首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass of the preimplantation blastocyst. These cells can be maintained in culture in an undifferentiated state, or they can be induced to differentiate in vitro into multiple cell types, including spontaneously beating cardiac myocytes. The ability to engineer these ES cells genetically, together with their noted rapid differentiation into cardiac myocytes in vitro, makes this a useful tool for the study of cardiac gene expression and function. This in vitro cardiogenesis system may be particularly advantageous for pharmacological studies focusing on discovery of cardioactive drugs and for specifying the functional alterations associated with ablated or mutated cardiac genes that result in a lethal phenotype in vivo. (Trends Cardiovasc Med 1997;7:63-68). ? 1997, Elsevier Science Inc.  相似文献   

2.
Cardiac and skeletal muscle development in P19 embryonal carcinoma cells   总被引:7,自引:0,他引:7  
Mouse P19 embryonal carcinoma cells are pluripotent stem cells that can be maintained in culture in an undifferentiated state or can be induced to differentiate in vitro into multiple cell types. P19 cells aggregated in the presence of dimethylsulfoxide differentiate into spontaneously beating cardiomyocytes and bipolar skeletal myocytes that exhibit the biochemical and physiologic properties of their embryonic equivalents. P19 cells can be readily manipulated genetically, resulting in the loss or over-expression of a gene of interest. Because of this versatility, the P19 system is suited for examining the molecular mechanisms controlling the developmental decisions of stem cells differentiating into the skeletal or cardiac muscle lineage.  相似文献   

3.
OBJECTIVE: Murine P19 embryonal carcinoma (EC) cells can differentiate into spontaneously beating cardiomyocytes in vitro and have revealed important insight into the early molecular processes of cardiomyocyte differentiation. We assessed the suitability of the P19 cell model for studying cardiac ion channel regulation at the molecular and functional level. METHODS: P19 cells were induced to differentiate towards cardiomyocytes. mRNAs for cardiac markers and ion channels were determined by RT-PCR at six timepoints during the differentiation process. Action potentials and individual ion currents were measured by whole cell patch clamp. RESULTS: Ion channel mRNA expression of several channels is temporally regulated during differentiation, while others show little or no regulation. L-type calcium and transient outward channels are expressed from very early on, while sodium and delayed and inward rectifier channels are upregulated at somewhat later stages during differentiation, which mirrors the in vivo murine cardiomyocyte differentiation during embryogenesis. Spontaneous cardiomyocyte action potentials exhibit a low upstroke velocity, which often can be enhanced by hyperpolarizing the cells, hence activating thusfar dormant ion channels to contribute to the action potential upstroke. Action potential duration decreases considerably during the differentiation of spontaneously beating cells. In late stages, non-beating myocytes can be found which only generate action potentials upon electrical stimulation. Their shape is comparable to neonatal/juvenile ventricular mouse myocytes in culture. Finally, we show that P19-derived cardiomyocytes display a very complete set of functional ion channels. CONCLUSION: P19 cells represent a powerful model to study the regulation of myocardial electrophysiological differentiation at the molecular and functional level.  相似文献   

4.
In adult myocardium, the heartbeat originates from the sequential activation of ionic currents in pacemaker cells of the sinoatrial node. Ca(2+) release via the ryanodine receptor (RyR) modulates the rate at which these cells beat. In contrast, the mechanisms that regulate heart rate during early cardiac development are poorly understood. Embryonic stem (ES) cells can differentiate into spontaneously contracting myocytes whose beating rate increases with differentiation time. These cells thus offer an opportunity to determine the mechanisms that regulate heart rate during development. Here we show that the increase in heart rate with differentiation is markedly depressed in ES cell-derived cardiomyocytes with a functional knockout (KO) of the cardiac ryanodine receptor (RyR2). KO myocytes show a slowing of the rate of spontaneous diastolic depolarization and an absence of calcium sparks. The depressed rate of pacemaker potential can be mimicked in wild-type myocytes by ryanodine, and rescued in KO myocytes with herpes simplex virus (HSV)-1 amplicons containing full-length RyR2. We conclude that a functional RyR2 is crucial to the progressive increase in heart rate during differentiation of ES cell-derived cardiomyocytes, consistent with a mechanism that couples Ca(2+) release via RyR before an action potential with activation of an inward current that accelerates membrane depolarization.  相似文献   

