首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
This paper presents a new method for nondestructive testing—a pulsed multifrequency excitation and spectrogram eddy current testing (PMFES-ECT), which is an extension of the multifrequency excitation and spectrogram eddy current testing. The new method uses excitation in the form of pulses repeated at a specified time, containing several periods of a waveform consisting of the sum of sinusoids with a selected frequency, amplitude and phase. This solution allows the maintenance of the advantages of multifrequency excitation and, at the same time, generates high energy pulses similar to those used in pulse eddy current testing (PECT). The effectiveness of the new method was confirmed by numerical simulations and the measurement of thin Inconel plates, consisting of notches manufactured by the electric-discharge method.  相似文献   

2.
This issue is proposed and organized as a means to present recent developments in the field of testing of materials in civil engineering. For this reason, the articles highlighted in this issue should relate to different aspects of testing of different materials in civil engineering, from building materials and elements to building structures. The current trend in the development of materials testing in civil engineering is mainly concerned with the detection of flaws and defects in elements and structures using destructive, semi-destructive, and nondestructive testing. The trend, as in medicine, is toward designing test equipment that allows one to obtain a picture of the inside of the tested element and materials. Very interesting results with significance for building practices of testing of materials and elements in civil engineering were obtained.  相似文献   

3.
Alkali-activated cement (AAC) is a promising binder that replaces ordinary Portland cement (OPC). In this study, the development of setting time and strength of AAC mixes were studied using ultrasonic testing method. The test results were compared with traditional Vicat setting time and compressive and flexural strengths. The findings showed that setting times and strengths have a strong correlation with ultrasonic velocity curve. The initial setting time corresponds well with the ultrasonic velocity curve’s dormant period, and the final setting time with the time it takes to reach the velocity curve’s maximum acceleration. Both setting times also showed a correlation with the value of the maximum acceleration. An exponential relation was found between the ultrasonic velocity and the compressive and flexural strengths. The effect of binder content, alkaline solid to binder ratio (AS/B), sodium silicate to sodium hydroxide solids ratio (SS/SH), and total water to total solid binder ratio (TW/TS) on the strength and setting time are also studied using Taguchi method of experimental design. AS/B ratio showed a significant influence on the setting time of AAC while TW/TS ratio showed only a minor effect. The ultrasonic velocities were able to capture the effect of the different parameters similar to the compressive strength. The velocity decreased mainly with the increase of TW/TS ratio and binder content, while AS/B and SS/SH ratios showed a lower influence.  相似文献   

4.
This study aimed to determine the effects of three different varnish materials (containing casein phosphopeptide-amorphous calcium phosphate, nano-hydroxyapatite, and fluoride) on enamel. Thirty-three extracted human third molars were used for specimen preparation. These were demineralized using phosphoric acid. Three experimental groups (n = 11) were treated with 3M™ Clinpro™ White Varnish, MI Varnish®, and Megasonex® toothpaste, respectively, every twenty-four hours for fourteen days. Analysis of the microhardness of the specimens’ enamel surfaces was carried out via the Vickers method, and by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Analysis was performed at three stages: at baseline value, after demineralization, and after the period of remineralization. Data were subjected to Scheffe’s post hoc test. The mean microhardness values (HV0.1) obtained for the group of samples treated with MI Varnish® were higher compared with the other two groups (p = 0.001 for both comparisons), while the first and third groups did not differ significantly from each other (p = 0.97). SEM analysis showed uneven patterns and porosities on all samples tested. EDS results showed an increase in the mineral content of the examined samples, with the highest mineral content observed in the MI Varnish® group. It can be concluded that MI Varnish® use has a better remineralization effect on enamel than the other two materials.  相似文献   

