) reconstruction using CT noise additional software to simulate reduced radiation exposure. Images from 93 consecutive clinical coronary CTA studies were processed utilizing standard FBP, FBP with 50 % simulated dose reduction (FBP50 %), and AIDR3D with simulated 50 % dose reduction (AIDR50 %). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured within 5 regions-of-interest, and image quality for each reconstruction strategy was assessed by two independent readers using a 4-point scale. Compared to FBP, the SNR measured from the AIDR50 % images was similar or higher (airway: 38.3 ± 12.7 vs. 38.5 ± 14.5, p = 0.81, fat: 5.5 ± 1.9 vs. 5.4 ± 2.0, p = 0.20, muscle: 3.2 ± 1.2 vs. 3.1 ± 1.3, p = 0.38, aorta: 22.6 ± 9.4 vs. 20.2 ± 9.7, p < 0.0001, liver: 2.7 ± 1.0 vs. 2.3 ± 1.1, p < 0.0001), while the SNR of the FBP50 % images were all lower (p values < 0.0001). The CNR measured from AIDR50 % images was also higher than that from the FBP images for the aorta relative to muscle (20.5 ± 9.0 vs. 18.3 ± 9.2, p < 0.0001). The interobserver agreement in the image quality score was excellent (κ = 0.82). The quality score was significantly higher for the AIDR50 % images compared to the FBP images (3.6 ± 0.6 vs. 3.3 ± 0.7, p = 0.004). Simulated radiation dose reduction applied to clinical coronary CTA images suggests that a 50 % reduction in radiation dose can be achieved with adaptive iterative dose reduction software with image quality that is at least comparable to images acquired at standard radiation exposure and reconstructed with filtered back projection.  相似文献   

12.
To assess the image quality of coronary CT angiography (CCTA) of 640-slice CT reconstructed by Adaptive Iterative Dose Reduction (AIDR) three-dimensional (3D) in comparison with the conventional filtered back-projection (FBP). CCTA images of 51 patients were scanned at the lowest tube voltage possible on condition that the built-in automatic exposure control system could suggest the optimal tube current. They were, then, reconstructed with FBP and AIDR 3D (standard). Objective measurements including CT density, noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were performed. Subjective assessment was done by two radiologists, using a 5-point scale (0:nondiagnostic-4:excellent) based on the 15-coronary segment model which was grouped into three parts as the proximal, mid, and distal segmental classes. Radiation dose was also measured. AIDR images showed lower noise than FBP images (45.0 ± 9.4 vs. 73.4 ± 14.6 HU, p < 0.001) without any significant difference in CT density (665.5 ± 131.7 vs. 668 ± 136.3 HU, p = 0.8). Both SNR (15.0 ± 2.1 vs. 9.2 ± 1.7) and CNR (16.8 ± 2.3 vs. 10.4 ± 1.8) were significantly higher for AIDR than FBP (p < 0.001). Total subjective image quality score was also significantly improved in AIDR compared with FBP (3.1 ± 0.6 vs. 1.6 ± 0.4, p < 0.001), with better interpretability of the mid and distal segmental classes (100 vs. 95 % for the mid, p < 0.001; 100 vs. 90 % for the distal, p < 0.001). Mean effective radiation dose was 2.0 ± 1.0 mSv. The AIDR 3D reconstruction algorithm reduced image noise by 39 % compared with the FBP without affecting CT density, thus improving SNR and CNR for CCTA. Its advantages in interpretability were also confirmed by subjective evaluation by experts.  相似文献   

