首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conducting polymer composites consisting of carbon nanotubes (CNTs) as a conductive filler and polydimethylsiloxane (PDMS) as a polymer matrix were fabricated to investigate their capacitive and piezoresistive effects as pressure sensors. The pressure-sensing behavior and mechanism of the composites were compared in terms of basic configuration with a parallel plate structure. Various sensing experiments, such as sensitivity, repeatability, hysteresis, and temperature dependence according to the working principle, were conducted with varying filler contents. The hysteresis and repeatability of the pressure-sensing properties were investigated using cyclic tensile tests. In addition, a temperature test was performed at selected temperatures to monitor the change in the resistance/capacitance.  相似文献   

2.
The majority of industry using high-speed communication systems is shifting towards higher frequencies, namely the terahertz range, to meet demands of more effective data transfer. Due to the rising number of devices working in terahertz range, effective shielding of electromagnetic interference (EMI) is required, and thus the need for novel shielding materials to reduce the electromagnetic pollution. Here, we show a study on optical and electrical properties of a series of ethylene co-butyl acrylate/carbon black (EBA/CB) composites with various CB loading. We investigate the transmittance, reflectance, shielding efficiency, absorption coefficient, refractive index and complex dielectric permittivity of the fabricated composites. Finally, we report a material that exhibits superior shielding efficiency (SE)—80 dB at 0.9 THz (14.44 vol% CB loading, 1 mm thick)—which is one of the highest SE values among non-metallic composite materials reported in the literature thus far. Importantly, 99% of the incoming radiation is absorbed by the material, significantly increasing its applicability. The absorption coefficient (α) reaches ~100 cm−1 for the samples with highest CB loading. The EBA/CB composites can be used as lightweight and flexible shielding packaging materials for electronics, as passive terahertz absorbers or as radiation shields for stealth applications.  相似文献   

3.
In response to the rising need for flexible and lightweight materials capable of efficient heat transport, many studies have been conducted to improve the thermal properties of polymers via nanofillers. Among the various nanofillers, carbon nanotubes (CNTs) are considered as the most promising, owing to their excellent thermal and electrical properties. Accordingly, CNT/polymer composites can be used as flexible and lightweight heat transfer materials, owing to their low density. In this study, we fabricated multi-walled CNT (MWCNT)/polymer composites with different aspect ratios to investigate their effects on electrical and thermal properties. Through a three-roll milling process, CNTs were uniformly dispersed in the polymer matrix to form a conductive network. Enhanced electrical and thermal properties were observed in MWCNT composite with a high aspect ratio as compared to those with a low aspect ratio. The thermal conductivity of composites obtained as a function of the filler content was also compared with the results of a theoretical prediction model.  相似文献   

4.
The design of flexible sensors which can be incorporated in textile structures is of decisive importance for the future development of wearables. In addition to their technical functionality, the materials chosen to construct the sensor should be nontoxic, affordable, and compatible with future recycling. Conductive fibres were produced by incorporation of carbon black into regenerated cellulose fibres. By incorporation of 23 wt.% and 27 wt.% carbon black, the surface resistance of the fibres reduced from 1.3 × 1010 Ω·cm for standard viscose fibres to 2.7 × 103 and 475 Ω·cm, respectively. Fibre tenacity reduced to 30–50% of a standard viscose; however, it was sufficient to allow processing of the material in standard textile operations. A fibre blend of the conductive viscose fibres with polyester fibres was used to produce a needle-punched nonwoven material with piezo-electric properties, which was used as a pressure sensor in the very low pressure range of 400–1000 Pa. The durability of the sensor was demonstrated in repetitive load/relaxation cycles. As a regenerated cellulose fibre, the carbon-black-incorporated cellulose fibre is compatible with standard textile processing operations and, thus, will be of high interest as a functional element in future wearables.  相似文献   

