首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Molojavyi A  Preckel B  Comfère T  Müllenheim J  Thämer V  Schlack W 《Anesthesiology》2001,94(4):623-9; discussion 5A-6A
BACKGROUND: Ischemic preconditioning protects the heart against subsequent ischemia. Opening of the adenosine triphosphate-sensitive potassium (KATP) channel is a key mechanism of preconditioning. Ketamine blocks KATP channels of isolated cardiomyocytes. The authors investigated the effects of ketamine and its stereoisomers on preconditioning. METHODS: Isolated rat hearts (n = 80) underwent 30 min of no-flow ischemia and 60 min of reperfusion. Two groups with eight hearts each underwent the protocol without intervention (control-1 and control-2), and, in eight hearts, preconditioning was elicited by two 5-min periods of ischemia before the 30 min ischemia. In the six treatment groups (each n = 8), ketamine, R(-)- or S(+)-ketamine were administered at concentrations of 2 or 20 microg/ml before preconditioning. Eight hearts received 20 microg/ml R(-)-ketamine before ischemia. Left ventricular (LV) developed pressure and creatine kinase (CK) release during reperfusion were determined as variables of ventricular function and cellular injury. RESULTS: Baseline LV developed pressure was similar in all groups: 104 +/- 28 mmHg (mean +/- SD). Controls showed a poor recovery of LV developed pressure (17 +/- 8% of baseline) and a high CK release (70 +/- 17 IU/g). Ischemic preconditioning improved recovery of LV developed pressure (46 +/- 14%) and reduced CK release (47 +/- 17 IU/g, both P < 0.05 vs. control-1). Ketamine (2 microg/ml) and 2 or 20 microg/ml S(+)-ketamine had no influence on recovery of LV developed pressure compared with preconditioning (47 +/- 18, 43 +/- 8, 49 +/- 36%) and CK release (39 +/- 8, 30 +/- 14, 41 +/- 25 IU/g). After administration of 20 microg/ml ketamine and 2 or 20 microg/ml R(-)-ketamine, the protective effects of preconditioning were abolished (LV developed pressure-recovery, 16 +/- 14, 22 +/- 21, 18 +/- 11%; CK release, 67 +/- 11, 80 +/- 21, 82 +/- 41 IU/g; each P < 0.05 vs. preconditioning). Preischemic treatment with R(-)-ketamine had no effect on CK release (74 +/- 8 vs. 69 +/- 9 IU/g in control-2, P = 0.6) and functional recovery (LV developed pressure 12 +/- 4 vs. 9 +/- 2 mmHg in control-2, P = 0.5). CONCLUSION: Ketamine can block the cardioprotective effects of ischemic preconditioning. This effect is caused by the R(-)-isomer.  相似文献   

2.
Background: S (+)-Ketamine is reported to exert twofold greater analgesic and hypnotic effects but a shorter recovery time in comparison with racemic ketamine, indicating possible differential effects of stereoisomers. However, cardiovascular regulation during S (+)-ketamine anesthesia has not been studied. Muscle sympathetic activity (MSA) may be an indicator of the underlying alterations of sympathetic outflow. Whether S (+)-ketamine decreases MSA in a similar manner as the racemate is not known. Thus, the authors tested the hypothesis that S (+)-ketamine changes MSA and the muscle sympathetic response to a hypotensive challenge.

Methods: Muscle sympathetic activity was recorded by microneurography in the peroneal nerve of six healthy participants before and during anesthesia with S (+)-ketamine (670 [mu]g/kg intravenously followed by 15 [mu]g [middle dot] kg-1 [middle dot] min-1). Catecholamine and ketamine plasma concentrations, heart rate, and arterial blood pressure were also determined. MSA responses to a hypotensive challenge were assessed by injection of sodium nitroprusside (2-10 [mu]g/kg) before and during S (+)-ketamine anesthesia. In the final step, increased arterial pressure observed during anesthesia with S (+)-ketamine was adjusted to preanesthetic values by sodium nitroprusside infusion (1-6 [mu]g [middle dot] kg-1 [middle dot] min-1).

Results: Anesthesia with S (+)-ketamine (ketamine plasma concentration 713 +/- 295 [mu]g/l) significantly increased MSA burst frequency (mean +/- SD; 18 +/- 6 to 35 +/- 11 bursts/min) and burst incidence (32 +/- 10 to 48 +/- 15 bursts/100 heartbeats) and was associated with a doubling of norepinephrine plasma concentration (from 159 +/- 52 to 373 +/- 136 pg/ml) parallel to the increase in MSA. Heart rate and arterial blood pressure also significantly increased. When increased arterial pressure during S (+)-ketamine was decreased to awake values with sodium nitroprusside, MSA increased further (to 53 +/- 24 bursts/min and 60 +/- 20 bursts/100 heartbeats, respectively). The MSA increase in response to the hypotensive challenge was fully maintained during anesthesia with S (+)-ketamine.  相似文献   


3.
Background: Ketamine blocks KATP channels in isolated cells and abolishes the cardioprotective effect of ischemic preconditioning in vitro. The authors investigated the effects of ketamine and S (+)-ketamine on ischemic preconditioning in the rabbit heart in vivo.