5.
干细胞抗原1(Sca-1)是干细胞的一种重要表面标记物,体内许多干细胞都表达Sca-1。同样,心肌干细胞也表达Sca-1。目前研究发现,Sca-1+心肌干细胞能够分化为心肌细胞,对心肌梗死后心室重构与心肌再生具有明显作用,能够促进心脏的修复。因此,Sca-1+心肌干细胞有可能使心肌梗死的临床治疗取得实质性的进展。现综述了Sca-1+心肌干细胞的来源、分化、作用等方面。  相似文献   

6.
It is generally believed that increase in adult contractile cardiac mass can be accomplished only by hypertrophy of existing myocytes. Documentation of myocardial regeneration in acute stress has challenged this dogma and led to the proposition that myocyte renewal is fundamental to cardiac homeostasis. Here we report that in human aortic stenosis, increased cardiac mass results from a combination of myocyte hypertrophy and hyperplasia. Intense new myocyte formation results from the differentiation of stem-like cells committed to the myocyte lineage. These cells express stem cell markers and telomerase. Their number increased >13-fold in aortic stenosis. The finding of cell clusters with stem cells making the transition to cardiogenic and myocyte precursors, as well as very primitive myocytes that turn into terminally differentiated myocytes, provides a link between cardiac stem cells and myocyte differentiation. Growth and differentiation of these primitive cells was markedly enhanced in hypertrophy, consistent with activation of a restricted number of stem cells that, through symmetrical cell division, generate asynchronously differentiating progeny. These clusters strongly support the existence of cardiac stem cells that amplify and commit to the myocyte lineage in response to increased workload. Their presence is consistent with the notion that myocyte hyperplasia significantly contributes to cardiac hypertrophy and accounts for the subpopulation of cycling myocytes.  相似文献   

7.
In vitro human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes (CMs). Protocols for cardiac differentiation of hESCs and hiPSCs include formation of the three-dimensional cell aggregates called embryoid bodies (EBs). The traditional suspension method for EB formation from clumps of cells results in an EB population heterogeneous in size and shape. In this study we show that forced aggregation of a defined number of single cells on AggreWell plates gives a high number of homogeneous EBs that can be efficiently differentiated into functional CMs by application of defined growth factors in the media. For cardiac differentiation, we used three hESC lines and one hiPSC line. Our contracting EBs and the resulting CMs express cardiac markers, namely myosin heavy chain α and β, cardiac ryanodine receptor/calcium release channel, and cardiac troponin T, shown by real-time polymerase chain reaction and immunocytochemistry. Using Ca2+ imaging and atomic force microscopy, we demonstrate the functionality of RyR2 to release Ca2+ from the sarcoplasmic reticulum as well as reliability in contractile and beating properties of hESC-EBs and hiPSC-EBs upon the stimulation or inhibition of the β-adrenergic pathway.  相似文献   

8.
Despite the advances in cardiovascular treatment, cardiac disease remains a major cause of morbidity in all industrialized countries. The extraordinary potential of (embryonic) stem cells for therapeutic purposes has revolutionized ideas about cardiac repair of diseased cardiac muscle to exciting stages. This, in turn, has challenged research on cardiac differentiation of stem cells. For instance, cultures of mouse embryonic stem cells quite easily differentiate into the cardiogenic lineage, as assessed by their potential to beat spontaneously. However, repair of impaired cardiac muscle by spontaneously beating cardiac muscle cells might impose severe risks upon a human patient. Therefore, it is of crucial importance to understand the mechanisms that underlie the development of the distinct cardiac muscle cell types of the adult mammalian heart. In this review we tried to relate cardiac morphogenesis to the development of unique molecular phenotypes of cardiomyocytes. This relationship will provide a framework to assess the significance of the molecular phenotypes that are observed in embryonic stem cell-derived cardiomyocytes (ESDCs). Although for the phenotyping of ESDCs a comparison should be made with the phenotypes of the developing heart, so far none of the currently available markers allow unequivocal assignment of subtypes.  相似文献   