13.
Multidetector-row CT is promising for prosthetic heart valve (PHV) assessment but retrospectively ECG-gated scanning has a considerable radiation dose. Recently introduced iterative reconstruction (IR) algorithms may enable radiation dose reduction with retained image quality. Furthermore, PHV image quality on the CT scan mainly depends on extent of PHV artifacts. IR may decrease streak artifacts. We compared image noise and artifact volumes in scans of mechanical PHVs reconstructed with conventional filtered back projection (FBP) to lower dose scans reconstructed with IR. Four different PHVs (St. Jude, Carbomedics, ON-X and Medtronic Hall) were scanned in a pulsatile in vitro model. Ten retrospectively ECG-gated CT scans were performed of each PHV at 120 kV, 600 mAs (high-dose CTDIvol 35.3 mGy) and 120 kV, 300 mAs (low-dose CTDIvol 17.7 mGy) on a 64 detector-row scanner. Diastolic and systolic images were reconstructed with FBP (high and low-dose) and the IR algorithm (low-dose only). Hypo- and hyperdense artifact volumes were determined using two threshold filters. Image noise was measured. Mean hypo- and hyperdense artifact volumes (mm3) were 1,235/5,346 (high-dose FBP); 2,405/6,877 (low-dose FBP) and 1,218/5,333 (low-dose IR). Low-dose IR reconstructions had similar image noise compared to high-dose FBP (16.5 ± 1.7 vs. 16.3 ± 1.6, mean ± SD, respectively, P = 1.0). IR allows ECG-gated PHV imaging with similar image noise and PHV artifacts at 50% less dose compared to conventional FBP in an pulsatile in vitro model.  相似文献   

14.
To retrospectively evaluate the image quality of CT angiography (CTA) reconstructed by model-based iterative reconstruction (MBIR) and to compare this with images obtained by filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR) in newborns and infants with congenital heart disease (CHD). Thirty-seven children (age 4.8 ± 3.7 months; weight 4.79 ± 0.47 kg) with suspected CHD underwent CTA on a 64detector MDCT without ECG gating (80 kVp, 40 mA using tube current modulation). Total dose length product was recorded in all patients. Images were reconstructed using FBP, ASIR, and MBIR. Objective image qualities (density, noise) were measured in the great vessels and heart chambers. The contrast-to-noise ratio (CNR) was calculated by measuring the density and noise of myocardial walls. Two radiologists evaluated images for subjective noise, diagnostic confidence, and sharpness at the level prior to the first branch of the main pulmonary artery. Images were compared with respect to reconstruction method, and reconstruction times were measured. Images from all patients were diagnostic, and the effective dose was 0.22 mSv. The objective image noise of MBIR was significantly lower than those of FBP and ASIR in the great vessels and heart chambers (P < 0.05); however, with respect to attenuations in the four chambers, ascending aorta, descending aorta, and pulmonary trunk, no statistically significant difference was observed among the three methods (P > 0.05). Mean CNR values were 8.73 for FBP, 14.54 for ASIR, and 22.95 for MBIR. In addition, the subjective image noise of MBIR was significantly lower than those of the others (P < 0.01). Furthermore, while FBP had the highest score for image sharpness, ASIR had the highest score for diagnostic confidence (P < 0.05), and mean reconstruction times were 5.1 ± 2.3 s for FBP and ASIR and 15.1 ± 2.4 min for MBIR. While CTA with MBIR in newborns and infants with CHD can reduce image noise and improve CNR more than other methods, it is more time-consuming than the other methods.  相似文献   

15.
目的 探讨低管电流联合迭代重建算法对仿真胸部体模T12骨密度(BMD)的准确性和胸部图像质量的影响。方法 选用成年男性胸部体模,管电压120 kV,管电流分别为20、30、40、50、60 mAs,联合滤波反投影算法(FBP)、混合迭代重建技术(iDose4,Level 4)及迭代模型重建(IMR,Level 2)行胸部扫描。比较采用不同管电流和重建技术时胸部体模T12的BMD及客观评价结果;比较管电流20 mAs、采用IMR算法与管电流60 mAs、采用FBP迭代算法的纵隔窗和肺窗图像质量的主观评分,并评价观察者间的一致性。结果 管电流、重建技术不同时,胸部体模T12的BMD和CT值差异均无统计学意义(P均>0.05),而SD值差异有统计学意义(P均<0.001)。相同管电流下,采用IMR算法获得的SD值明显低于iDose4和FBP(P均<0.001)。管电流60 mAs、采用FBP算法时,2名观察者观察纵隔窗的一致性较好(Kappa=1,P<0.001),观察肺窗的一致性中等(Kappa=0.64,P=0.002);管电流20 mAs、采用IMR时,2名观察者观察纵隔窗的一致性中等(Kappa=0.64,P=0.002),观察肺窗的一致性较好(Kappa=1,P<0.001)。结论 低管电流联合迭代重建算法可降低辐射剂量,同时满足骨密度测值的准确性及胸部图像诊断。  相似文献   

