首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to provide information on energy availability (EA), macronutrient intake, nutritional periodization practices, and nutrition knowledge in young female cross-country skiers. A total of 19 skiers filled in weighted food and training logs before and during a training camp. Nutrition knowledge was assessed via a validated questionnaire. EA was optimal in 11% of athletes at home (mean 33.7 ± 9.6 kcal·kgFFM−1·d−1) and in 42% at camp (mean 40.3 ± 17.3 kcal·kgFFM−1·d−1). Most athletes (74%) failed to meet recommendations for carbohydrate intake at home (mean 5.0 ± 1.2 g·kg−1·d−1) and 63% failed to do so at camp (mean 7.1 ± 1.6 g·kg−1·d−1). The lower threshold of the pre-exercise carbohydrate recommendations was met by 58% and 89% of athletes while percentages were 26% and 89% within 1 h after exercise, at home and at camp, respectively. None of the athletes met the recommendations within 4 h after exercise. Nutrition knowledge was associated with EA at home (r = 0.52, p = 0.023), and with daily carbohydrate intake at home (r = 0.62, p = 0.005) and at camp (r = 0.52, p = 0.023). Carbohydrate intake within 1 and 4 h post-exercise at home was associated with better nutrition knowledge (r = 0.65, p = 0.003; r = 0.53, p = 0.019, respectively). In conclusion, young female cross-county skiers had difficulties meeting recommendations for optimal EA and carbohydrate intake. Better nutrition knowledge may help young athletes to meet these recommendations.  相似文献   

2.
This study investigated the energy intake and expenditure of professional adolescent academy-level soccer players during a competitive week. Over a seven day period that included four training days, two rest days and a match day, energy intake (self-reported weighed food diary and 24-h recall) and expenditure (tri-axial accelerometry) were recorded in 10 male players from a professional English Premier League club. The mean macronutrient composition of the dietary intake was 318 ± 24 g·day−1 (5.6 ± 0.4 g·kg−1 BM) carbohydrate, 86 ± 10 g·day−1 (1.5 ± 0.2 g·kg−1 BM) protein and 70 ± 7 g·day−1 (1.2 ± 0.1 g·kg−1 BM) fats, representing 55% ± 3%, 16% ± 1%, and 29% ± 2% of mean daily energy intake respectively. A mean daily energy deficit of −1302 ± 1662 kJ (p = 0.035) was observed between energy intake (9395 ± 1344 kJ) and energy expenditure (10679 ± 1026 kJ). Match days (−2278 ± 2307 kJ, p = 0.012) and heavy training days (−2114 ± 2257 kJ, p = 0.016) elicited the greatest deficits between intake and expenditure. In conclusion, the mean daily energy intake of professional adolescent academy-level soccer players was lower than the energy expended during a competitive week. The magnitudes of these deficits were greatest on match and heavy training days. These findings may have both short and long term implications on the performance and physical development of adolescent soccer players.  相似文献   

3.
This study examined sweat rate, sweat sodium concentration [Na+], and ad-libitum carbohydrate and fluid intakes in elite female soccer players during training (n = 19) and a match (n = 8); eight completed both for comparisons. Body mass (kg) was obtained before and after exercise to calculate sweat rate. The sweat [Na+] was determined from absorbent patches on the thigh or back. Sweat rate, percentage body mass change, and sweat [Na+] for 19 players during training were 0.47 ± 0.19 L·h−1, +0.19 ± 0.65%, and 28 ± 10 mmol·L−1, respectively. Sweat rate was higher during a match (0.98 ± 0.34 L·h−1) versus training (0.49 ± 0.26 L·h−1, p = 0.007). Body mass losses were greater post-match (−1.12 ± 0.86%) than training (+0.29 ± 0.34%, p = 0.003). Sweat [Na+] was similar for training (29 ± 9 mmol·L−1) and a match (35 ± 9 mmol·L−1) (p = 0.215). There were no differences in match versus training carbohydrate intakes (2.0 ± 2.3 g·h−1, 0.9 ± 1.5 g·h−1, respectively, p = 0.219) or fluid intakes (0.71 ± 0.30 L·h−1, 0.53 ± 0.21 L·h−1, respectively, p = 0.114). In conclusion, female soccer players’ sweat rates were higher during a match than during training, and carbohydrate intakes were below recommendations for matches and training.  相似文献   