9.
Bone marrow-derived mesenchymal stem cells (BM-MSCs) can be induced to differentiate into myogenic cells. Despite their potential, previous studies have not been successful in producing a high percentage of cardiac-like cells with a muscle phenotype. We hypothesized that cardiac lineage development in BM-MSC is related to cell passage, culture milieu, and enrichment for specific cell subtypes before and during differentiation. Our study demonstrated that Lin BM-MSC at an intermediate passage (IP; P8-P12) expressed cardiac troponin T (cTnT) after 21 days in culture. Cardiac TnT expression was similar whether IP cells were differentiated in media containing 5-azacytidine + 2% FBS (AZA; 14%) or 2% FBS alone (LS; 12%) and both were significantly higher than AZA + 5% FBS. This expression was potentiated by first enriching for CD117/Sca-1 cells followed by differentiation (AZA, 39% and LS, 28%). A second sequential enrichment for the dihydropyridine receptor subunit α2δ1 (DHPR-α2) resulted in cardiac TnT expressed in 54% of cultured cells compared to 28% of cells after CD117/Sca-1+ enrichment. Cells enriched for CD117/Sca-1 and subjected to differentiation displayed spontaneous intracellular Ca2+ transients with an increase in transient frequency and a 60% decrease in the transient duration amplitude between days 14 and 29. In conclusion, IP CD117/Sca-1+ murine BM-MSCs display robust cardiac muscle lineage development that can be induced independent of AZA but is diminished under higher serum concentrations. Furthermore, temporal changes in calcium kinetics commensurate with increased cTnT expression suggest progressive maturation of a cardiac muscle lineage. Enrichment with CD117/Sca-1 to establish lineage commitment followed by DHPR-α2 in lineage developing cells may enhance the therapeutic potential of these cells for transplantation.  相似文献   

10.
Very small embryonic-like cells (VSELs) are a population of stem cells residing in the bone marrow (BM) and several organs, which undergo mobilization into peripheral blood (PB) following acute myocardial infarction and stroke. These cells express markers of pluripotent stem cells (PSCs), such as Oct-4, Nanog, and SSEA-1, as well as early cardiac, endothelial, and neural tissue developmental markers. VSELs can be effectively isolated from the BM, umbilical cord blood, and PB. Peripheral blood and BM-derived VSELs can be expanded in co-culture with C2C12 myoblast feeder layer and undergo differentiation into cells from all three germ layers, including cardiomyocytes and vascular endothelial cells. Isolation of VSLEs using fluorescence-activated cell sorting multiparameter live cell sorting system is dependent on gating strategy based on their small size and expression of PSC and absence of hematopoietic lineage markers. VSELs express early cardiac and endothelial lineages markers (GATA-4, Nkx2.5/Csx, VE-cadherin, and von Willebrand factor), SDF-1 chemokine receptor CXCR4, and undergo rapid mobilization in acute MI and ischemic stroke. Experiments in mice showed differentiation of BM-derived VSELs into cardiac myocytes and effectiveness of expanded and pre-differentiated VSLEs in improvement of left ventricular ejection fraction after myocardial infarction.  相似文献   

11.
曾彬  林国生  郑和忠  蔡军  罗浩 《心脏杂志》2006,18(4):396-399
目的探讨内脏内胚层样END-2细胞体外诱导胚胎干细胞(embryon ic stem cells,ESCs)分化为心肌细胞的特征。方法用鼠胚胎成纤维细胞(mouse embryon ic fibrob lasts,MEF)作为饲养层促进ESCs增殖并抑制其分化,先将ESCs悬浮培养形成23 d的拟胚体(embryoid bod ies,EBs),再和END-2细胞共培养诱导向心肌细胞分化。实验分4组。第1,2组EBs分别和END-2细胞或END-2细胞条件培养液共培养;第3组EBs和表面铺有一层琼脂糖的END-2细胞共培养;第4组自然分化组为对照组。相差显微镜下观察分化细胞的形态学变化,免疫细胞荧光技术检测心肌细胞特异性肌钙蛋白T(TnT)的表达;透射电镜观察分化心肌细胞的超微结构。结果各实验组均可见自发节律性收缩的拟胚体。随着培养的延长,自发节律性收缩的拟胚体数目也增加,均表达心肌细胞特异性蛋白TnT,以及观察到心肌样超微结构。在和END-2细胞直接接触的诱导条件下,分化的细胞形态较单一。结论END-2细胞通过分泌可溶性细胞因子可诱导ESCs向心肌细胞分化,直接接触在END-2细胞诱导作用中并不是必要的,但可诱导出较单一的细胞。  相似文献   