Methods: In 46 [alpha]-chloralose-anesthetized rabbits, left ventricular pressure (tip manometer), cardiac output (ultrasonic flow probe), and myocardial infarct size (triphenyltetrazolium staining) at the end of the experiment were measured. All rabbits were subjected to 30 min of occlusion of a major coronary artery and 2 h of subsequent reperfusion. The control group underwent the ischemia-reperfusion program without preconditioning. Ischemic preconditioning was elicited by 5-min coronary artery occlusion followed by 10 min of reperfusion before the 30 min period of myocardial ischemia (preconditioning group). To test whether ketamine or S (+)-ketamine blocks the preconditioning-induced cardioprotection, each (10 mg kg-1) was administered 5 min before the preconditioning ischemia. To test any effect of ketamine itself, ketamine was also administered without preconditioning at the corresponding time point.

Results: Hemodynamic baseline values were not significantly different between groups [left ventricular pressure, 107 +/- 13 mmHg (mean +/- SD); cardiac output, 183 +/- 28 ml/min]. During coronary artery occlusion, left ventricular pressure was reduced to 83 +/- 14% of baseline and cardiac output to 84 +/- 19%. After 2 h of reperfusion, functional recovery was not significantly different among groups (left ventricular pressure, 77 +/- 19%; cardiac output, 86 +/- 18%). Infarct size was reduced from 45 +/- 16% of the area at risk in controls to 24 +/- 17% in the preconditioning group (P = 0.03). The administration of ketamine had no effect on infarct size in animals without preconditioning (48 +/- 18%), but abolished the cardioprotective effects of ischemic preconditioning (45 +/- 19%, P = 0.03). S (+)-ketamine did not affect ischemic preconditioning (25 +/- 11%, P = 1.0).  相似文献   


4.
Background: Propofol is short-acting intravenous general anesthetics that reduces cardiovascular hemodynamics. The effects of propofol on intrinsic myocardial contractility, however, remain debatable. The aim of the current study was to test the hypothesis that inhibitory effects of propofol on left ventricular (LV) contractility and mechanical work capability of in situ ejecting rat hearts are attenuated after a brief regional ischemia and reperfusion.

Methods: The authors obtained steady-state LV pressure-volume loops and intermittently obtained LV end-systolic pressure-volume relation and evaluated effects of propofol on LV function by end-systolic pressure (ESPmLVV), systolic pressure-volume area (PVAmLVV) at midrange LV volume (mLVV).

Results: Propofol (5.2 +/- 0.3~11.1 +/- 3.7 [mu]g[middle dot]ml-1) significantly decreased ESP0.08 to 78 +/- 12%~64 +/- 13% of prepropofol and PVA0.08 to 76 +/- 13%~63 +/- 16% of prepropofol in normal hearts, whereas propofol at a lower concentration (4.1 +/- 1.0 [mu]g/ml) did not. Although brief ischemic-reperfusion per se did not affect LV function, propofol after that, even at a lower concentration (4.1 +/- 1.0 [mu]g/ml), significantly decreased ESP0.08 to 70 +/- 27% of prepropofol and PVA0.08 to 68 +/- 33% of prepropofol. Pretreatment with a protein kinase C (PKC) inhibitor, bisindolylmaleimide reduced the propofol (4.1 +/- 1.0 [mu]g/ml)-induced greater decreases in ESP0.08 and PVA0.08 after brief ischemic-reperfusion to 94 +/- 33% and 92 +/- 39% of prepropofol. In the propofol-infused hearts after brief ischemic-reperfusion, protein kinase C-[epsilon] translocation to the nucleus-myofibril fraction was found.  相似文献   


5.
Racemic ketamine blocks K(ATP) channels in isolated cells and abolishes short-term cardioprotection against prolonged ischemia. We investigated the effects of racemic ketamine and S(+)-ketamine on ischemic late preconditioning (LPC) in the rabbit heart in vivo. A coronary occluder was chronically implanted in 36 rabbits. After recovery, the rabbits divided into four groups (each n = 9). LPC was induced in conscious rabbits by a 5-min coronary occlusion. Twenty-four hours later, the animals were instrumented for measurement of left ventricular systolic pressure (LVSP, tip manometer), cardiac output (CO, ultrasonic flowprobe) and myocardial infarct size (triphenyltetrazolium staining). All rabbits were then subjected to 30-min coronary occlusion and 2 h reperfusion. Controls underwent the ischemia-reperfusion program without LPC. To test whether racemic ketamine or S(+)-ketamine blocks the cardioprotection induced by LPC, the drugs (10 mg/kg) were given 10 min before the 30-min ischemia. Hemodynamic values were not significantly different between groups during the experiments (baseline: LVSP, 94 +/- 3 mm Hg [mean +/- SEM] and CO, 243 +/- 9 mL/min; coronary occlusion: LVSP, 93% +/- 4% of baseline and CO, 84% +/- 4%; after 2 h of reperfusion: LVSP, 85% +/- 4% and CO, 83% +/- 4%). LPC reduced infarct size from 44% +/- 3% of the area at risk in controls to 22% +/- 3% (P = 0.002). Administration of racemic ketamine abolished the cardioprotective effects of LPC (44 +/- 4%, P = 0.002). S(+)-ketamine did not affect the infarct size reduction induced by LPC (26 +/- 6%, P = 0.88). IMPLICATIONS: Racemic ketamine, but not S(+)-ketamine, blocks the cardioprotection induced by ischemic late preconditioning in rabbit hearts in vivo. Thus, the influence of ketamine on ischemic late preconditioning is most likely enantiomer specific, and the use of S(+)-ketamine may be preferable in patients with coronary artery disease.  相似文献   