5.
Solid particle erosion inevitably occurs if a gas–solid or liquid–solid mixture is in contact with a surface, e.g., in pneumatic conveyors. Nowadays, an erosive failure of the component after the usage of a long period has been gaining the interest of the researchers. In this research work, carbon fibre-reinforced polymer (CFRP) composites are prepared by varying the tow sizes of fibres, such as 5k, 10k, and 15k. The prepared composites are subjected to erosion studies by varying the process parameters, such as the impact angle (30, 60, and 90 degrees) and velocity (72, 100, and 129 m/s). The Taguchi orthogonal array design has been employed for the experimental plan and the erosion rate and surface roughness are observed for each run. The changes in the responses are reported for varying process parameters. The higher erodent velocity of 129m/s leads to higher erosion rates and forms poor surface quality. The minimum impact angle of 30 degrees provides higher erosion rates and higher surface roughness than the other impingement angles. Finally, the eroded surface of each sample is examined through microscopic and 3D profilometer images and the erosion mechanism is analysed at different conditions. The eroded particles supplied at lower speeds do not penetrate the composite surface. However, it is well-known that the lower the collision force, the harder the traces on the surface, yet no sign of fibre breaking or pull-out is observed. The passage of erodent particles on the composite caused surface waviness (flow trace), which prevents the surface from degrading.  相似文献   

6.
Polymers have gained attraction at the industrial level owing to their elastic and lightweight nature, as well as their astonishing mechanical and electrical applications. Their scope is limited due to their organic nature, which eventually leads to the degradation of their properties. The aim of this work was to produce polymer composites with finely dispersed metal oxide nanofillers and carbon nanotubes (CNTs) for the investigation of their charge-storage applications. This work reports the preparation of different polymeric composites with varying concentrations of metal oxide (MO) nanofillers and single-walled carbon nanotubes (SWCNTs). The successful synthesis of nanofillers (i.e., NiO and CuO) was carried out via the sonication and precipitation methods, respectively. After, the smooth and uniform polymeric composite thin films were prepared via the solution-casting methodology. Spectroscopy and diffraction techniques were used for the preliminary characterization. Scanning electron microscopy was used to check the dispersion of carbon nanotubes (CNTs) and MOs in the polymer matrix. The addition of nanofillers and carbon nanotubes (CNTs) tuned the bandgap, reduced the strain, and enhanced the elastic limit of the polymer. The addition of CNT enhanced the mechanical strength of the composite; however, it increased the conductivity, which was tuned by using metal oxides. By increasing the concentration of NiO and CuO from 2% to 6% bandgap of PVA, which is 5–6 eV reduced to 4.41 and 4.34 eV, Young’s moduli of up to 59 and 57.7 MPa, respectively, were achieved. Moreover, improved dielectric properties were achieved, which shows that the addition of metal oxide enhances the dielectric behavior of the material.  相似文献   

7.
An innovational self-reduction molecular-level-mixing method was proposed as a simplified manufacturing technique for the production of carbon nanotube copper matrix composites (CNT/Cu). Copper matrix composites reinforced with varying amounts of (0.1, 0.3, 0.5 and 0.7 wt%) carbon nanotubes were fabricated by using this method combined with hot-pressing sintering technology. The surface structure and elemental distribution during the preparation of CNT/Cu mixing powder were investigated. The microstructure and comprehensive properties of the CNT/Cu composites were examined by metallography, mechanical and electrical conductivity tests. The results revealed that the CNT/Cu could be produced by a high temperature reaction at 900 degrees under vacuum, during which the carbon atoms in the carbon nanotubes reduced the divalent copper on the surface to zero-valent copper monomers. The decrease in the ratio of D and G peaks on the Raman spectra indicated that the defective spots on the carbon nanotubes were wrapped and covered by the copper atoms after a self-reduction reaction. The prepared CNT/Cu powders were uniformly embedded in the grain boundaries of the copper matrix materials and effectively hindered the tensile fracture. The overall characteristics of the CNT/Cu composites steadily increased with increasing CNT until the maximum at 0.7 wt%. The performance was achieved with a hardness of 86.1 HV, an electrical conductivity of 81.8% IACS, and tensile strength of 227.5 MPa.  相似文献   