12.
Directed differentiation of embryonic stem cells indicates that mesodermal lineages in the mammalian heart (cardiac, endothelial, and smooth muscle cells) develop from a common, multipotent cardiovascular precursor. To isolate and characterize the lineage potential of a resident pool of cardiovascular progenitor cells (CPcs), we developed BAC transgenic mice in which enhanced green fluorescent protein (EGFP) is placed under control of the c-kit locus (c-kitBAC-EGFP mice). Discrete c-kit-EGFP+ cells were observed at different stages of differentiation in embryonic hearts, increasing in number to a maximum at about postnatal day (PN) 2; thereafter, EGFP+ cells declined and were rarely observed in the adult heart. EGFP+ cells purified from PN 0–5 hearts were nestin+ and expanded in culture; 67% of cells were fluorescent after 9 days. Purified cells differentiated into endothelial, cardiac, and smooth muscle cells, and differentiation could be directed by specific growth factors. CPc-derived cardiac myocytes displayed rhythmic beating and action potentials characteristic of multiple cardiac cell types, similar to ES cell-derived cardiomyocytes. Single-cell dilution studies confirmed the potential of individual CPcs to form all 3 cardiovascular lineages. In adult hearts, cryoablation resulted in c-kit-EGFP+ expression, peaking 7 days postcryolesion. Expression occurred in endothelial and smooth muscle cells in the revascularizing infarct, and in terminally differentiated cardiomyocytes in the border zone surrounding the infarct. Thus, c-kit expression marks CPc in the neonatal heart that are capable of directed differentiation in vitro; however, c-kit expression in cardiomyocytes in the adult heart after injury does not identify cardiac myogenesis.  相似文献   

13.
The ability to regenerate damaged myocardium with tissue derived from embryonic stem (ES) cells is currently undergoing extensive investigation. As a prerequisite to transplantation therapy, strategies must be developed to induce ES cells to the cardiac phenotype. Toward this end, cues from mechanisms of embryonic induction have been exploited, based on previous findings that anterior lateral endoderm (precardiac endoderm) from gastrulation-stage chick embryos potently induces cardiac myocyte differentiation in both precardiac and nonprecardiac mesoderm. Hypothesizing that avian precardiac endoderm acting as feeder/inducer cells would induce high percentage conversion of murine ES (mES) cells into cardiac myocytes, it was observed that the majority (approximately 65%) of cocultured ES cell-derived embryoid bodies (EBs) were enriched in cardiac myocytes and exhibited rhythmic contractions. By contrast, mouse EBs cultured alone, or on feeder layers of mouse embryonic fibroblasts or avian nonprecardiac posterior endoderm, contained only 7% to 16% cardiac myocytes while exhibiting a relatively low incidence (<10%) of beating. When mES cells were cocultured with a bilayer of explanted precardiac endoderm/mesoderm, the incidence of rhythmically contractile EBs increased to 100%. To verify that the rhythmically contractile cells were derived from murine ES cells, cell-free medium conditioned by avian precardiac endoderm/mesoderm was used to induce myocyte differentiation in a mES cell-line containing a nuclear LacZ reporter marker gene under control of the cardiac-specific alpha-myosin heavy chain promoter, resulting in rhythmic contractility in 92% of EBs in which the majority of cells (average=86%) were identified as cardiac myocytes. The inductive efficacy of medium conditioned by avian precardiac endoderm/mesoderm may provide an opportunity to biochemically define factors that induce cardiac myocyte differentiation in ES cells. The full text of this article is available online at http://circres.ahajournals.org.  相似文献   

14.
Neural crest stem cells can be isolated from differentiated cultures of human pluripotent stem cells, but the process is inefficient and requires cell sorting to obtain a highly enriched population. No specific method for directed differentiation of human pluripotent cells toward neural crest stem cells has yet been reported. This severely restricts the utility of these cells as a model for disease and development and for more applied purposes such as cell therapy and tissue engineering. In this report, we use small-molecule compounds in a single-step method for the efficient generation of self-renewing neural crest-like stem cells in chemically defined media. This approach is accomplished directly from human pluripotent cells without the need for coculture on feeder layers or cell sorting to obtain a highly enriched population. Critical to this approach is the activation of canonical Wnt signaling and concurrent suppression of the Activin A/Nodal pathway. Over 12-14 d, pluripotent cells are efficiently specified along the neuroectoderm lineage toward p75(+) Hnk1(+) Ap2(+) neural crest-like cells with little or no contamination by Pax6(+) neural progenitors. This cell population can be clonally amplified and maintained for >25 passages (>100 d) while retaining the capacity to differentiate into peripheral neurons, smooth muscle cells, and mesenchymal precursor cells. Neural crest-like stem cell-derived mesenchymal precursors have the capacity for differentiation into osteocytes, chondrocytes, and adipocytes. In sum, we have developed methods for the efficient generation of self-renewing neural crest stem cells that greatly enhance their potential utility in disease modeling and regenerative medicine.  相似文献   