5.
The aim of this study was to analyze the influence of different surface treatments and the corresponding surface roughness on the ball-on-three-balls test and piston-on-three-balls test for measuring flexural strength 3Y-TZP and 5Y-PSZ. Additionally, the influence of cutting the material into the specimens when pre-sintered or fully sintered was analyzed. A total of 120 specimens for each material group, 3Y-TZP zirconia (Katana HT, Kuraray) and the 4 different layers of multilayered 5Y-PSZ zirconia (Katana UTML, Kuraray), were produced. The used material was cut into half of the specimens in a fully sintered stage, the other half was cut when pre-sintered. Each subgroup was divided into 3 different surface treatment groups being air abraded with 50 µm alumina particles at 1 bar pressure, ground with 600 SiC paper or polished up to 1 µm with a polycristalline diamond suspension. These were then analyzed by X-ray diffraction (XRD) (N = 3) and tested for flexural strength using the ball-on-three-balls test (N = 10) or piston-on-three-balls test (N = 10). For 3Y-TZP groups different surface roughness did not result in statistically significant differences in flexural strength but cutting the specimens in fully sintered state significantly reduced flexural strength of 1133 ± 109 to 741 ± 81 MPa. For 5Y-PSZ groups air abrasion of the specimens with alumina particles significantly reduced the flexural strength of 562 ± 68 MPa to 358 ± 58 MPa. Cutting and surface treatment in pre-sintered or fully sintered state had no significant influence. Flexural strength testing with the ball-on-three-balls test resulted in about 20% higher strengths compared to the piston-on-three-balls test. Results of both tests showed the same tendencies when compared.  相似文献   

6.
This paper presents an experimental method for tensile testing of unidirectional carbon fibre composites. It uses a novel combination of a new specimen geometry, protective layer, and a robust data analysis method. The experiments were designed to test and analyze unprotected (with conventional end-tabs) and protected (with continuous end-tabs) carbon fibre composite specimens with three different specimen geometries (straight-sided, butterfly, and X-butterfly). Initial stiffness and strain to failure were determined from second-order polynomial fitted stress–strain curves. A good agreement between back-calculated and measured stress–strain curves is found, on both composite and fibre level. For unprotected carbon composites, the effect of changing specimen geometry from straight-sided to X-butterfly was an increase in strain to failure from 1.31 to 1.44%. The effect of protection on X-butterfly specimens was an increase in strain to failure from 1.44 to 1.53%. For protected X-butterfly specimens, the combined effect of geometry and protection led to a significant improvement in strain to failure of 17% compared to unprotected straight-sided specimens. The observed increasing trend in the measured strain to failure, by changing specimen geometry and protection, suggests that the actual strain to failure of unidirectional carbon composites is getting closer to be realized.  相似文献   

7.
Blast Oxygen Furnace (BOF) slag represents one of the largest waste fractions from steelmaking. Therefore, slag valorisation technologies are of high importance regarding the use of slag as a secondary resource, both in the steel sector and in other sectors, such as the construction or cement industries. The main issue regarding the use of BOF slag is its volumetric instability in the presence of water; this hampers its use in sectors and requires a stabilisation pre-treatment. These treatments are also cost-inefficient and cause other environmental issues. This paper analyses the use of untreated BOF slag from a technical and environmental point of view, suggesting it as an alternative to natural aggregates in road surface layers and asphalt pavements. A comprehensive analysis of the requirements to be met by raw materials used in asphalt mixes was performed, and a pilot test was carried out with two different mixtures: one mix with limestone as coarse aggregate and another with 15% BOF slag. Furthermore, the global warming impacts derived from each mix with different aggregates were measured by Life Cycle Analysis (LCA), and a transport sensitivity analysis was also performed. The results show how the utilization of BOF slag as coarse aggregate in road construction improves the technical performance of asphalt mixtures (Marshall Quotient 4.9 vs. 6.6). Moreover, the introduction of BOF slag into the asphalt mix as a coarse aggregate, instead of limestone, causes a carbon emissions reduction rate of more than 14%.  相似文献   

