首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An SiO2-TiO2 closed-surface antireflective coating was fabricated by the one-dipping method. TiO2 nanoparticles were mixed with a nanocomposited silica sol, which was composed of acid-catalyzed nanosilica networks and silica hollow nanospheres (HNs). The microstructure of the sol-gel was characterized by transmission electron microscopy. The silica HNs were approximately 40–50 nm in diameter with a shell thickness of approximately 8–10 nm. The branched-chain structure resulting from acidic hydrolysis grew on these silica HNs, and TiO2 was distributed inside this network. The surface morphology of the coating was measured by field emission scanning electron microscopy and atomic force microscopy. After optimization, transmittance of up to 94.03% was obtained on photovoltaic (PV) glass with a single side coated by this antireflective coating, whose refractive index was around 1.30. The short-circuit current gain of PV module was around 2.14–2.32%, as shown by the current-voltage (IV) curve measurements and external quantum efficiency (EQE) tests. This thin film also exhibited high photocatalytic activity. Due to the lack of voids on its surface, the antireflective coating in this study possessed excellent long-term reliability and robustness in both high-moisture and high-temperature environments. Combined with its self-cleaning function, this antireflective coating has great potential to be implemented in windows and photovoltaic modules.  相似文献   

2.
Highly flexible silver nanowire-based transparent conductive films (AgNWs TCFs) were large-scale fabricated by slot-die coating AgNWs inks on a flexible polyethylene terephthalate (PET) substrate, and further fabricated into a transparent film heater. Appropriate flow rate, coating speed, and AgNWs concentration allow the construction of the 15 cm × 15 cm AgNW TCFs with a sheet resistance (Rs) of less than 20 Ω/sq, a transmittance (T) at 550 nm higher than 95%, and a haze less than 3.5%. The resultant AgNW TCFs heater possesses high uniformity and superior mechanical stability and can reach a Joule heating temperature of 104 °C with a voltage of 12 V. The slot-die coating method has great potential for large-scale production of AgNW based film heaters promisingly used in window defrost and deicer systems.  相似文献   

3.
In this study, we have developed a self-cleaning transparent coating on a glass substrate by dip coating a TiO2 – KH550 – PEG mixed solution with super-hydrophilicity and good antifogging properties. The fabrication of the thin-film-coated glass is a one-step solution blending method that is performed by depositing only one layer of modified TiO2 nanoparticles at room temperature. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine the structure and morphology of the nanoparticles and the thin-film-coated glass. The surface functional groups were investigated using Fourier-transform infrared spectroscopy (FT-IR), and the optical properties of the glass coating were measured using a UV/Vis spectrometer. The results revealed that the KH-500-modified TiO2 film coating was in an anatase crystalline form. The hydrophilicity of the coated and uncoated glass substrates was observed by measuring their water contact angle (WCA) using a contact angle instrument. The maximum transparency of the coated glass measured in the visible region (380–780 nm) was approximately 70%, and it possessed excellent super-hydrophilic properties (WCA ~0°) at an annealing temperature of 350 °C without further need of UV or plasma treatment. These results demonstrate the super-hydrophilic coated glass surface has potential for use in self-cleaning and anti-fogging applications.  相似文献   

4.
Tokamak diagnostic window glass is an indispensable optical medium in fusion research. The transmittance of the device affects the optical performance and accuracy of the diagnostic system. Especially, the window glass serves as the entrance of the light source while performing the sealing function for the active diagnosis method represented by Thomson scattering diagnostics. In this work, we studied the influence of the laser irradiation and tokamak discharge on the EAST (Experimental Advanced Superconducting Tokamak) Thomson scattering diagnostic borosilicate glass window. Using X-ray photoelectron spectroscopy (XPS) and Raman scattering, we found that carbon-based impurities in the device aggravated the film damage due to laser irradiation, reducing the performance of the coating of the glass. Besides, the laser and the various rays of tokamak discharge generated many point defects in the glass, increasing the light absorption of the glass. These two factors caused the glass transmittance to drop significantly (from 99.99% to 77.62%). In addition, the long-term laser irradiation primarily reduced the transmittance, while environmental rays had a minor impact on the same. This work provides valuable insights into the selection and effective use of glass in optics-based diagnostics.  相似文献   