4.
Background: Grain security is crucial for social stability and ecosystem conservation regionally and globally, and it is particularly concerned widely in the Qinghai-Tibet Plateau (QTP) due to its high altitude and harsh climate for agriculture. Method: In this paper, we calculated and analyzed per capita food and grain consumption, including direct grain consumption, grain for fodder, industry consumption, seeds consumption, and wastage consumption and its changes in the QTP during 1995–2019. Results: The results showed that (1) in 2019, the average food consumption per capita was 333.35 kg, was stable since 1995. The dietary structure of residents was composed of direct grain consumption (44.15%), meat (10.72%), and milk (6.94%). The consumption of meat and milk was higher than the national average. (2) The average daily intake of energy and protein, animal protein, and the ratio of high-quality protein and fat energy were 2156.21 kcal·d−1, 73.53 g·d−1, 23.06 g·d−1, 38.32%, and 27.77% in 2019. Their changes were −342.98 kcal·d−1, −8.91 g·d−1, 11.16 g·d−1, 18.37%, and 11.08%, respectively. (3) The corresponding grain consumption per capita was 284.90 kg·a−1 in 1995, 262.19 kg·a−1 in 2010, and then remained stable until 2019. Conclusion: The study suggested that food consumption per capital was guaranteed at the well-off level since 2010, and food and dietary structure of residents were corresponding to physical geographic and climatic environment in the QTP. The conflict between food security and the ecosystem conservation can be managed without scarifying nature as the total grain consumption was stable since 2010, and the yield per unit area and total grain yield were both increasing since 2003 for agricultural condition improved in the QTP.  相似文献   

5.
Background: Previous research has reported that elite Gaelic football players’ carbohydrate (CHO) intakes are sub-optimal, especially, in the lead up to competitive matches. Despite clear decrements in running performance across elite Gaelic football matches, there are no studies that have investigated nutrition interventions on match-related Gaelic football performance. The aim of this study was to determine whether a higher-CHO diet in line with sports nutrition guidelines can improve Gaelic football-related performance compared to lower CHO intakes previously observed in Gaelic footballers. Methods: Twelve Gaelic football players completed a Gaelic football simulation protocol (GFSP) on two occasions after consuming a high-CHO diet (7 g·kg−1) (HCHO) or an energy-matched lower-CHO diet (3.5 g·kg−1) (L-CHO) for 48 h. Movement demands and heart rate were measured using portable global positioning systems devices. Countermovement jump height (CMJ) and repeated-sprint ability (RSA) were measured throughout each trial. Expired respiratory gases were collected throughout the trial using a portable gas analyser. Blood samples were taken at rest, half-time, and post-simulation. Results: There was no significant difference in total distance (p = 0.811; η2 = 0.005) or high-speed running distance (HSRD) covered between both trials. However, in the second half of the HCHO trial, HSRD was significantly greater compared to the second half of the LCHO trial (p = 0.015). Sprint distance covered during GFSP was significantly greater in HCHO (8.1 ± 3.5 m·min−1) compared with LCHO (6.4 ± 3.2 m·min−1) (p = 0.011; η2 = 0.445). RSA performance (p < 0.0001; η2 = 0.735) and lower body power (CMJ) (p < 0.0001; η2 = 0.683) were significantly greater during the HCHO trial compared to LCHO. Overall CHO oxidation rates were significantly greater under HCHO conditions compared to LCHO (3.3 ± 0.5 vs. 2.7 ± 0.6 g·min−1) (p < 0.001; η2 = 0.798). Blood lactate concentrations were significantly higher during HCHO trial versus LCHO (p = 0.026; η2 = 0.375). There were no significant differences in plasma glucose, non-esterified fatty acids (NEFAs), and glycerol concentration between trials. In both trials, all blood metabolites were significantly elevated at half-time and post-trial compared to pre-trial. Conclusion: These findings indicate that a higher-CHO diet can reduce declines in physical performance during simulated Gaelic football match play.  相似文献   