8.
Carbon nanotube/continuous carbon fiber–reinforced poly(etherketoneketone) (CNT/CCF/PEKK) prepreg tapes were prepared by the wet powder impregnation method, and then the prepreg tapes were molded into laminates. The effects of carbon nanotubes on the mechanical properties, conductivity, thermal conductivity and crystallinity of the composites were studied by universal testing machine, thermal conductivity and resistivity tester, dynamic mechanical analyzer (DMA) and differential scanning calorimeter (DSC). The results show that when the content of carbon nanotubes is 0.5 wt% (relative to the mass of PEKK resin, the same below), the flexural strength and interlaminar shear strength of the laminates reach the maximum, which are increased by 15.99% and 18.16%, respectively, compared with the laminates without carbon nanotubes. The results of conductivity and thermal conductivity show that the higher the content of carbon nanotubes, the better the conductivity and thermal conductivity of the material. DSC results show that the addition of CNT promoted the crystallization of PEKK in the material and decreased the cold crystallization of PEKK. DMA results show that the deformation resistance of the material can be improved by adding an appropriate amount of CNT and the bonding between CF and PEKK can be enhanced, while excessive CNT destroys this phenomenon.  相似文献   

9.
Ke Zhang  Hyoung Jin Choi 《Materials》2014,7(5):3399-3414
This review article summarizes the preparation of polymer/carbon nanotube (CNT) nanocomposites and their applications as electrorheological (ER) fluids. These ER fluids exhibited a controllable electro-response under an applied electric field due to the presence of well-dispersed CNTs. The background, morphology, preparations, and characteristics of these materials are discussed, specifically focusing on the various approaches in the preparation of polymer/CNT nanocomposites, morphology, and their effects on the ER characteristics.  相似文献   

10.
This article reviews current efforts to make glucose sensors based on the inherent optical properties of single walled carbon nanotubes. The advantages of single walled carbon nanotubes over traditional organic and nanoparticle fluorophores for in vivo-sensing applications are discussed. Two recent glucose sensors made by our group are described, with the first being an enzyme-based glucose sensor that couples a reaction mediator, which quenches nanotube fluorescence, on the surface of the nanotube with the reaction of the enzyme. The second sensor is based on competitive equilibrium binding between dextran-coated nanotubes and concanavalin A. The biocompatibility of a model sensor is examined using the chicken embryo chorioallantoic membrane as a tissue model. The advantages of measuring glucose concentration directly, like most optical sensors, versus measuring the flux in glucose concentration, like most electrochemical sensors, is discussed.  相似文献   

11.
In this work, we present a comparative study of the impact of secondary carbon nanofillers on the electrical and thermal conductivity, thermal stability, and mechanical properties of hybrid conductive polymer composites (CPC) based on high loadings of synthetic graphite and epoxy resin. Two different carbon nanofillers were chosen for the investigation—low-cost multi-layered graphene nanoplatelets (GN) and carbon black (CB), which were aimed at improving the overall performance of composites. The samples were obtained by a simple, inexpensive, and effective compression molding technique, and were investigated by the means of, i.a., scanning electron microscopy, Raman spectroscopy, electrical conductivity measurements, laser flash analysis, and thermogravimetry. The tests performed revealed that, due to the exceptional electronic transport properties of GN, its relatively low specific surface area, good aspect ratio, and nanometric sizes of particles, a notable improvement in the overall characteristics of the composites (best results for 4 wt % of GN; σ = 266.7 S cm−1; λ = 40.6 W mK−1; fl. strength = 40.1 MPa). In turn, the addition of CB resulted in a limited improvement in mechanical properties, and a deterioration in electrical and thermal properties, mainly due to the too high specific surface area of this nanofiller. The results obtained were compared with US Department of Energy recommendations regarding properties of materials for bipolar plates in fuel cells. As shown, the materials developed significantly exceed the recommended values of the majority of the most important parameters, indicating high potential application of the composites obtained.  相似文献   