15.
The efficient induction of cardiomyocyte differentiation from embryonic stem (ES) cells is crucial for cardiac regenerative medicine. Although Wnts play important roles in cardiac development, complex questions remain as to when, how and what types of Wnts are involved in cardiogenesis. We found that Wnt2 was strongly up-regulated during cardiomyocyte differentiation from ES cells. Therefore, we investigated when and how Wnt2 acts in cardiogenesis during ES cell differentiation. Wnt2 was strongly expressed in the early developing murine heart. We applied this embryonic Wnt2 expression pattern to ES cell differentiation, to elucidate Wnt2 function in cardiomyocyte differentiation. Wnt2 knockdown revealed that intrinsic Wnt2 was essential for efficient cardiomyocyte differentiation from ES cells. Moreover, exogenous Wnt2 increased cardiomyocyte differentiation from ES cells. Interestingly, the effects on cardiogenesis of intrinsic Wnt2 knockdown and exogenous Wnt2 addition were temporally restricted. During cardiomyocyte differentiation from ES cells, Wnt2 didn't activate canonical Wnt pathway but utilizes JNK/AP-1 pathway which is required for cardiomyocyte differentiation from ES cells. Therefore we conclude that Wnt2 plays strong positive stage-specific role in cardiogenesis through non-canonical Wnt pathway in murine ES cells.  相似文献   

16.
Cardiac myocytes have been traditionally regarded as terminally differentiated cells that adapt to increased work and compensate for disease exclusively through hypertrophy. However, in the past few years, compelling evidence has accumulated suggesting that the heart has regenerative potential. Recent studies have even surmised the existence of resident cardiac stem cells, endothelial cells generating cardiomyocytes by cell contact or extracardiac progenitors for cardiomyocytes, but these findings are still controversial. We describe the isolation of undifferentiated cells that grow as self-adherent clusters (that we have termed "cardiospheres") from subcultures of postnatal atrial or ventricular human biopsy specimens and from murine hearts. These cells are clonogenic, express stem and endothelial progenitor cell antigens/markers, and appear to have the properties of adult cardiac stem cells. They are capable of long-term self-renewal and can differentiate in vitro and after ectopic (dorsal subcutaneous connective tissue) or orthotopic (myocardial infarction) transplantation in SCID beige mouse to yield the major specialized cell types of the heart: myocytes (ie, cells demonstrating contractile activity and/or showing cardiomyocyte markers) and vascular cells (ie, cells with endothelial or smooth muscle markers).  相似文献   

17.
Ravens U 《Herz》2006,31(2):123-126
New concepts for treatment of myocardial infarction include the implantation of adult stem cells for regeneration of damaged muscle tissue. Several clinical trials have demonstrated a small, but significant improvement of ventricular function. Transdifferentiation of stem cells into cardiomyocytes, formation of new vessels and paracrine factors have been discussed as putative mechanisms for the therapeutic effect. Several types of stem cells have been used clinically including myoblasts derived from skeletal muscle satellite cells, bone marrow-derived stem cells or blood-derived mononuclear progenitor cells. In addition, multiple organs were shown to contain a small number of stem cells that could differentiate into cardiomyocytes.Embryonic stem cells differentiate into spontaneously beating cells that have varying electrophysiological properties. Their action potentials resemble those of cardiac pacemaker cell, atrial or ventricular myocytes (Figure 1) suggesting true differentiation into cardiomyocytes. Beating cells derived from a newly described population of skeletal muscle-derived cells ("skeletal precursors of cardiomyocytes" [SPOCs]) also exhibit spontaneous action potentials, however, unlike cardiac pacemaker cells, their electrical activity is suppressed with the sodium channel blocker tetrodotoxin (Figure 2). Undifferentiated bone marrow-derived mesenchymal stem cells are not electrically excitable. Nevertheless, they express functional ion channels like L-type Ca(2+) channels, albeit not in every cell. Co-culturing stem cells with neonatal rat ventricular myocytes induces good electrical contacts between cells via gap junction formation. Excitatory wave fronts spread evenly in the co-culture. By contrast, gap junctions fail to form when myoblasts are co-cultured with neonatal cardiomyocytes and reentry arrhythmias develop. This pathomechanism could serve as an explanation for the enhanced clinical risk of arrhythmia after transplantation of myoblasts into the infarcted hearts.  相似文献   