6.
This study assessed the effects of a 7-day creatine (CRE) supplementation on the load–velocity profile and repeated sub-maximal bouts in the deep squat using mean propulsive velocity (MPV) and mean propulsive power (MPP). Eleven strength-trained men (31.4 ± 5.4 years) supplemented 0.3 g·kg−1·d−1 CRE or a placebo (PLA, maltodextrin) for seven days in a randomized order, separated by a 30-day washout period. Prior to and after the supplementation, the subjects performed an incremental maximal strength (1RM) test, as well as 3 × 10 repetitions and a repetitions-to-failure test (RFT), all at 70% 1RM. Maximal strength remained statistically unaltered in CRE (p = 0.107) and PLA (p = 0.568). No statistical main effect for time (p = 0.780) or interaction (p = 0.737) was observed for the load–velocity profile. The number of repetitions during RFT remained statistically unaltered in both conditions (CRE: +16.8 ± 32.8%, p = 0.112; PLA: +8.2 ± 47.2%, p = 0.370), but the effect size was larger in creatine compared to placebo (g = 0.51 vs. g = 0.01). The total work during RFT increased following creatine supplementation (+23.1 ± 35.9%, p = 0.043, g = 0.70) but remained statistically unaltered in the placebo condition (+15.0 ± 60.8%, p = 0.801, g = 0.08; between conditions: p = 0.410, g = 0.25). We showed that CRE loading over seven days did not affect load–velocity characteristics but may have increased total work and power output during submaximal deep squat protocols, as was indicated by moderate effect sizes.  相似文献   

7.
Suppression of insulin-like growth factor 1 (IGF-1) and leptin secondary to low energy availability (LEA) may contribute to adverse effects on bone health. Whether a high-protein diet attenuates these effects has not been tested. Seven men completed three five-day conditions operationally defined as LEA (15 kcal kg fat-free mass (FFM)−1·day−1) with low protein (LEA-LP; 0.8 g protein·kg body weight (BW)−1), LEA with high protein (LEA-HP; 1.7 g protein·kg BW−1) and control (CON; 40 kcal·kg FFM−1·day−1, 1.7 g protein·kg BW−1). In all conditions, participants expended 15 kcal·kg FFM−1·day−1 during supervised cycling sessions. Serum samples were analyzed for markers of bone turnover, IGF-1 and leptin. The decrease in leptin during LEA-LP (−65.6 ± 4.3%) and LEA-HP (−54.3 ± 16.7%) was greater than during CON (−25.4 ± 11.4%; p = 0.02). Decreases in P1NP (p = 0.04) and increases in CTX-I (p = 0.04) were greater in LEA than in CON, suggesting that LEA shifted bone turnover in favour of bone resorption. No differences were found between LEA-LP and LEA-HP. Thus, five days of LEA disrupted bone turnover, but these changes were not attenuated by a high-protein diet.  相似文献   