6.
BACKGROUND: Ketamine blocks KATP channels in isolated cells and abolishes the cardioprotective effect of ischemic preconditioning in vitro. The authors investigated the effects of ketamine and S(+)-ketamine on ischemic preconditioning in the rabbit heart in vivo. METHODS: In 46 alpha-chloralose-anesthetized rabbits, left ventricular pressure (tip manometer), cardiac output (ultrasonic flow probe), and myocardial infarct size (triphenyltetrazolium staining) at the end of the experiment were measured. All rabbits were subjected to 30 min of occlusion of a major coronary artery and 2 h of subsequent reperfusion. The control group underwent the ischemia-reperfusion program without preconditioning. Ischemic preconditioning was elicited by 5-min coronary artery occlusion followed by 10 min of reperfusion before the 30 min period of myocardial ischemia (preconditioning group). To test whether ketamine or S(+)-ketamine blocks the preconditioning-induced cardioprotection, each (10 mg kg(-1)) was administered 5 min before the preconditioning ischemia. To test any effect of ketamine itself, ketamine was also administered without preconditioning at the corresponding time point. RESULTS: Hemodynamic baseline values were not significantly different between groups [left ventricular pressure, 107 +/- 13 mmHg (mean +/- SD); cardiac output, 183 +/- 28 ml/min]. During coronary artery occlusion, left ventricular pressure was reduced to 83 +/- 14% of baseline and cardiac output to 84 +/- 19%. After 2 h of reperfusion, functional recovery was not significantly different among groups (left ventricular pressure, 77 +/- 19%; cardiac output, 86 +/- 18%). Infarct size was reduced from 45 +/- 16% of the area at risk in controls to 24 +/- 17% in the preconditioning group (P = 0.03). The administration of ketamine had no effect on infarct size in animals without preconditioning (48 +/- 18%), but abolished the cardioprotective effects of ischemic preconditioning (45 +/- 19%, P = 0.03). S(+)-ketamine did not affect ischemic preconditioning (25 +/- 11%, P = 1.0). CONCLUSIONS: Ketamine, but not S(+)-ketamine blocks the cardioprotective effect of ischemic preconditioning in vivo.  相似文献   

7.
PURPOSE: Ischemic preconditioning protects the heart against subsequent prolonged ischemia by opening of adenosine triphosphate-sensitive potassium (K(ATP)) channels. Thiopentone blocks K(ATP) channels in isolated cells. Therefore, we investigated the effects of thiopentone on ischemic preconditioning. METHODS: Isolated rat hearts (n=56) were subjected to 30 min of global no-flow ischemia, followed by 60 min of reperfusion. Thirteen hearts underwent the protocol without intervention (control, CON) and in 11 hearts (preconditioning, PC), ischemic preconditioning was elicited by two five-minute periods of ischemia. In three additional groups, hearts received 1 (Thio 1, n=11), 10 (Thio 10, n=11) or 100 microg x mL(-1) (Thio 100, n=10) thiopentone for five minutes before preconditioning. Left ventricular (LV) developed pressure and creatine kinase (CK) release were measured as variables of myocardial performance and cellular injury, respectively. RESULTS: Recovery of LV developed pressure was improved by ischemic preconditioning (after 60 min of reperfusion, mean +/- SD: PC, 40 +/- 19% of baseline) compared with the control group (5 +/- 6%, P <0.01) and this improvement of myocardial function was not altered by administration of thiopentone (Thio 1, 37 +/- 15%; Thio 10, 36 +/- 16%; Thio 100, 38 +/- 16%, P=0.87-0.99 vs PC). Total CK release over 60 min of reperfusion was reduced by preconditioning (PC, 202 +/- 82 U x g(-1) dry weight) compared with controls (CON, 383 +/- 147 U x g(-1), P <0.01) and this reduction was not affected by thiopentone (Thio 1, 213 +/- 69 U x g(-1); Thio 10, 211 +/- 98 U x g(-1); Thio 100, 258 +/- 128 U x g(-1), P=0.62-1.0 vs PC). CONCLUSION: These results indicate that thiopentone does not block the cardioprotective effects of ischemic preconditioning in an isolated rat heart preparation.  相似文献   