12.
Polymer composites with electrically conductive inclusions are intensively developed for microwave shielding applications, where lightweight and elastic coatings are necessary. In this paper, dielectric properties of hybrid polyethylene composites containing cobalt nanoparticles and multi-wall carbon nanotubes (MWCNT) were investigated in the wide frequency range of 20–40 GHz for electromagnetic shielding applications. The percolation threshold in the hybrid system is close to 6.95 wt% MWCNT and 0.56 Co wt%. Cobalt nanoparticles (up to highest investigated concentration 4.8 wt%) had no impact on the percolation threshold, and for the fixed total concentration of fillers, the complex dielectric permittivity is higher for composites with bigger MWCNT concentrations. Moreover, the microwave complex dielectric permittivity of composites with high concentration of fillers is quite high (for composites with 13.4 wt% MWCNT and 1.1 wt% Co ε′ ≈ ε″ ≈ 20 at 30 GHz, it corresponds to microwave absorption 50% of 1 mm thickness plate); therefore, these composites are suitable for electromagnetic shielding applications.  相似文献   

13.
We analyzed the dispersion state of carbon nanotubes (CNTs) in m-cresol using dispersion stability analysis, optical microscopy, and UV-vis spectroscopy. The high dispersion stability of CNT/m-cresol dispersion was observed when it was sufficiently treated with ultrasonication. Despite the high dispersion stability, optical microscopy and UV-vis spectroscopy analysis of various CNT/m-cresol dispersions revealed that CNT bundles in m-cresol were not dispersed into individual CNTs. We also propose that the blue-shift of the G peak of CNTs in m-cresol in the Raman spectrum, which had been reported as evidence of the formation of the charge-transfer complex between m-cresol and CNTs, is rather attributed to the interference of m-cresol’s inherent peak at around 1600 cm−1.  相似文献   

14.
The electrical properties of silicone composite films filled with silver (Ag) nanoparticle-decorated multi-walled carbon nanotubes (MWNT) prepared by solution processing are investigated. Pristine MWNT is oxidized and converted to the acyl chloride-functionalized MWNT using thionyl chloride, which is subsequently reacted with amine-terminated poly(dimethylsiloxane) (APDMS). Thereafter, APDMS-modified MWNT are decorated with Ag nanoparticles and then reacted with a poly(dimethylsiloxane) solution to form Ag-decorated MWNT silicone (Ag-decorated MWNT-APDMS/Silicone) composite. The morphological differences of the silicone composites containing Ag-decorated MWNT and APDMS-modified MWNT are observed by transmission electron microscopy (TEM) and the surface conductivities are measured by the four-probe method. Ag-decorated MWNT-APDMS/Silicone composite films show higher surface electrical conductivity than MWNT/silicone composite films. This shows that the electrical properties of Ag-decorated MWNT-APDMS/silicone composite films can be improved by the surface modification of MWNT with APDMS and Ag nanoparticles, thereby expanding their applications.  相似文献   

15.
We demonstrate the fabrication of an all-carbon electrode by plasma-enhanced chemical vapor deposition for use in flexible electrochemical applications. The electrode is composed of vertically aligned carbon nanotubes that are grown directly on a flexible graphite foil. Being all-carbon, the simple fabrication process and the excellent electrochemical characteristics present an approach through which high-performance, highly-stable and cost-effective electrochemical applications can be achieved.  相似文献   

16.
As a new two-dimensional material, black arsenic phosphorus (B-AsP) has emerged as a promising electrode for lithium-ion batteries (LIBs) due to its large theoretical capacity and ability to absorb large amounts of Li atoms. However, the poor electronic conductivity and large volume expansion during the lithiation/delithiation process have largely impeded the development of B-AsP electrodes. In this study, graphene oxide (GO)/B-AsP/carbon nanotubes (CNTs) with remarkable lithium-storage property were fabricated via CVD and ultrasound-assisted method. The electrochemical behavior of the GO/B-AsP/CNTs was investigated as an anode in lithium-ion batteries. From the results, as a new-type anode for LIBs, GO/B-AsP/CNTs composite demonstrated a stable capacity of 1286 and 339 mA h g−1 at the current density of 0.1 and 1 A g−1, respectively. The capacity of GO/B-AsP/CNTs was 693 mA h g−1 after 50 cycles, resulting in capacity retention of almost 86%. In addition, the stable P-C and As-C bonds were formed between B-AsP, GO, and CNTs. Thus, volume expansion of B-AsP was alleviated and the capacity was increased due to the confining effect of GO and CNTs.  相似文献   