8.
9.
This study investigated the efficacy of ingesting an oral rehydration solution (DD) that has a high electrolyte concentration after exercise on fluid balance and cycling performance in comparison with a sports drink (SD) and water (WA). Nine healthy males aged 24 ± 2 years (mean ± SD), with peak oxygen uptake (VO2 peak) 55 ± 6 mL·kg−1·min−1 completed three experimental trials in a randomised manner ingesting WA, SD (carbohydrates: 62 g·L−1, sodium: 31 ± 3 mmol·L−1) or DD (carbohydrates: 33 g·L−1, sodium: 60 ± 3 mmol·L−1). On all trials, fluid was ingested during 75 min cycling at 65% VO2 peak (temperature: 30.4 ± 0.3 °C, relative humidity: 76 ± 1%, simulated wind speed: 8.0 ± 0.6 m·s−1) and during 2 h of recovery (temperature: 23.0 ± 1.0 °C, relative humidity: 67 ± 2%), with the total volume equivalent to 150% of sweat loss during the ride. A 45 min pre-load cycling time trial at a 65% VO2 peak followed by a 20 km time trial was conducted after a further 3 h of recovery. Fluid retention was higher with DD (30 ± 15%) than WA (−4 ± 19%; p < 0.001) and SD (10 ± 15%; p = 0.002). Mean ratings of palatability were similar among drinks (WA: 4.25 ± 2.60; SD: 5.61 ± 1.79; DD: 5.40 ± 1.58; p = 0.33). Although time trial performance was similar across all three trials (WA: 2365 ± 321 s; SD: 2252 ± 174 s; DD: 2268 ± 184 s; p = 0.65), the completion time was faster in eight participants with SD and seven participants with DD than with WA. Comparing SD with DD, completion time was reduced in five participants and increased in four participants. DD was more effective at restoring the fluid deficit during recovery from exercise than SD and WA without compromising the drink’s palatability with increased sodium concentration. Most individuals demonstrated better endurance exercise time trial performance with DD and SD than with WA.  相似文献   

10.
The influx of essential amino acids into skeletal muscle is primarily mediated by the large neutral amino acid transporter 1 (LAT1), which is dependent on the glutamine gradient generated by the sodium-dependent neutral amino acid transporter 2 (SNAT2). The protein expression and membrane localization of LAT1 may be influenced by amino acid ingestion and/or resistance exercise, although its acute influence on dietary amino acid incorporation into skeletal muscle protein has not been investigated. In a group design, healthy males consumed a mixed carbohydrate (0.75 g·kg−1) crystalline amino acid (0.25 g·kg−1) beverage enriched to 25% and 30% with LAT1 substrates L-[1-13C]leucine (LEU) and L-[ring-2H5]phenylalanine (PHE), respectively, at rest (FED: n = 7, 23 ± 5 y, 77 ± 4 kg) or after a bout of resistance exercise (EXFED: n = 7, 22 ± 2 y, 78 ± 11 kg). Postprandial muscle biopsies were collected at 0, 120, and 300 min to measure transporter protein expression (immunoblot), LAT1 membrane localization (immunofluorescence), and dietary amino acid incorporation into myofibrillar protein (ΔLEU and ΔPHE). Basal LAT1 and SNAT2 protein contents were correlated with each other (r = 0.55, p = 0.04) but their expression did not change across time in FED or EXFED (all, p > 0.05). Membrane localization of LAT1 did not change across time in FED or EXFED whether measured as outer 1.5 µm intensity or membrane-to-fiber ratio (all, p > 0.05). Basal SNAT2 protein expression was not correlated with ΔLEU or ΔPHE (all, p ≥ 0.05) whereas basal LAT1 expression was negatively correlated with ΔPHE in FED (r = −0.76, p = 0.04) and EXFED (r = −0.81, p = 0.03) but not ΔLEU (p > 0.05). Basal LAT1 membrane localization was not correlated with ΔLEU or ΔPHE (all, p > 0.05). Our results suggest that LAT1/SNAT2 protein expression and LAT1 membrane localization are not influenced by acute anabolic stimuli and do not positively influence the incorporation of dietary amino acids for de novo myofibrillar protein synthesis in healthy young males.  相似文献   