8.
OBJECTIVE: Ischemic preconditioning combined with potassium cardioplegia does not always confer additive myocardial protection. This study tested the hypothesis that the efficacy of ischemic preconditioning under potassium cardioplegia is dependent on protein kinase C isoform. METHODS: Isolated and crystalloid-perfused rat hearts underwent 5 cycles of 1 minute of ischemia and 5 minutes of reperfusion (low-grade ischemic preconditioning) or 3 cycles of 5 minutes of ischemia and 5 minutes of reperfusion (high-grade ischemic preconditioning) or time-matched continuous perfusion. These hearts received a further 5 minutes of infusion of normal buffer or oxygenated potassium cardioplegic solution. The isoform nonselective protein kinase C inhibitor chelerythrine (5 micromol/L) was administered throughout the preischemic period. All hearts underwent 35 minutes of normothermic global ischemia followed by 30 minutes of reperfusion. Isovolumic left ventricular function and creatine kinase release were measured as the end points of myocardial protection. Distribution of protein kinase C alpha, delta, and epsilon in the cytosol and the membrane fractions were analyzed by Western blotting and quantified by a densitometric assay. RESULTS: Low-grade ischemic preconditioning was almost as beneficial as potassium cardioplegia in improving functional recovery; left ventricular developed pressure 30 minutes after reperfusion was 70 +/- 15 mm Hg (P <.01) in low-grade ischemic preconditioning and 77 +/- 14 mm Hg (P <.001) in potassium cardioplegia compared with values found in unprotected control hearts (39 +/- 12 mm Hg). Creatine kinase release during reperfusion was also equally inhibited by low-grade ischemic preconditioning (18.2 +/- 10.6 IU/g dry weight, P <.05) and potassium cardioplegia (17.6 +/- 6.7 IU/g, P <.01) compared with control values. However, low-grade ischemic preconditioning in combination with potassium cardioplegia conferred no significant additional myocardial protection; left ventricular developed pressure was 80 +/- 17 mm Hg, and creatine kinase release was 14.8 +/- 11.0 IU/g. In contrast, high-grade ischemic preconditioning with potassium cardioplegia conferred better myocardial protection than potassium cardioplegia alone; left ventricular developed pressure was 121 +/- 16 mm Hg (P <.001), and creatine kinase release was 8.3 +/- 5.8 IU/g (P <.05). Chelerythrine itself had no significant effect on functional recovery and creatine kinase release in the control hearts, but it did inhibit the salutary effects not only of low-grade and high-grade ischemic preconditioning but also those of potassium cardioplegia. Low-grade ischemic preconditioning and potassium cardioplegia enhanced translocation of protein kinase C alpha to the membrane, whereas high-grade ischemic preconditioning also enhanced translocation of protein kinase C delta and epsilon. Chelerythrine inhibited translocation of all 3 protein kinase C isoforms. CONCLUSIONS: These results suggest that myocardial protection by low-grade ischemic preconditioning and potassium cardioplegia are mediated through enhanced translocation of protein kinase C alpha to the membrane. It is therefore suggested that activation of the novel protein kinase C isoforms is necessary to potentiate myocardial protection under potassium cardioplegia.  相似文献   

9.
Background: The spinal administration of some N-methyl-d-aspartate receptor antagonists results in antinociception and potentiates the effects of opioids and [alpha]2-adrenoceptor agonists, but ketamine and its enantiomers have not been examined. The present study investigated the interactions of racemic ketamine, R (-)-ketamine and S (+)-ketamine with morphine and with dexmedetomidine.

Methods: Intrathecal catheters were implanted into male Wistar rats. Three days later, the acute nociceptive sensitivity was assessed using the tail-flick test. Analgesic latencies were converted to the percentage maximum possible effect. The dose that yielded 50% of the maximum possible effect (ED50) and dose-response and time-course curves were determined for the ketamines (30-300 [mu]g), morphine (0.1-3.0 [mu]g), dexmedetomidine (0.3-10.0 [mu]g), and mixtures of two doses of ketamines (30 or 100 [mu]g) with different doses of morphine or dexmedetomidine for fixed-dose analysis.

Results: Neither racemic ketamine nor its enantiomers alone had a significant effect on the tail-flick test, with the exception of the highest dose of racemic ketamine, which caused motor impairment. Morphine and dexmedetomidine each produced dose-dependent antinociception, with ED50 of 1.7 [mu]g (95% confidence interval: 1.04-2.32) and 4.85 [mu]g (3.96-5.79), respectively. A low dose (30 [mu]g) of racemic ketamine or its enantiomers did not influence the ED50 of morphine significantly. Coadministration of 100 [mu]g racemic ketamine or S (+)-ketamine, but not R (-)-ketamine, significantly enhanced and prolonged the antinociceptive effect of morphine. Both doses of racemic ketamine or its isomers significantly decreased the ED50 value for dexmedetomidine, although the higher dose of racemic or S (+)-ketamine had the highest potency. One-hundred micrograms of racemic ketamine or S (+)-ketamine also prolonged the effects of dexmedetomidine.  相似文献   


10.
Background: Cardiovascular stimulation and increased catecholamine plasma concentrations during ketamine anesthesia have been attributed to increased central sympathetic activity as well as catecholamine reuptake inhibition in various experimental models. However, direct recordings of efferent sympathetic nerve activity have not been performed in humans. The authors tested the hypothesis that racemic ketamine increases efferent muscle sympathetic activity (MSA) and maintains the muscle sympathetic response to hypotensive challenges.

Methods: Muscle sympathetic activity was recorded by microneurography in the peroneal nerve of six healthy subjects before and during anesthesia with racemic ketamine (2 mg/kg intravenously plus 30 [mu]g [middle dot] kg-1 [middle dot] min-1). Catecholamine plasma concentrations, heart rate, and blood pressure were also determined. Muscle sympathetic neural responses to a hypotensive challenge were assessed by injection of sodium nitroprusside (2-10 [mu]g/kg) before and during ketamine anesthesia. In the final step, increased arterial pressure observed during ketamine anesthesia was adjusted to preanesthetic baseline by sodium nitroprusside infusion (1-6 [mu]g [middle dot] kg-1 [middle dot] min-1).