5.
Nanosilica-modified, fluorine-containing polyacrylate hybrid coating materials, consisting of dodecafluoroheptyl methacrylate (DFMA), methyl methacrylate (MMA), 2-ethyl hexyl acrylate (2-EHA), 3-(trimethoxysilyl) propyl methacrylate (KH-570), and tetraethylorthosilicate (TEOS), are synthesized successfully by free radical polymerization and the sol–gel process. It is revealed that the content of the fluorine-containing polyacrylate hybrid coating materials from DFMA monomers significantly improves the properties of the films. The polyacrylate coating film prepared with a weight ratio of DFMA/MMA at 1:5 exhibits the largest water contact angle of 105.4°, which demonstrates that DFMA can effectively improve the hydrophobicity of the coating film. Moreover, the silicon coupling agent (KH-570) is used to graft silica with acrylate. Spherical in shape, the surface morphology of the nanohybrid film exhibits a core–shell structure, which increases the surface roughness and enhances the hydrophobic properties. The as-prepared fluorine-containing nanohybrid silica polyacrylate film possesses a high transmittance of 89–97% in the visible light region, indicating its potential as a very attractive solution in many practical areas.  相似文献   

6.
In complementary electrochromic devices (ECDs), nickel oxide (NiO) is generally used as a counter electrode material for enhancing the coloration efficiency. However, an NiO film as a counter electrode in ECDs is susceptible to degradation upon prolonged electrochemical cycling, which leads to an insufficient device lifetime. In this study, a type of counter electrode iridium oxide (IrO2) layer was fabricated using vacuum cathodic arc plasma (CAP). We focused on the comparison of IrO2 and NiO deposited on a 5 × 5 cm2 indium tin oxide (ITO) glass substrate with various Ar/O2 gas-flow ratios (1/2, 1/2.5, and 1/3) in series. The optical performance of IrO2-ECD (glass/ITO/WO3/liquid electrolyte/IrO2/ITO/glass) was determined by optical transmittance modulation; ∆T = 50% (from Tbleaching (75%) to Tcoloring (25%)) at 633 nm was higher than that of NiO-ECD (ITO/NiO/liquid electrolyte/WO3/ITO) (∆T = 32%). Apart from this, the ECD device demonstrated a fast coloring time of 4.8 s, a bleaching time of 1.5 s, and good cycling durability, which remained at 50% transmittance modulation even after 1000 cycles. The fast time was associated with the IrO2 electrode and provided higher diffusion coefficients and a filamentary shape as an interface that facilitated the transfer of the Li ions into/out of the interface electrodes and the electrolyte. In our result of IrO2-ECD analyses, the higher optical transmittance modulation was useful for promoting electrochromic application to a cycle durability test as an alternative to NiO-ECD.  相似文献   

7.
Highly transparent Y2O3 ceramics were successfully fabricated with CaO as sintering aid. The microstructure evolution, optical transmittance, hardness and thermal conductivity of the Y2O3 ceramics were investigated. It was found that doping a small amount (0.01–0.15 wt.%) of CaO could greatly improve the densification rate of Y2O3. With an optimized CaO dosage of 0.02 wt.% combined with the low temperature vacuum sintering plus hot isostatic pressing (HIP-ing), Y2O3 ceramics with in-line transmittance of 84.87% at 1200 nm and 81.4% at 600 nm were obtained.  相似文献   

8.
Silica core-shell nanoparticles of about 60–120 nm with a closed outer layer of bismuth or molybdenum oxide of 1–10 nm were synthesized by an integrated chemical vapor synthesis/chemical vapor deposition process at atmospheric pressure. Film growth rates and activation energies were derived from transmission electron microscopy (TEM) images for a deposition process based on molybdenum hexacarbonyl and triphenyl bismuth as respective coating precursors. Respective activation energies of 123 ± 10 and 155 ± 10 kJ/mol are in good agreement with the literature and support a deposition mechanism based on surface-induced removal of the precursor ligands. Clean substrate surfaces are thus prerequisite for conformal coatings. Integrated aerosol processes are solvent-free and intrinsically clean. In contrast, commercial silica substrate particles were found to suffer from organic residues which hinder shell formation, and require an additional calcination step to clean the surface prior to coating. Dual layer core-shell structures with molybdenum oxide on bismuth oxide were synthesized with two coating reactors in series and showed similar film growth rates.  相似文献   