8.
Concrete strength and factors affecting its development during early concrete curing are important research topics. Avoiding uncertain incidents during construction and in service life of structures requires an appropriate monitoring system. Therefore, numerous techniques are used to monitor the health of a structure. This paper presents a nondestructive testing technique for monitoring the strength development of concrete at early curing ages. Dispersed carbon nanotubes (CNTs) were used with cementitious materials and piezoelectric (PZT) material, a PZT ceramic, owing to their properties of intra electromechanical effects and sensitivity to measure the electromechanical impedance (EMI) signatures and relevant properties related to concrete strength, such as the elastic modulus, displacement, acceleration, strength, and loading effects. Concrete compressive strength, hydration temperature, mixture ratio, and variation in data obtained from the impedance signatures using fuzzy logic were utilized in the comparative result prediction method for concrete strength. These results were calculated using a fuzzy logic-based model considering the maturity method, universal testing machine (UTM) data, and analyzed EMI data. In the study, for data acquisition, a hybrid PZT–CNT sensor and a temperature sensor (Smart Rock) were embedded in the concrete to obtain the hydration temperature history to utilize the concrete maturity method and provide data on the EMI signatures. The dynamic changes in the medium caused during the phase in the concrete strengthening process were analyzed to predict the strength development process of concrete at early curing ages. Because different parameters are considered while calculating the concrete strength, which is related to its mechanical properties, the proposed novel method considers that changes in the boundary condition occurring in the concrete paste modify the resonant frequency response of the structure. Thus, relating and analyzing this feature can help predict the concrete strength. A comprehensive comparison of the results calculated using the proposed module, maturity method, and cylindrical specimens tested using the UTM proved that it is a cost-effective and fast technique to estimate concrete strength to ensure a safe construction of reinforced cement concrete infrastructures.  相似文献   

9.
Electron beam directed energy deposition (EB-DED) is a promising manufacturing process for the fabrication of large-scale, fully dense and near net shape metallic components. However, limited knowledge is available on the EB-DED process of titanium alloys. In this study, a near-α high-temperature titanium alloy Ti60 (Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si) was fabricated via EB-DED. The chemical composition, microstructure, tensile property (at room temperature and 600 °C), and creep behavior of the fabricated alloy were investigated and compared with those of the conventional wrought lamellar and bimodal counterparts. Results indicated that the average evaporation loss of Al and Sn was 10.28% and 5.01%, respectively. The microstructure of the as-built alloy was characterized by coarse columnar grains, lamellar α, and the precipitated elliptical silicides at the α/β interfaces. In terms of tensile properties, the vertical specimens exhibited lower strength but higher ductility than the horizontal specimens at both room temperature and 600 °C. Furthermore, the tensile creep strain of the EB-DED Ti60 alloy measured at 600 °C and 150 MPa for 100 h under as-built and post-deposition STA conditions was less than 0.15%, which meets the standard requirements for the wrought Ti60 alloy. The creep resistance of the EB-DED Ti60 alloy was superior to that of its wrought bimodal counterpart.  相似文献   

10.
We develop a new flow model based on the Swift method, which is both versatile and accurate when used to describe flow stress in terms of strain hardening and damage softening. A practical issue associated with flow stress at room temperature is discussed in terms of tensile testing of a cylindrical specimen; we deal with both material identification and finite element predictions. The flow model has four major components, namely the stress before, at, and after the necking point and around fracture point. The Swift model has the drawback that not all major points of stress can be covered simultaneously. A term of strain to the third or fourth power (the “second strain hardening exponent”), multiplied and thus controlled by a second strain hardening parameter, can be neglected at small strains. Any effect of the second strain hardening exponent on the identification of the necking point is thus negligible. We use this term to enhance the flexibility and accuracy of our new flow model, which naturally couples flow stress with damage using the same hardening constant as a function of damage. The hardening constant becomes negative when damage exceeds a critical value that causes a drastic drop in flow stress.  相似文献   