Results: Ketamine significantly decreased MSA burst frequency (mean +/- SD, 18 +/- 9 bursts/min to 9 +/- 8 bursts/min) and burst incidence (26 +/- 11 bursts/100 heart beats to 9 +/- 6 bursts/100 heart beats). However, when increased mean arterial pressure (85 +/- 8 mmHg to 121 +/- 20 mmHg) was normalized to the awake baseline by sodium nitroprusside, MSA recovered (25 +/- 18 bursts/min; 23 +/- 14 bursts/100 heart beats). During ketamine anesthesia, both epinephrine (15 +/- 10 pg/ml to 256 +/- 193 pg/ml) and norepinephrine (250 +/- 105 pg/ml to 570 +/- 270 pg/ml) plasma concentrations significantly increased, as did heart rate (67 +/- 13 beats/min to 113 +/- 15 beats/min). Hypotensive challenges similarly increased MSA both in the awake state and during ketamine anesthesia.  相似文献   


11.
Background: Isoflurane exerts cardioprotective effects that mimic the ischemic preconditioning phenomenon. Generation of free radicals is implicated in ischemic preconditioning. The authors investigated whether isoflurane-induced preconditioning may involve release of free radicals.

Methods: Sixty-one [alpha]-chloralose-anesthetized rabbits were instrumented for measurement of left ventricular (LV) pressure (tip-manometer), cardiac output (ultrasonic flowprobe), and myocardial infarct size (triphenyltetrazolium staining). All rabbits were subjected to 30 min of occlusion of a major coronary artery and 2 h of subsequent reperfusion. Rabbits of all six groups underwent a treatment period consisting of either no intervention for 35 min (control group, n = 11) or 15 min of isoflurane inhalation (1 minimum alveolar concentration end-tidal concentration) followed by a 10-min washout period (isoflurane group, n = 12). Four additional groups received the radical scavenger N-(2-mercaptoproprionyl)glycine (MPG; 1 mg [middle dot] kg-1 [middle dot] min-1) or Mn(III)tetrakis(4-benzoic acid)porphyrine chloride (MnTBAP; 100 [mu]g [middle dot] kg-1 [middle dot] min-1) during the treatment period with (isoflurane + MPG; n = 11; isoflurane + MnTBAP, n = 9) or without isoflurane inhalation (MPG, n = 11; MnTBAP, n = 7).

Results: Hemodynamic baseline values were not significantly different between groups (LV pressure, 97 +/- 17 mmHg [mean +/- SD]; cardiac output, 228 +/- 61 ml/min). During coronary artery occlusion, LV pressure was reduced to 91 +/- 17% of baseline and cardiac output to 94 +/- 21%. After 2 h of reperfusion, recovery of LV pressure and cardiac output was not significantly different between groups (LV pressure, 83 +/- 20%; cardiac output, 86 +/- 23% of baseline). Infarct size was reduced from 49 +/- 17% of the area at risk in controls to 29 +/- 19% in the isoflurane group (P = 0.04). MPG and MnTBAP themselves had no effect on infarct size (MPG, 50 +/- 14%; MnTBAP, 56 +/- 15%), but both abolished the preconditioning effect of isoflurane (isoflurane + MPG, 50 +/- 24%, P = 0.02; isoflurane + MnTBAP, 55 +/- 10%, P = 0.001).  相似文献   


12.
PURPOSE: To determine whether sevoflurane or desflurane offer additional protective effects against myocardial reperfusion injury after protecting the heart against the ischemic injury by cardioplegic arrest. METHODS: Isolated rat hearts in a Langendorff-preparation (n = 9) were arrested by infusion of HTK cardioplegic solution and subjected to 30 min global ischemia followed by 60 min reperfusion (controls). An additional 18 hearts were subjected to the same protocol, and sevoflurane (n = 9) or desflurane (n = 9) was added to the perfusion medium during the first 30 min of reperfusion in a concentration corresponding to 1.5 MAC in rats. Left ventricular (LV) developed pressure and creatine kinase (CK) release were determined as indices of myocardial performance and cellular injury, respectively. RESULTS: The LV developed pressure recovered to 46+/-7% of baseline in controls. Functional recovery during reperfusion was improved by inhalational anesthetics to 67+/-3% (sevoflurane, P<0.05) and 61+/-5% of baseline (desflurane, P<0.05), respectively. Peak CK release during early reperfusion was reduced from 52+/-11 U x min(-1) x g(-1) in controls to 34+/-7 and 26+/-7 U x min(-1) x g(-1) in sevoflurane and desflurane treated hearts, respectively. The CK release during the first 30 min of reperfusion was reduced from 312+/-41 U x g(-1) in control hearts to 195+/-40 and 206+/-37 U x g(-1) in sevoflurane and desflurane treated hearts. CONCLUSION: After ischemic protection by cardioplegia, sevoflurane and desflurane given during the early reperfusion period offer additional protection against myocardial reperfusion injury.  相似文献   