17.
In this study, we focus on processing and characterizing composite material structures made of carbon nanotubes (CNTs) and reproducibly engineering macro-pores inside their structure. Highly porous bucky-papers were fabricated from pure carbon nanotubes by dispersing and stabilizing large 1 μm polystyrene beads within a carbon nanotube suspension. The polystyrene beads, homogeneously dispersed across the thickness of the bucky-papers, were then either dissolved or carbonized to generate macro cavities of different shape and properties. The impact of adding these macro cavities on the porosity, specific surface area and Young’s modulus was investigated and some benefits of the macro cavities will be demonstrated.  相似文献   

18.
The popular applications of Additive Manufactured (AM) polymer materials in engineering, medical, and industrial fields have been widely recognized due to their high-speed production despite their complex design shapes. Fused Deposition Modeling (FDM) is the technique that has become the most renowned AM process due to its simplicity and because it is the cheapest method. The main objective of this research is to perform a numerical simulation of the thermo-mechanical behaviour of AM polymer with continuous carbon fibre reinforcement exposed to elevated temperatures. The influence of global thermal loads on AM material was focused on mechanical property changes at the microscale (level of fiber–matrix interaction). The mechanical response (strain/stress distribution) of the AM material on the temperature loading was modelled using the finite element method (FEM). The coupled thermal-displacement analysis was used during the numerical calculations. The strain in the sample due to its exposition on elevated temperature was measured using fibre Bragg grating (FBG) sensors. The numerical results were compared with the experimental results achieved for the sample exposure to the same thermal conditions showing good agreement. A strong influence of the temperature on the matrix structure and the condition of bondings between fibres and matrix was observed.  相似文献   

19.
As environmentally friendly materials, carbon black and bio-oil can be used as modifiers to effectively enhance the poor high-temperature and low-temperature performance of base asphalt and its mixture. Different carbon black and bio-oil contents and shear time were selected as the test influencing factors in this work. Based on the Box–Behnken design (BBD), carbon black/bio-oil composite modified asphalt was prepared to perform the softening point, penetration, multiple stress creep and recovery (MSCR), and bending beam rheometer (BBR) tests. The response surface method (RSM) was used to analyze the test results. In addition, the base asphalt mixtures and the optimal performance carbon black/bio-oil composite modified asphalt mixtures were formed for rutting and low-temperature splitting tests. The results show that incorporating carbon black can enhance the asphalt’s high-temperature performance by the test results of irrecoverable creep compliance (Jnr) and strain recovery rate (R). By contrast, the stiffness modulus (S) and creep rate (M) test results show that bio-oil can enhance the asphalt’s low-temperature performance. The quadratic function models between the performance indicators of carbon black/bio-oil composite modified asphalt and the test influencing factors were established based on the RSM. The optimal performance modified asphalt mixture’s carbon black and bio-oil content was 15.05% and 9.631%, and the shear time was 62.667 min. It was revealed that the high-temperature stability and low-temperature crack resistance of the carbon black/bio-oil composite modified asphalt mixture were better than that of the base asphalt mixture because of its higher dynamic stability (DS) and toughness. Therefore, carbon black/bio-oil composite modified asphalt mixture can be used as a new type of choice for road construction materials, which is in line with green development.  相似文献   

20.
The development of smart materials is a basic prerequisite for the development of new technologies enabling the continuous non-destructive diagnostic analysis of building structures. Within this framework, the piezoresistive behavior of fly ash geopolymer with added carbon black under compression was studied. Prepared cubic specimens were doped with 0.5, 1 and 2% carbon black and embedded with four copper electrodes. In order to obtain a complex characterization during compressive loading, the electrical resistivity, longitudinal strain and acoustic emission were recorded. The samples were tested in two modes: repeated loading under low compressive forces and continuous loading until failure. The results revealed piezoresistivity for all tested mixtures, but the best self-sensing properties were achieved with 0.5% of carbon black admixture. The complex analysis also showed that fly ash geopolymer undergoes permanent deformations and the addition of carbon black changes its character from quasi-brittle to rather ductile. The combination of electrical and acoustic methods enables the monitoring of materials far beyond the working range of a strain gauge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号