11.
This study investigated the effect of decaffeinated green tea extract (dGTE), with or without antioxidant nutrients, on fat oxidation, body composition and cardio-metabolic health measures in overweight individuals engaged in regular exercise. Twenty-seven participants (20 females, 7 males; body mass: 77.5 ± 10.5 kg; body mass index: 27.4 ± 3.0 kg·m2; peak oxygen uptake (V.O2peak): 30.2 ± 5.8 mL·kg−1·min−1) were randomly assigned, in a double-blinded manner, either: dGTE (400 mg·d−1 (−)-epigallocatechin−3-gallate (EGCG), n = 9); a novel dGTE+ (400 mg·d−1 EGCG, quercetin (50 mg·d−1) and α-lipoic acid (LA, 150 mg·d−1), n = 9); or placebo (PL, n = 9) for 8 weeks, whilst maintaining standardised, aerobic exercise. Fat oxidation (‘FATMAX’ and steady state exercise protocols), body composition, cardio-metabolic and blood measures (serum glucose, insulin, leptin, adiponectin, glycerol, free fatty acids, total cholesterol, high [HDL-c] and low-density lipoprotein cholesterol [LDL-c], triglycerides, liver enzymes and bilirubin) were assessed at baseline, week 4 and 8. Following 8 weeks of dGTE+, maximal fat oxidation (MFO) significantly improved from 154.4 ± 20.6 to 224.6 ± 23.2 mg·min−1 (p = 0.009), along with a 22.5% increase in the exercise intensity at which fat oxidation was deemed negligible (FATMIN; 67.6 ± 3.6% V.O2peak, p = 0.003). Steady state exercise substrate utilisation also improved for dGTE+ only, with respiratory exchange ratio reducing from 0.94 ± 0.01 at week 4, to 0.89 ± 0.01 at week 8 (p = 0.004). This corresponded with a significant increase in the contribution of fat to energy expenditure for dGTE+ from 21.0 ± 4.1% at week 4, to 34.6 ± 4.7% at week 8 (p = 0.006). LDL-c was also lower (normalised fold change of −0.09 ± 0.06) for dGTE+ by week 8 (p = 0.038). No other significant effects were found in any group. Eight weeks of dGTE+ improved MFO and substrate utilisation during exercise, and lowered LDL-c. However, body composition and cardio-metabolic markers in healthy, overweight individuals who maintained regular physical activity were largely unaffected by dGTE.  相似文献   

12.
Aim: The purpose of this study was to evaluate hydration status, fluid intake, sweat rate, and sweat sodium concentration in recreational tropical native runners. Methods: A total of 102 males and 64 females participated in this study. Participants ran at their self-selected pace for 30–100 min. Age, environmental conditions, running profiles, sweat rates, and sweat sodium data were recorded. Differences in age, running duration, distance and pace, and physiological changes between sexes were analysed. A p-value cut-off of 0.05 depicted statistical significance. Results: Males had lower relative fluid intake (6 ± 6 vs. 8 ± 7 mL·kg−1·h−1, p < 0.05) and greater relative fluid balance deficit (−13 ± 8 mL·kg−1·h−1 vs. −8 ± 7 mL·kg−1·h−1, p < 0.05) than females. Males had higher whole-body sweat rates (1.3 ± 0.5 L·h−1 vs. 0.9 ± 0.3 L·h−1, p < 0.05) than females. Mean rates of sweat sodium loss (54 ± 27 vs. 39 ± 22 mmol·h−1) were higher in males than females (p < 0.05). Conclusions: The sweat profile and composition in tropical native runners are similar to reported values in the literature. The current fluid replacement guidelines pertaining to volume and electrolyte replacement are applicable to tropical native runners.  相似文献   

13.
Caffeine supplementation has shown to be an effective ergogenic aid enhancing athletic performance, although limited research within female populations exists. Therefore, the aim of the investigation was to assess the effect of pre-exercise caffeine supplementation on strength performance and muscular endurance in strength-trained females. In a double-blind, randomised, counterbalanced design, fourteen strength-trained females using hormonal contraception consumed either 3 or 6 mg·kg−1 BM of caffeine or placebo (PLA). Following supplementation, participants performed a one-repetition maximum (1RM) leg press and repetitions to failure (RF) at 60% of their 1RM. During the RF test, rating of perceived exertion (RPE) was recorded every five repetitions and total volume (TV) lifted was calculated. Repeated measures ANOVA revealed that RF (p = 0.010) and TV (p = 0.012) attained significance, with pairwise comparisons indicating a significant difference between 3 mg·kg−1 BM and placebo for RF (p = 0.014), with an effect size of 0.56, and for 6 mg·kg−1 BM (p = 0.036) compared to the placebo, with an effect size of 0.65. No further significance was observed for 1RM or for RPE, and no difference was observed between caffeine trials. Although no impact on lower body muscular strength was observed, doses of 3 and 6 mg·kg−1 BM of caffeine improved lower body muscular endurance in resistance-trained females, which may have a practical application for enhancing resistance training stimuli and improving competitive performance.  相似文献   