13.
Polymorphonuclear neutrophils (PMN) play a crucial role in the initiation of reperfusion injury. In a previous study, we found that ketamine reduced the postischemic adherence of PMN to the intact coronary system of isolated guinea pig hearts. Because ketamine is a racemic mixture (1:1) of two optical enantiomers, we looked for possible differences in action between the stereoisomers. Seventy-six guinea pig hearts were perfused in the "Langendorff" mode under conditions of constant flow (5 mL/min) using modified Krebs-Henseleit buffer. After 15 min of global warm ischemia, freshly isolated human PMN (10(6)) were infused as a bolus into the coronary system during the second minute of reperfusion. PMN adhesion was expressed as the numeric difference between PMN recovered in the effluent and those applied. Series A hearts received 5 microM S(+), 5 microM R(-), or 10 microM racemic ketamine starting 20 min before ischemia and during reperfusion. In Series B hearts, 10 microM nitro-L-arginine, an inhibitor of NO synthase, was added to the perfusate. In Series C, PMN were preincubated for 15 min with 5 microM S(+)- or R(-)-ketamine. Coronary vascular leak was assessed by measuring the rate of formation of transudate on the epicardial surface. Ischemia/reperfusion without anesthetics increased coronary PMN adherence from 25.5% +/-2.3% (basal) to 35.3%+/-1.5% of the number applied. S(+)-ketamine reduced postischemic adherence in each series (A, 25.5%+/-5.1%; B, 22.5%+/-1.7%; C, 25.3%+/-7.7%), as did racemate (A, 26.4%+/-3.7%). Although 5 microM R(-)-ketamine had no effect on adhesion (A, 30.5%+/-6.7%; B, 34.3%+/-5.1%; C, 34.3%+/-4.3%), it significantly increased vascular leak in the presence of NOLAG. These findings indicate stereoselective differences in biological action between the two ketamine isomers: S(+)-ketamine inhibited PMN adherence, R(-)-ketamine worsened coronary vascular leak in reperfused isolated hearts. IMPLICATIONS: In this study, we demonstrated stereoselective differences in the biologic action of the two ketamine isomers in an animal model of myocardial ischemia. Polymorphonuclear neutrophil adherence to the coronary vasculature after ischemia was inhibited by S(+)-ketamine, whereas R(-)-ketamine increased coronary vascular fluid leak.  相似文献   

14.
Background: Ketamine inhibits adenosine triphosphate-sensitive potassium (KATP) channels, which results in the blocking of ischemic preconditioning in the heart and inhibition of vasorelaxation induced by KATP channel openers. In the current study, the authors investigated the molecular mechanisms of ketamine's actions on sarcolemmal KATP channels that are reassociated by expressed subunits, inwardly rectifying potassium channels (Kir6.1 or Kir6.2) and sulfonylurea receptors (SUR1, SUR2A, or SUR2B).

Methods: The authors used inside-out patch clamp configurations to investigate the effects of ketamine on the activities of reassociated Kir6.0/SUR channels containing wild-type, mutant, or chimeric SURs expressed in COS-7 cells.

Results: Ketamine racemate inhibited the activities of the reassociated KATP channels in a SUR subtype-dependent manner: SUR2A/Kir6.2 (IC50 = 83 [mu]m), SUR2B/Kir6.1 (IC50 = 77 [mu]m), SUR2B/Kir6.2 (IC50 = 89 [mu]m), and SUR1/Kir6.2 (IC50 = 1487 [mu]m). S-(+)-ketamine was significantly less potent than ketamine racemate in blocking all types of reassociated KATP channels. The ketamine racemate and S-(+)-ketamine both inhibited channel currents of the truncated isoform of Kir6.2 (Kir6.2[DELTA]C36) with very low affinity. Application of 100 [mu]m magnesium adenosine diphosphate significantly enhanced the inhibitory potency of ketamine racemate. The last transmembrane domain of SUR2 was essential for the full inhibitory effect of ketamine racemate.  相似文献   


15.
Background: Remifentanil preconditioning (RPC) reduces the infarct size in anesthetized rat hearts, and this effect seems to be mediated by all three types of opioid receptors (ORs). Because there is evidence of only [kappa]- and [delta]- but not [mu]-ORs in the rat heart, the authors investigated whether RPC confers cardioprotection via cardiac [kappa]- and [delta]-OR as well as via extracardiac [mu]-OR agonist activity. The authors also investigated the involvement of signaling mechanisms, namely protein kinase C and mitochondrial adenosine triphosphate-sensitive potassium (KATP) channels.

Methods: The hearts of male Sprague-Dawley rats weighing 190-210 g were removed, mounted on a Langendorff apparatus, and perfused retrogradely at 100 cm H2O with Krebs-Ringer's solution. All hearts were subjected to 30 min of ischemia and 2 h of reperfusion. The study consisted of three series of experiments on the effect of ischemic preconditioning or RPC (10, 50, and 100 ng/ml remifentanil) after blockade of OR subtypes ([delta]-OR antagonist naltrindol, [kappa]-OR antagonist nor-binaltorphimine, and [mu]-OR antagonist CTOP). The involvement of protein kinase C or the KATP channel in the cardioprotection of RPC was also investigated using specific blockers in each group. RPC was produced by three cycles of 5-min perfusion of remifentanil in Krebs-Ringer's solution interspersed with a 5-min reperfusion with Krebs solution only. Infarct size, as a percentage of the area at risk, was determined by 2,3,5-triphenyltetrazolium staining.