11.
3D concrete printing technology (3DCP) is a relatively new technology that was first established in the 1990s. The main weakness of the technology is the interface strength between the extruded layers, which are deposited at different time intervals. Consequently, the interface strength is assumed to vary in relation to the time of concrete casting. The proposed experimental study investigated the behavior of a hardened concrete mixture containing coarse aggregates that were up to 8 mm in size, which is rather unusual for 3DCP technology. The resulting direct tensile strength at the layer interface was investigated for various time intervals of deposition from the initial mixing of concrete components. To better understand the material behavior at the layer interface area, computed tomography (CT) scanning was conducted, where the volumetric and area analysis enabled validation of the pore size and count distribution in accordance with the layer deposition process. The analyzed CT data related the macroscopic anisotropy and the resulting crack pattern to the temporal and spatial variability that is inherent to the additive manufacturing process at construction scales while providing additional insights into the porosity formation during the extrusion of the cementitious composite. The observed results contribute to previous investigations in this field by demonstrating the causal relationships, namely, how the interface strength development is determined by time, deposition process, and pore size distribution. Moreover, in regard to the printability of the proposed coarse aggregate mixture, the specific time interval is presented and its interplay with interface roughness and porosity is discussed.  相似文献   

12.
13.
The applications of Bismuth Titanate (BixTiyOz) materials have been focused on their electronic and optical properties, but with respect to the use of these compounds in applications like corrosion resistance, have been very few or nonexistent. For this reason, in the present investigation BixTiyOz thin films were deposited using RF magnetron sputtering onto silicon wafers, stainless steel 316L, and titanium alloy (Ti6Al4V) substrates, in order to carry out a study of the corrosion behavior of this compound. The structural properties of the coatings were studied through X-ray diffraction (XRD), the morphology was determined using Scanning Electron Microscopy (SEM), the corrosion resistance behavior of the coated and uncoated substrates was evaluated via the Potentiodynamic Polarization technique, and surface chemical composition was evaluated through X-ray photoelectron spectroscopy (XPS). The XRD results indicated that the films were amorphous. The SEM micrographs showed that the deposited films were homogeneous, but in some cases there were cracks. The potentiodynamic polarization technique showed that the corrosion current in the coated substrates decreased by an order of two magnitudes with respect to the uncoated substrates, but in both cases the corrosion mechanism was pitting due to the pores in the film. The XPS analysis shows that the deposited films contain both Bi3+ and Ti4+.  相似文献   

14.
In this work, Bi0.5Sb1.5Te3 materials were produced by an economically viable and time efficient water atomization process. The powder samples were heat treated at different temperatures (673 K, 723 K, 743 K, 773 K, 803 K, and 823 K) followed by spark plasma sintering (SPS). It was found that the Te evaporated slightly at 723 K and 743 K and became dominated at 773 K, 803 K, and 823 K, which severely influences the thermoelectric properties. The electrical conductivity was significantly improved for over 803 K heat treated samples due to the remarkable improvement in hole concentration. The power factor values for the 803 K and 823 K samples were significantly larger at T > 350 K compared to other samples. Consequently, the peak ZT of 0.92 at 350 K was obtained for the 803 K sample, which could be useful in commercial thermoelectric power generation.  相似文献   

15.
This article presents the results of the interlaboratory comparison (ILC) study of the following four characteristics of ceramic tile adhesives (CTAs): initial tensile adhesion strength, tensile adhesion strength after heat ageing, tensile adhesion strength after immersion in water, and tensile adhesion strength after freeze–thaw cycles. The results showed that the objective of the ILC was achieved—the z-score analysis carried out following ISO 13528 allowed for classifying all results obtained by 23 laboratories out of 27 as satisfactory. The results of the remaining four laboratories were rated worse. Despite the achieved goal, the ILC notes high heterogeneity of the results in terms of failure patterns, as well as significant differences between the lowest and the highest values of tensile adhesion strength for various measurement conditions. The results of the ILC were discussed in terms of the possibility of including them in the risk analysis conducted by the manufacturer. The results of the ILC are also valuable information for market surveillance authorities, who, in the authors’ opinion, should be more cautious about results on samples taken from the market. The ILC results for CTAs are also a valuable recommendation for a possible revision of EN 12004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号