14.
The main objective of this pilot study was to determine the association between augmented renal clearance (ARC), urinary nitrogen loss and muscle wasting in critically ill trauma patients. We conducted a retrospective analysis of a local database in 162 critically ill trauma patients without chronic renal dysfunction. Nutritional-related parameters and 24 h urinary biochemical analyses were prospectively collected and averaged over the first ten days after admission. Augmented renal clearance was defined by a mean creatinine clearance (CLCR) > 130 mL/min/1.73 m2. The main outcome was the cumulated nitrogen balance at day 10. The secondary outcome was the variation of muscle psoas cross-sectional area (ΔCSA) calculated in the subgroup of patients who underwent at least two abdominal CT scans during the ICU length of stay. Overall, there was a significant correlation between mean CLCR and mean urinary nitrogen loss (normalized coefficient: 0.47 ± 0.07, p < 0.0001). ARC was associated with a significantly higher urinary nitrogen loss (17 ± 5 vs. 14 ± 4 g/day, p < 0.0001) and a lower nitrogen balance (−6 ± 5 vs. −4 ± 5 g/day, p = 0.0002), without difference regarding the mean protein intake (0.7 ± 0.2 vs. 0.7 ± 0.3 g/kg/day, p = 0.260). In the subgroup of patients who underwent a second abdominal CT scan (N = 47), both ΔCSA and %ΔCSA were higher in ARC patients (−33 [−41; −25] vs. −15 [−29; −5] mm2/day, p = 0.010 and −3 [−3; −2] vs. −1 [−3; −1] %/day, p = 0.008). Critically ill trauma patients with ARC are thus characterized by a lower nitrogen balance and increased muscle loss over the 10 first days after ICU admission. The interest of an increased protein intake (>1.5 g/kg/day) in such patients remains a matter of controversy and must be confirmed by further randomized trials.  相似文献   

15.
Field-based team sports present large energetic demands given their intermittent high-intensity nature. Current evidence suggests that the dietary intake of female athletes may be insufficient to meet such demands, resulting in negative consequences for athletic performance and health. The primary aim of this review was to therefore assess the adequacy of dietary intake of female field-based team sport athletes when compared to dietary recommendations. A systematic search of databases, including PubMed, Web of Science, SPORTDiscus, and OpenGrey, was performed from the earliest record available until July 2020, obtaining an initial total of 2588 articles. To be included within the final review, articles were required to provide a quantitative assessment of baseline dietary intake specific to the target population. A total of 20 studies (n = 462) met the full eligibility criteria. A majority reported that the dietary intake of female field-based team sport athletes was insufficient in overall energy (2064 ± 309 kcal·day−1), carbohydrate (4.3 ± 1.2 g·kg·day−1), and iron intake (13.6 ± 6.2 mg·day−1) when compared to recommendations. Future research is required to establish why female team sport athletes consistently demonstrate deficient dietary practices, and to explore the potential negative consequences of this.  相似文献   