Results: Infarct size as a percentage of the area at risk was significantly reduced after RPC from 51.9 +/- 5.0% (control, n = 8) to 36.2 +/- 10.0% (100 ng/ml RPC, n = 8, P < 0.01). This effect was stopped by pretreatment with naltrindol (52.3 +/- 5.2%) and nor-binaltorphimine (43.5 +/- 6.0%) but not CTOP (37.1 +/- 6.0%). Chelerythrine and GF109203X, both protein kinase C inhibitors, abolished the effects of RPC or ischemic preconditioning on infarct size as a percentage of area at risk. 5-Hydroxydecanoate (a selective mitochondrial KATP channel blocker) also abolished the cardioprotection of RPC and IPC, but HMR-1098 (a selective inhibitor of the sarcolemmal KATP channel) did not.  相似文献   


16.
Background: Hydrocortisone protects against ischemia-reperfusion injury, reduces paracellular permeability for macromolecules, and is routinely applied in the prevention of interstitial edema. Healthy vascular endothelium is coated by the endothelial glycocalyx, diminution of which increases capillary permeability, suggesting that the glycocalyx is a target for hydrocortisone action.

Methods: Isolated guinea pig hearts were perfused with Krebs-Henseleit buffer. Hydrocortisone was applied in a stress dose (10 [mu]g/ml) before inducing 20 min of ischemia (37[degrees]C). Hearts were reperfused for 20 min at constant flow (baseline perfusion pressure, 70 cm H2O) with Krebs-Henseleit buffer or Krebs-Henseleit buffer plus 2 g% hydroxyethyl starch (130 kd). Coronary net fluid filtration was assessed directly by measuring transudate formation on the epicardial surface. Hearts were perfusion fixed to visualize the glycocalyx.

Results: Ischemia-induced degradation of the glycocalyx enhanced coronary perfusion pressure (118.8 +/- 17.3 cm H2O) and increased vascular permeability (8 +/- 0.2 [mu]l [middle dot] min-1 [middle dot] cm H2O-1 at baseline vs. 34 +/- 3.3 [mu]l [middle dot] min-1 [middle dot] cm H2O-1 after reperfusion). Enzymatic digestion of the glycocalyx (heparinase) elicited similar effects. Hydrocortisone reduced postischemic oxidative stress, perfusion pressure (86.3 +/- 6.4 cm H2O), and transudate formation (11 +/- 0.6 [mu]l [middle dot] min-1 [middle dot] cm H2O-1). Applying colloid augmented this (70.6 +/- 5.6 cm H2O and 9 +/- 0.5 [mu]l [middle dot] min-1 [middle dot] cm H2O-1). Postischemic shedding of syndecan-1, heparan sulfate, and hyaluronan was inhibited by hydrocortisone, as was release of histamine from resident mast cells. Electron microscopy revealed a mostly intact glycocalyx after hydrocortisone treatment, but not after heparinase treatment.  相似文献   


17.
Background: Severe pancreatitis is often complicated by shock and acute lung failure. Little is known about the pathophysiologic impact of the 16.6-kD lectine, named pancreatitis-associated protein (PAP), which is expressed during pancreatitis and which reduces mortality in a rat model with severe pancreatitis. Therefore, the aim of this study was to investigate the effects of PAP on the pulmonary vasculature after leukocyte activation with N-formyl-Met-Leu-Phe (fMLP).

Methods: The experiments were performed in buffer-perfused isolated rabbit lungs. Mean pulmonary artery pressure, weight gain, and thromboxane A2 synthesis of the lungs were monitored. PAP was obtained by affinity chromatography of pancreas juice from pancreatitic rats. The authors tested whether treatment with PAP (260 [mu]g/l, n = 9; or 500 [mu]g/l, n = 6) before fMLP injection (10-6 M) influences mean pulmonary artery pressure and edema formation. Lungs that were treated only with fMLP (n = 6) served as controls. Additional experiments in which PAP was applied were performed to study whether PAP (260 [mu]g/l, n = 3; 500 [mu]g/l, n = 3; 1,000 [mu]g/l, n = 3) itself effects lung vasculature.

Results: Application of fMLP resulted in an increase of mean pulmonary artery pressure (+/- SD) from 8 +/- 2 mmHg up to 26 +/- 13 mmHg (P < 0.01) at a flow of 150 ml/min. Pretreatment with PAP reduced the peak pressure developed after fMLP to 15 +/- 7 mmHg (PAP 260 [mu]g/l;P < 0.05) and to 9 +/- 4 mmHg (PAP 500 [mu]g/l), respectively. In addition, the fMLP-induced lung weight gain of 9 +/- 7 g in the controls was prevented by pretreatment with PAP after 150 min in either concentration. In parallel to the attenuated pressure increase, thromboxane A2 release was significantly suppressed in the 260-[mu]g/l (200 +/- 220 pmol [middle dot] ml-1 [middle dot] min-1;P < 0.01) and 500-[mu]g/l (285 +/- 70 pmol [middle dot] ml-1 [middle dot] min-1;P < 0.05) PAP groups compared with controls (1,138 +/- 800 pmol [middle dot] ml-1 [middle dot] min-1). Treatment with PAP alone in either concentration did not induce any changes in mean pulmonary artery pressure, weight gain, or thromboxane A2 release.  相似文献   


18.
Background: Recent investigations have focused on the pivotal role of the mitochondria in the underlying mechanisms volatile anesthetic-induced myocardial preconditioning. This study aimed at examining the effect of anesthetic preconditioning on mitochondrial permeability transition (MPT) pore opening.