9.
Modification has been made to TiO2 thin film to improve the wettability and the absorption of light. The sol-gel spin coating method was successfully used to synthesize GO/TiO2 thin films using a titanium (IV) isopropoxide (TTIP) as a precursor. Different amounts of polyethylene glycol (PEG) (20 to 100 mg) were added into the parent sol solution to improve the optical properties and wettability of the GO/TiO2 thin film. The effect of different amounts of PEG was characterized using X-ray diffraction (XRD) for the phase composition, scanning electron microscopy (SEM) for microstructure observation, atomic force microscopy (AFM) for the surface topography, ultraviolet–visible spectrophotometry (UV-VIS) for the optical properties and wettability of the thin films by measuring the water contact angle. The XRD analysis showed the amorphous phase. The SEM and AFM images revealed that the particles were less agglomerated and surface roughness increases from 1.21 × 102 to 2.63 × 102 nm when the amount of PEG increased. The wettability analysis results show that the water contact angle of the thin film decreased to 27.52° with the increase of PEG to 80 mg which indicated that the thin film has hydrophilic properties. The optical properties also improved significantly, where the light absorbance wavelength became wider and the band gap was reduced from 3.31 to 2.82 eV with the presence of PEG.  相似文献   

10.
The hemocompatibility of vascular grafts made from poly(ethylene terephthalate) (PET) is insufficient due to the rapid adhesion and activation of blood platelets that occur upon incubation with whole blood. PET polymer was treated with NHx radicals created by passing ammonia through gaseous plasma formed by a microwave discharge, which allowed for functionalization with amino groups. X-ray photoelectron spectroscopy characterization using derivatization with 4-chlorobenzaldehyde indicated that approximately 4% of the –NH2 groups were associated with the PET surface after treatment with the gaseous radicals. The functionalized polymers were coated with an ultra-thin layer of heparin and incubated with fresh blood. The free-hemoglobin technique, which is based on the haemolysis of erythrocytes, indicated improved hemocompatibility, which was confirmed by imaging the samples using confocal optical microscopy. A significant decrease in number of adhered platelets was observed on such samples. Proliferation of both human umbilical vein endothelial cells and human microvascular endothelial cells was enhanced on treated polymers, especially after a few hours of cell seeding. Thus, the technique represents a promising substitute for wet-chemical modification of PET materials prior to coating with heparin.  相似文献   

11.
Primary organic aerosol (POA) and associated vapors can play an important role in determining the formation and properties of secondary organic aerosol (SOA). If SOA and POA are miscible, POA will significantly enhance SOA formation and some POA vapor will incorporate into SOA particles. When the two are not miscible, condensation of SOA on POA particles forms particles with complex morphology. In addition, POA vapor can adsorb to the surface of SOA particles increasing their mass and affecting their evaporation rates. To gain insight into SOA/POA interactions we present a detailed experimental investigation of the morphologies of SOA particles formed during ozonolysis of α-pinene in the presence of dioctyl phthalate (DOP) particles, serving as a simplified model of hydrophobic POA, using a single-particle mass spectrometer. Ultraviolet laser depth-profiling experiments were used to characterize two different types of mixed SOA/DOP particles: those formed by condensation of the oxidized α-pinene products on size-selected DOP particles and by condensation of DOP on size-selected α-pinene SOA particles. The results show that the hydrophilic SOA and hydrophobic DOP do not mix but instead form layered phases. In addition, an examination of homogeneously nucleated SOA particles formed in the presence of DOP vapor shows them to have an adsorbed DOP coating layer that is ∼4 nm thick and carries 12% of the particles mass. These results may have implications for SOA formation and behavior in the atmosphere, where numerous organic compounds with various volatilities and different polarities are present.  相似文献   