16.
Manipulating dietary macronutrient intake may modulate adaptive responses to exercise, and improve endurance performance. However, there is controversy as to the impact of short-term dietary modification on athletic performance. In a parallel-groups, repeated measures study, 16 trained endurance runners (maximal oxygen uptake (V˙O2max): 64.2 ± 5.6 mL·kg−1·min−1) were randomly assigned to, and provided with, either a high-protein, reduced-carbohydrate (PRO) or a high-carbohydrate (CHO) isocaloric-matched diet. Participants maintained their training load over 21-consecutive days with dietary intake consisting of 7-days habitual intake (T1), 7-days intervention diet (T2) and 7-days return to habitual intake (T3). Following each 7-day dietary period (T1–T3), a micro-muscle biopsy was taken for assessment of gene expression, before participants underwent laboratory assessment of a 10 km treadmill run at 75% V˙O2max, followed by a 95% V˙O2max time to exhaustion (TTE) trial. The PRO diet resulted in a modest change (1.37-fold increase, p = 0.016) in AMPK expression, coupled with a significant increase in fat oxidation (0.29 ± 0.05 to 0.59 ± 0.05 g·min−1, p < 0.0001). However, a significant reduction of 23.3% (p = 0.0003) in TTE post intervention was observed; this reverted back to pre levels following a return to the habitual diet. In the CHO group, whilst no change in sub-maximal fuel utilisation occurred at T2, a significant 6.5% increase in TTE performance (p = 0.05), and a modest, but significant, increase in AMPK (p = 0.042) and PPAR (p = 0.029) mRNA expression compared to T1 were observed; with AMPK (p = 0.011) and PPAR (p = 0.044) remaining significantly elevated at T3. In conclusion, a 7-day isocaloric high protein diet significantly compromised high intensity exercise performance in trained runners with no real benefit on gene markers of training adaptation. A significant increase in fat oxidation during submaximal exercise was observed post PRO intervention, but this returned to pre levels once the habitual diet was re-introduced, suggesting that the response was driven via fuel availability rather than cellular adaptation. A short-term high protein, low carbohydrate diet in combination with endurance training is not preferential for endurance running performance.  相似文献   

17.
The effect of nitrate (NO3) supplementation on blood pressure (BP) responses during large muscle mass isometric and ischaemic exercise in healthy young adults is unclear. The aim of the present study was to assess the effect of 5-day supplementation of NO3 on BP responses during a short isometric contraction and a sustained ischaemic contraction. In a randomised, double-blinded, crossover design, 14 healthy active young adults underwent BP measurements after 5 days of either NO3 (NIT) or placebo (PLA) supplementation. Beat-by-beat BP was measured at pre- and post-exercise rest, and during a short (20 s) isometric contraction at 25% maximal strength and throughout a sustained ischaemic contraction. Plasma nitrite (NO2) concentration increased significantly after NO3 supplementation compared to placebo (475 ± 93 nmol·L−1 vs. 198 ± 46 nmol·L−1, p < 0.001, d = 3.37). Systolic BP was significantly lower at pre- (p = 0.051) and post-exercise rest (p = 0.006), during a short isometric contraction (p = 0.030), and throughout a sustained ischaemic contraction (p = 0.040) after NO3 supplementation. Mean arterial pressure was significantly lower at pre- (p = 0.004) and post-exercise rest (p = 0.043), during a short isometric contraction (p = 0.041), and throughout a sustained ischaemic contraction (p = 0.021) after NO3 supplementation. Diastolic BP was lower at pre-exercise rest (p = 0.032), but not at post-exercise rest, during a short isometric contraction, and during a sustained ischaemic contraction (all p > 0.05). Five days of NO3 supplementation elevated plasma NO2 concentration and reduced BP during a short isometric contraction and a sustained ischaemic contraction in healthy adults. These observations indicate that multiple-day nitrate supplementation can decrease BP at rest and attenuate the increased BP response during isometric exercise. These findings support that NO3 supplementation is an effective nutritional intervention in reducing SBP and MAP in healthy young males during submaximal exercise.  相似文献   