Methods: Anesthetized open chest rabbits were randomized to one of four groups and underwent 10 min of ischemia, except for the sham 1 group (n = 12). Before this, they underwent a treatment period consisting of (1) no intervention (ischemic group; n = 12), (2) 30 min of desflurane inhalation (8.9% end-tidal concentration) followed by a 15-min washout period (desflurane group; n = 12), or (3) ischemic preconditioning (IPC group; n = 12). A second set of experiments was performed to evaluate the effect of a putative mitochondrial adenosine triphosphate-sensitive potassium channel antagonist, 5-hydroxydecanoate (5-HD). The animals underwent the same protocol as previously, plus pretreatment with 5 mg/kg 5-HD. They were randomized to one of five groups: the sham 2 group, receiving no 5-HD (n = 12); the sham 5-HD group (n = 12); the ischemic 5-HD group (n = 12), the desflurane 5-HD group (n = 12), and the IPC 5-HD group (n = 12). At the end of the protocol, the hearts were excised, and mitochondria were isolated. MPT pore opening was assessed by measuring the amount of calcium required to trigger a massive calcium release indicative of MPT pore opening.

Results: Desflurane and IPC group mitochondria needed a higher calcium load than ischemic group mitochondria (362 +/- 84, 372 +/- 74, and 268 +/- 110 [mu]m calcium, respectively; P < 0.05) to induce MPT pore opening. The sham 1 and sham 2 groups needed a similar amount of calcium to trigger mitochondrial calcium release (472 +/- 70 and 458 +/- 90 [mu]m calcium, respectively). 5-HD preadministration had no effect on sham animals (458 +/- 90 and 440 +/- 128 [mu]m calcium without and with 5-HD, respectively) and ischemic group animals (268 +/- 110 and 292 +/- 102 [mu]m calcium without and with 5-HD, respectively) but abolished the effects of desflurane on calcium-induced MPT pore opening (362 +/- 84 [mu]m calcium without 5-HD vs. 238 +/- 96 [mu]m calcium with 5-HD; P < 0.05) and IPC (372 +/- 74 [mu]m calcium without 5-HD vs. 270 +/- 104 [mu]m calcium with 5-HD; P < 0.05).  相似文献   


19.
Background: This study investigated the effect of varying concentrations of propofol on upper airway collapsibility and the mechanisms responsible for it.

Methods: Upper airway collapsibility was determined from pressure-flow relations at three concentrations of propofol anesthesia (effect site concentration = 2.5, 4.0, and 6.0 [mu]g/ml) in 12 subjects spontaneously breathing on continuous positive airway pressure. At each level of anesthesia, mask pressure was transiently reduced from a pressure sufficient to abolish inspiratory flow limitation (maintenance pressure = 12 +/- 1 cm H2O) to pressures resulting in variable degrees of flow limitation. The relation between mask pressure and maximal inspiratory flow was determined, and the critical pressure at which the airway occluded was recorded. Electromyographic activity of the genioglossus muscle (EMGgg) was obtained via intramuscular electrodes in 8 subjects.

Results: With increasing depth of anesthesia, (1) critical closing pressure progressively increased (-0.3 +/- 3.5, 0.5 +/- 3.7, and 1.4 +/- 3.5 cm H2O at propofol concentrations of 2.5, 4.0, and 6.0 [mu]g/ml respectively; P < 0.05 between each level), indicating a more collapsible upper airway; (2) inspiratory flow at the maintenance pressure significantly decreased; and (3) respiration-related phasic changes in EMGgg at the maintenance pressure decreased from 7.3 +/- 9.9% of maximum at 2.5 [mu]g/ml to 0.8 +/- 0.5% of maximum at 6.0 [mu]g/ml, whereas tonic EMGgg was unchanged. Relative to the levels of phasic and tonic EMGgg at the maintenance pressure immediately before a decrease in mask pressure, tonic activity tended to increase over the course of five flow-limited breaths at a propofol concentration of 2.5 [mu]g/ml but not at propofol concentrations of 4.0 and 6.0 [mu]g/ml, whereas phasic EMGgg was unchanged.  相似文献   


20.
Ischemia preconditioning produces a delayed window of cardioprotection against subsequent ischemia and reperfusion injury. Contradictory results have been reported regarding the ability of inhaled anesthetics to produce similar effects. Our investigation was designed to test whether inhaled sevoflurane is capable of producing a delayed window of anesthetic preconditioning and to compare the differences at 24 and 48 h after exposure. Male Fischer-344 rats, 2-4 mo old, were exposed to sevoflurane (2.5% for 60 min). Twenty-four or 48 h after exposure, the hearts were isolated and perfused for 30 min (equilibration) followed by 25 min of ischemia and then 60 min of reperfusion. Control hearts received no treatment before ischemia. Left ventricular (LV) function, creatine kinase (CK), and infarct size (IS) were measured. Nuclear magnetic resonance was used to measure Na+(i), [Ca2+]i, and pH(i). There was improved LV function and significant reduction in IS and CK and in both the 24- and 48-h delayed groups compared with the controls. There was also a significant recovery of LV function and reduction in IS and CK in the 48-h group when compared with the 24-h group. There was significant adenosine triphosphate preservation in both the 24- and 48-h groups, as well as a significant reduction in acidosis, [Ca2+]I, and Na+(i) in response to ischemia in both the groups versus the control. Sevoflurane is capable of producing a delayed window of preconditioning, and it takes more than 24 h to produce maximal protective effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号