16.
迭代重建在双源CT冠状动脉成像中的应用   总被引:1,自引:4,他引:1  
目的与滤过反投影法(FBP)对比,评价迭代重建(IR)在双源CT(DSCT)冠状动脉成像中对图像质量的影响。方法对57例患者进行DSCT冠状动脉成像检查,分别采用常规FBP法和IR法对最佳期相图像进行重建。对图像质量进行主观评价,测量两种重建方法所得冠状动脉图像的CT值、噪声、SNR及CNR。结果 57例患者冠状动脉图像质量评分中,IR图像质量为优的血管段比例为83.18%(628/755),高于FBP重建图像(595/755,78.81%,P=0.030)。FBP重建与IR图像强化水平(CT值)分别为(311.49±63.76)HU、(310.57±64.45)HU(P=0.280),图像噪声分别为(19.58±3.47)HU、(13.11±3.06)HU(P<0.001),SNR分别为16.27±3.89、24.48±5.73(P<0.001),CNR分别为20.63±4.24、30.84±7.24(P<0.001)。结论 DSCT冠状动脉成像中应用IR法可在保证冠状动脉腔内强化程度不变的同时明显降低图像噪声,改善图像质量。  相似文献   

17.
The objective of this study was to evaluate the influence of iterative reconstruction on coronary calcium scores (CCS) at different heart rates for four state-of-the-art CT systems. Within an anthropomorphic chest phantom, artificial coronary arteries were translated in a water-filled compartment. The arteries contained three different calcifications with low (38 mg), medium (80 mg) and high (157 mg) mass. Linear velocities were applied, corresponding to heart rates of 0, <?60, 60–75 and >?75 bpm. Data were acquired on four state-of-the-art CT systems (CT1–CT4) with routinely used CCS protocols. Filtered back projection (FBP) and three increasing levels of iterative reconstruction (L1–L3) were used for reconstruction. CCS were quantified as Agatston score and mass score. An iterative reconstruction susceptibility (IRS) index was used to assess susceptibility of Agatston score (IRSAS) and mass score (IRSMS) to iterative reconstruction. IRS values were compared between CT systems and between calcification masses. For each heart rate, differences in CCS of iterative reconstructed images were evaluated with CCS of FBP images as reference, and indicated as small (<?5%), medium (5–10%) or large (>?10%). Statistical analysis was performed with repeated measures ANOVA tests. While subtle differences were found for Agatston scores of low mass calcification, medium and high mass calcifications showed increased CCS up to 77% with increasing heart rates. IRSAS of CT1–T4 were 17, 41, 130 and 22% higher than IRSMS. Not only were IRS significantly different between all CT systems, but also between calcification masses. Up to a fourfold increase in IRS was found for the low mass calcification in comparison with the high mass calcification. With increasing iterative reconstruction strength, maximum decreases of 21 and 13% for Agatston and mass score were found. In total, 21 large differences between Agatston scores from FBP and iterative reconstruction were found, while only five large differences were found between FBP and iterative reconstruction mass scores. Iterative reconstruction results in reduced CCS. The effect of iterative reconstruction on CCS is more prominent with low-density calcifications, high heart rates and increasing iterative reconstruction strength.  相似文献   