18.
The aim of the present study was to evaluate the effect of feeding fava bean (Vicia faba L.) protein (FBP) on resting and post-exercise myofibrillar fractional synthetic rate (myoFSR). In a parallel, double-blind, randomised control trial, sixteen young, healthy recreationally active adults (age = 25 (5) years, body mass = 70 (15) kg, stature = 1.72 (0.11) m, mean (SD)) ingested 0.33 g·kg−1 FBP (n = 8) or a negative control (CON, i.e., EAA-free mixture) (n = 8), immediately after a bout of unilateral knee-extensor resistance exercise. Plasma, saliva, and m. vastus lateralis muscle samples were obtained pre-ingestion and 3 h post-ingestion. MyoFSR was calculated via deuterium labelling of myofibrillar-bound alanine, measured by gas chromatography–pyrolysis–isotope ratio mass spectrometry (GC-Pyr-IRMS). Resistance exercise increased myoFSR (p = 0.012). However, ingestion of FBP did not evoke an increase in resting (FBP 29 [−5, 63] vs. CON 12 [−25, 49]%, p = 0.409, mean % change [95% CI]) or post-exercise (FBP 78 [33, 123]% vs. CON 58 [9, 107]%, p = 0.732) myoFSR. Ingestion of 0.33 g·kg−1 of FBP does not appear to enhance resting or post-exercise myoFSR in young, healthy, recreationally active adults.  相似文献   

19.
Implementing permissive dehydration (DEH) during short-term heat acclimation (HA) may accelerate adaptations to the heat. However, HA with DEH may augment risk for acute kidney injury (AKI). This study investigated the effect of HA with permissive DEH on time-trial performance and markers of AKI. Fourteen moderately trained men (age and VO2max = 25 ± 0.5 yr and 51.6 ± 1.8 mL·kg−1·min−1) were randomly assigned to DEH or euhydration (EUH). Time-trial performance and VO2max were assessed in a temperate environment before and after 7 d of HA. Heat acclimation consisted of 90 min of cycling in an environmental chamber (40 °C, 35% RH). Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) were assessed pre- and post-exercise on day 1 and day 7 of HA. Following HA, VO2max did not change in either group (p = 0.099); however, time-trial performance significantly improved (3%, p < 0.01) with no difference between groups (p = 0.485). Compared to pre-exercise, NGAL was not significantly different following day 1 and 7 of HA (p = 0.113) with no difference between groups (p = 0.667). There was a significant increase in KIM-1 following day 1 and 7 of HA (p = 0.002) with no difference between groups (p = 0.307). Heat acclimation paired with permissive DEH does not amplify improvements in VO2max or time-trial performance in a temperate environment versus EUH and does not increase markers of AKI.  相似文献   

20.
It is unclear whether genetic interactions are involved in the association between vegetable intake and reduced body mass index (BMI) or obesity. We conducted a comprehensive search for single nucleotide polymorphisms (SNPs) which are associated with the interaction between vegetable intake frequency and BMI or obesity. We performed a genome-wide association analysis to evaluate the genetic interactions between self-reported intake of vegetables such as carrot, broccoli, spinach, other green vegetables (green pepper and green beans), pumpkin, and cabbage with BMI and obesity, which is defined as a BMI ≥ 25.0 kg/m2 in the Japanese population (n = 12,225). The mean BMI and prevalence of obesity was 23.9 ± 3.4 kg/m2 and 32.3% in men and 22.1 ± 3.8 kg/m2 and 17.3% in in women, respectively. A significant interaction was observed between rs4445711 and frequency of carrot intake on BMI (p = 4.5 × 10−8). This interaction was slightly attenuated after adjustment for age, sex, alcohol intake, smoking, physical activity and the frequency of total vegetable intake (p = 2.1 × 10−7). A significant interaction was also observed between rs4445711 and frequency of carrot intake on obesity (p = 2.5 × 10−8). No significant interactions that were the same as the interaction between frequency of carrot intake and rs4445711 were observed between the intake frequency of broccoli, spinach, other green vegetables, pumpkin or cabbage and BMI or obesity. The frequency of carrot consumption is implicated in reducing BMI by the intermediary of rs4445711. This novel genetic association may provide new clues to clarify the association between vegetable intake and BMI or obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号