18.
We examined the myogenic response to infarction in neonatal and adult mice to determine the role of c-kit(+) cardiovascular precursor cells (CPC) that are known to be present in early heart development. Infarction of postnatal day 1-3 c-kit(BAC)-EGFP mouse hearts induced the localized expansion of (c-kit)EGFP(+) cells within the infarct, expression of the c-kit and Nkx2.5 mRNA, myogenesis, and partial regeneration of the infarction, with (c-kit)EGFP(+) cells adopting myogenic and vascular fates. Conversely, infarction of adult mice resulted in a modest induction of (c-kit)EGFP(+) cells within the infarct, which did not express Nkx2.5 or undergo myogenic differentiation, but adopted a vascular fate within the infarction, indicating a lack of authentic CPC. Explantation of infarcted neonatal and adult heart tissue to scid mice, and adoptive transfer of labeled bone marrow, confirmed the cardiac source of myogenic (neonate) and angiogenic (neonate and adult) cells. FACS-purified (c-kit)EGFP(+)/(αMHC)mCherry(-) (noncardiac) cells from microdissected infarcts within 6 h of infarction underwent cardiac differentiation, forming spontaneously beating myocytes in vitro; cre/LoxP fate mapping identified a noncardiac population of (c-kit)EGFP(+) myocytes within infarctions, indicating that the induction of undifferentiated precursors contributes to localized myogenesis. Thus, adult postinfarct myogenic failure is likely not due to a context-dependent restriction of precursor differentiation, and c-kit induction following injury of the adult heart does not define precursor status.  相似文献   

19.
The increase of adipose tissue mass associated with obesity is due in part to an increase in the number of adipocytes. This hyperplasia results from recruitment of pluripotent stem cells present in the vascular stroma of adipose tissue. A model cell culture system has been developed that recapitulates this process both ex vivo and in vivo. After treatment of pluripotent C3H10T1/2 stem cells with bone morphogenic protein 4 (BMP4) during proliferation followed by differentiation inducers at growth arrest, the cells synchronously enter S phase and undergo mitotic clonal expansion, a hallmark of preadipocyte differentiation. Upon exiting the cell cycle, these cells express adipocyte markers and acquire adipocyte characteristics at high frequency. C3H10T1/2 cells treated with BMP4 in cell culture and implanted s.c. into athymic mice develop into tissue indistinguishable from adipose tissue in normal fat depots. We interpret the findings as evidence that BMP4 is capable of triggering commitment of pluripotent C3H10T1/2 stem cells to the adipocyte lineage.  相似文献   

20.
Ichii M  Frank MB  Iozzo RV  Kincade PW 《Blood》2012,119(7):1683-1692
Considerable information has accumulated about components of BM that regulate the survival, self-renewal, and differentiation of hematopoietic cells. In the present study, we investigated Wnt signaling and assessed its influence on human and murine hematopoiesis. Hematopoietic stem/progenitor cells (HSPCs) were placed on Wnt3a-transduced OP9 stromal cells. The proliferation and production of B cells, natural killer cells, and plasmacytoid dendritic cells were blocked. In addition, some HSPC characteristics were maintained or re-acquired along with different lineage generation potentials. These responses did not result from direct effects of Wnt3a on HSPCs, but also required alterations in the OP9 cells. Microarray, PCR, and flow cytometric experiments revealed that OP9 cells acquired osteoblastic characteristics while down-regulating some features associated with mesenchymal stem cells, including the expression of angiopoietin 1, the c-Kit ligand, and VCAM-1. In contrast, the production of decorin, tenascins, and fibromodulin markedly increased. We found that at least 1 of these extracellular matrix components, decorin, is a regulator of hematopoiesis: upon addition of this proteoglycan to OP9 cocultures, decorin caused changes similar to those caused by Wnt3a. Furthermore, hematopoietic stem cell numbers in the BM and spleen were elevated in decorin-knockout mice. These findings define one mechanism through which canonical Wnt signaling could shape niches supportive of hematopoiesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号