12.
In this paper, VO2 thin films with good optical properties are fabricated on practical float glass by magnetron sputtering and a professional annealing method. The near-infrared switching efficiency (NIRSE) of the prepared film reaches 39% (@2000 nm), and its near-infrared energy modulation ability (ΔTir) reaches 10.9% (780–2500 nm). Further, the highest integral visible transmittance Tlum is 63%. The proposed method exhibits good reproducibility and does not cause any heat damage to the magnetron sputtering machine. The crystalline structure of the VO2 film is characterized by X-ray diffraction (XRD). The lattice planes (011) and (−211) grow preferentially (JCPDS 65-2358), and a large number of NaV2O5 crystals are detected simultaneously. The microstructures are characterized by scanning electron microscopy (SEM), and a large number of long sheet crystals are identified. The phase transition temperature is significantly reduced by an appropriate W doping concentration (Tc = 29 °C), whereas excessive W doping causes distortion of the thermal hysteresis loop and a reduction in the NIRSE. Oxygen vacancies are created by low pressure annealing, due to which the phase transition temperature of VO2 film decreases by 8 °C. The addition of an intermediate SiO2 layer can prevent the diffusion of Na+ ions and affect the preparation process of the VO2 thin film.  相似文献   

13.
Zinc sulfide (ZnS) thin films were prepared and synthesized by the chemical bath deposition (CBD) technique on microscopic glass substrates using stoichiometric amounts of the precursor materials (ZnSO4·7H2O, NH4OH, and CS(NH2)2). Structural, morphological, compositional, and optical characterization of the films were studied. The obtained thin films were found to exhibit polycrystalline possessions. The effect of annealing temperature on the crystallographic structure and optical bandgap of ZnS thin films were both examined. The grain size and unit cell volume were both found to be increased. In addition, the strain, dislocation density, and the number of crystallites were found to be decreased with annealing temperature at 300 °C. However, the annealed sample was perceived to have more Zn content than S. The optical characterization reveals that the transmittance was around 76% of the as-deposited thin film and had been decreased to ~50% with the increasing of the annealing temperature. At the same time, the bandgap energy of the as-deposited film was 3.98 eV and was found to be decreased to 3.93 eV after annealing.  相似文献   

14.
To simultaneously achieve the high visible transparency and enhance the ultraviolet (UV)-blocking performance of displays, inorganic–organic hybrid nanoparticles, comprising TiO2 as a core and poly(methyl methacrylate) (PMMA) as a shell, were uniformly incorporated into the optically clear adhesive (OCA) used in the front of a display device. The highly refractive TiO2 nanocore could selectively scatter UV rays, which degrade the display performance, owing to the differences in the refractive indices between the inorganic particles and PMMA matrix, thereby offering an improved UV protection property to the adhesive film. Moreover, the organic PMMA nanoshell maintained the high visible light transmittance of the pristine OCA film via the prevention of particle agglomeration. To examine the effect of the PMMA nanoshell and nanoparticle size on the optical properties of the adhesive films, the OCA films embedded with only TiO2 nanoparticles or hybrid nanoparticles with different particle sizes were prepared using a roll-to-roll process, and characterized in the range of UV and visible lights using UV-visible spectroscopy. It is experimentally revealed that the adhesive film including small TiO2/PMMA hybrid nanoparticles at an extremely low content exhibited enhanced UV-blocking properties and increased visible light transmittance compared to that with only TiO2 nanoparticles.  相似文献   

15.
In order to prevent corrosion, aluminum nanoparticles were coated with a polyurethane polymer. The coverage of the polyurethane polymer was controlled from 0 to 100%, which changed the corrosion rate of the nanoparticles quantitatively. The surface of the polymer coating was investigated by Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), and the corrosion resistance of the nanoparticles was estimated by a wet/dry corrosion test on a Pt plate with a NaCl solution. From a TEM with EDAX analysis, the 10 mass% polymer coated Al particles in the synthesis were almost 100% covered on the surface by a polymer film of 10 nm thick. On the other hand, the 3 mass% polymer coated Al was almost 40% covered by a film. In the AFM, the potential around the Al particles had a relatively low value with the polymer coating, which indicated that the conductivity of the Al was isolated from the Pt plate by the polymer. Both the corrosion and H2 evolution reaction rates were quantitatively reduced by the mass% of polymer coating. In the case of the 10 mass% coated sample, there was no corrosion of Al nanoparticles. This fact suggested that the electrochemical reaction was suppressed by the polymer coating. Moreover, the reaction rate of Al nanoparticles was suppressed in proportion to the coverage percentage of the coating. Thus, to conclude, it was found that the corrosion rate of Al nanoparticles could be quantitatively suppressed by the coverage percentage of the polymer coating.  相似文献   