18.
高级迭代重建算法降低腹部CT剂量的潜能:体模研究   总被引:2,自引:1,他引:1  
目的 探讨将高级迭代重建算法[基于模型的迭代重建(MBIR)技术和自适应统计迭代重建(ASiR)]技术用于降低腹部CT扫描剂量的可行性.方法 应用宝石能谱CT(Discovery CT750 HD)以不同管电流(400、350、300、250、200、180、160、140、120、100、80、60、50、40、30、20、10 mA)对Fluke Biomedical RANDO标准男性模体进行扫描,管电压为均120kV,X线球管旋转时间0.60s,螺距0.984,层厚5 mm,层间距5 mm,矩阵512×512,DFOV 35 cm.记录不同管电流扫描条件下的CT容积剂量指数(CTDIvol)和剂量长度乘积(DLP).分别用滤过反投影重建(FBP)、50%自适应迭代重建算法(50%ASiR)及模型基础的迭代重建技术(MBIR)进行图像重建,重建层厚均为0.625 mm.测量三种重建模式下图像的平均CT值、噪声及对比噪声比(CNR,腰椎与软组织的对比).结果 相同管电流条件下三种重建模式的噪声、CNR差异均有统计学意义(P均<0.05).不同管电流(400~10 mA)条件下,50%ASiR及MBIR重建算法(相对于FBP算法)使噪声分别减少(27.86%~31.46%)及(45.36%~86.37%),SNR分别提高(28.68%~31.08%)及(46.43%~84.38%).图像能够符合诊断要求的最小管电流分别为FBP:200 mA、50% ASiR:140 mA及MBIR:80 mA.在图像质量类似的情况下,MBIR及50% ASiR模式分别可减少59.91%及35.94%剂量.三种重建模式CT值差异均无统计学意义(P均>0.05).结论 高级重建算法能够减少图像噪声及提高图像CNR,同时具有减少腹部CT扫描剂量的潜能;相对于FBP,MBIR重建算法能够减少约60%的扫描剂量.  相似文献   

19.
目的 探讨应用模型基础的迭代重建(MBIR)算法优化腹部CT静脉成像(CTV)图像质量的价值.方法 应用自动管电流调节技术对27例可疑腹部病变患者行腹部CT扫描,分别采用滤波反投影技术(FBP组)、50%自适应统计迭代重建(ASiR组)和MBIR(MBIR组)3种算法对原始数据进行重建;测量背部肌肉、背部脂肪、肝实质、胰腺实质、脾实质的噪声及CT值,计算门静脉、胰静脉、脾静脉及下腔静脉的CNR;采用5分制对图像质量进行评分.采用方差分析和秩和检验对数据进行统计学分析.结果 3组图像CT值的差异无统计学意义(P均>0.05).MBIR组图像噪声低于ASiR组(P<0.001),而二者均低于FBP组(P均<0.05);与FBP组图像相比,ASiR组和MBIR组图像噪声分别降低28.61%和53.53%,CNR分别增加40.92%和158.85%.MBIR组、ASiR组和FBP组的主观评分分别为(4.64±0.31)分、(3.74±0.54)分及(3.22±0.60)分,差异有统计学意义(P=0.008).结论 MBIR重建算法可以明显提高腹部CTV图像质量,并具有降低腹部CTV辐射剂量的潜能.  相似文献   

20.
目的 探讨当iCT管电流设置为17 mAs时,其他参数设置对低剂量胸部CT扫描图像质量及辐射剂量的影响。方法 选取低剂量胸部CT筛查的200名志愿者,设定管电流为17 mAs,根据管电压及自动曝光控制(DoseRight)设置分为4组:A组为120 kV,DoseRight扫描;B组为100 kV,DoseRight扫描;C组为120 kV,固定管电流扫描;D组为100 kV,固定管电流扫描。对所有扫描图像分别采用混合迭代重建(iDose4)和全模型迭代重建(IMR)进行肺窗及纵隔窗算法重建。比较4组的有效剂量及图像质量。结果 4组肺窗、纵隔窗的iDose4、IMR重建图像质量评分及有效剂量差异均有统计学意义;A、B组图像质量均较C组图像质量好(P均<0.05),与其余3组比较D组图像质量最差(P均<0.05);C组纵隔窗及D组肺窗、纵隔窗的iDose4重建图像质量评分较低;A、B、C、D组SNR值依次降低(P均<0.01);A组有效剂量最高(P均<0.01),D组有效剂量最低(P均<0.01),B组和C组间有效剂量差异无统计学意义(P=0.055)。结论 iCT管电流为17 mAs时,采用100 kV管电压、DoseRight扫描及IMR重建方式可获得较满意的图像质量和较低的辐射剂量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号