16.
In this study, Fe40Cr19Mo18C15B8 amorphous coatings were prepared using high velocity oxygen fuel (HVOF) technology. Different temperatures were used in the heat treatment (600 °C, 650 °C, and 700 °C) and the annealed coatings were analyzed by DSC, SEM, TEM, and XRD. XRD and DSC results showed that the coating started to form a crystalline structure after annealing at 650 °C. From the SEM observation, it can be found that when the annealing temperature of the Fe-based amorphous alloy coating reached 700 °C, the surface morphology of the coating became relatively flat. TEM observation showed that when the annealing temperature of the Fe-based amorphous alloy coating was 700 °C, crystal grains in the coating recrystallized with a grain size of 5–20 nm. SAED analysis showed that the precipitated carbide phase was M23C6 phase with different crystal orientations (M = Fe, Cr, Mo). Finally, the corrosion polarization curve showed that the corrosion current density of the coating after annealing only increased by 9.13 μA/cm2, which indicated that the coating after annealing treatment still had excellent corrosion resistance. It also proved that the Fe-based amorphous alloy coating can be used in high-temperature environments. XPS analysis showed that after annealing FeO and Fe2O3 oxide components increased, and the formation of a large number of crystals in the coating resulted in a decrease in corrosion resistance.  相似文献   

17.
This article introduces a continuous, gas-phase method for depositing thin metallic coatings onto (nano)particles using a type of physical vapor deposition (PVD) at ambient pressure and temperature. An aerosol of core particles is mixed with a metal vapor cloud formed by spark ablation by passing the aerosol through the spark zone using a hollow electrode configuration. The mixing process rapidly quenches the vapor, which condenses onto the core particles at a timescale of several tens of milliseconds in a manner that can be modeled as bimodal coagulation. Gold was deposited onto core nanoparticles consisting of silver or polystyrene latex, and silver was deposited onto gold nanoparticles. The coating morphology depends on the relative surface energies of the core and coating materials, similar to the growth mechanisms known for thin films: a coating made of a substance having a high surface energy typically results in a patchy coverage, while a coating material with a low surface energy will normally “wet” the surface of a core particle. The coated particles remain gas-borne, allowing further processing.  相似文献   

18.
To improve the radioluminescence (RL) performance of ZnO:Ga (GZO) crystal scintillators and overcome the challenge of their self-absorption, we proposed a two-layer composite scintillator consisting of a GZO wafer and a 70 nm lead halide perovskite film(CsPbBr3, CH3NH3PbBr3). The effects of the perovskite film on the RL properties were studied. The results showed that the perovskite quantum dot film substantially changed the RL spectrum of GZO and prevented self-absorption. The RL of the samples were enhanced by 66% to 151% through the photoluminescence (PL) of the perovskite film, while the energy-resolving power and spatial-resolving power were maintained at the same level as that of GZO image converters. The present experiments and discussions confirmed that the perovskite film improved the RL, and this study suggests a new wavelength regulation method among scintillators, converters, and back-end optical devices. The applications of perovskites in the field of radiation detection and imaging have been extended.  相似文献   

19.
In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.  相似文献   

20.

Background

The aim of the present study was to compare the prognostic impact of anatomic resection (AR) versus non‐anatomic resection (NAR) on patient survival after resection of a single hepatocellular carcinoma (HCC).

Methods

To control for confounding variable distributions, a 1‐to‐1 propensity score match was applied to compare the outcomes of AR and NAR. Among 710 patients with a primary, solitary HCC of <5.0 cm in diameter that was resectable by either AR or NAR from 2003 to 2007 in Japan and Korea, 355 patients underwent NAR and 355 underwent AR of at least one section with complete removal of the portal territory containing the tumor.

Results

Overall survival (OS) was better in the AR than NAR group (hazard ratio 1.67, 95% confidence interval 1.28–2.19, P < 0.001) while disease‐free survival showed no significant difference. Significantly fewer patients in the AR than NAR group developed intrahepatic HCC recurrence and multiple intrahepatic recurrences. Patients with poorly differentiated HCC who underwent AR had improved disease‐free survival and OS.

Conclusions

Anatomic resection decreases the risk of tumor recurrence and improves OS in patients with a primary, solitary HCC of <5.0 cm in diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号