首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional nanomaterials such as graphene can provide various functional properties to textiles, which have great potential in sportswear, healthcare etc. In this study, the properties of nylon and cotton-based electronic textiles coated with reduced graphene oxide are investigated. After reduction of graphene oxide coating in hydrazine vapor, e-textiles with a resistance of ~350 Ω/sq for nylon, and ~1 kΩ/sq for cotton were obtained. Cyclic mechanical bending tests of samples showed that the resistance increases during bending up to 10–20%. The use of bovine serum albumin as an adhesive layer improved the wash stability for samples with nylon up to 40 washing cycles. The use of BF-6 glue as a protective layer reduced changes in resistance during bending, and improved wash stability of cotton samples. It was shown that the resistance of the obtained samples is sensitive to changes in temperature and humidity. In addition, obtained e-textiles attached to a person’s wrist were able to measure heart rate. Thus, the obtained electronic textiles based on cotton and nylon coated with reduced graphene oxide demonstrates good characteristics for use as sensors for monitoring vital signs.  相似文献   

2.
In this work, we propose a novel method for the preparation of polypyrrole (PPy) layers on textile fabrics using a reactive inkjet printing technique with direct freezing of inks under varying temperature up to −16 °C. It was found that the surface resistance of PPy layers on polypropylene (PP) fabric, used as a standard support, linearly decreased from 6335 Ω/sq. to 792 Ω/sq. with the decrease of polymerization temperature from 23 °C to 0 °C. The lowest surface resistance (584 Ω/sq.) of PPy layer was obtained at −12 °C. The spectroscopic studies showed that the degree of the PPy oxidation as well as its conformation is practically independent of the polymerization temperature. Thus, observed tendences in electrical conductivity were assigned to change in PPy layer morphology, as it is significantly influenced by the reaction temperature: the lower the polymerization temperature the smoother the surface of PPy layer. The as-coated PPy layers on PP textile substrates were further assembled as the electrodes in symmetric all-solid-state supercapacitor devices to access their electrochemical performance. The electrochemical results demonstrate that the symmetric supercapacitor device made with the PPy prepared at −12 °C, showed the highest specific capacitance of 72.3 F/g at a current density of 0.6 A/g, and delivers an energy density of 6.12 Wh/kg with a corresponding power density of 139 W/kg.  相似文献   

3.
The thermoelectric cement-based materials can convert heat into electricity; this makes them promising candidates for impressed current cathodic protection of carbon steel. However, attempts to use the thermoelectric cement-based materials for energy conversion usually results in low conversion efficiency, because of the low electrical conductivity and Seebeck coefficient. Herein, we deposited polyaniline on the surface of MnO2 and fabricated a cement-based thermoelectric device with added PANI/MnO2 composite for the protection of carbon steel in alkaline chloride solution. The nanorod structure (70~80 nm in diameter) and evenly dispersed conductive PANI provide the PANI/MnO2 composite with good electrical conductivity (1.9 ± 0.03 S/cm) and Seebeck coefficient (−7.71 × 103 ± 50 μV/K) and, thereby, increase the Seebeck coefficient of cement-based materials to −2.02 × 103 ± 40 μV/K and the electrical conductivity of cement-based materials to 0.015 ± 0.0003 S/cm. Based on this, the corrosion of the carbon steel was delayed after cathodic protection, which was demonstrated by the electrochemical experiment results, such as the increased resistance of the carbon steel surface from 5.16 × 102 Ω·cm2 to 5.14 × 104 Ω·cm2, increased charge transfer resistance from 11.4 kΩ·cm2 to 1.98 × 106 kΩ·cm2, and the decreased corrosion current density from 1.67 μA/cm2 to 0.32 μA/cm2, underlining the role of anti-corrosion of the PANI/MnO2 composite in the cathodic protection system.  相似文献   

4.
In this work, we report the fabrication and enhanced supercapacitive performance of nitrogen-doped nanoporous stainless steel foils, which have been prepared by electrochemical anodization and subsequent thermal annealing in ammonia atmosphere. The nanoporous oxide layers are grown on type-304 stainless steel foil with optimal thickness ~11.9 μm. The N-doped sample exhibits high average areal capacitance of 321.3 mF·cm−2 at a current density of 1.0 mA·cm−2, 3.6 times of increment compared with untreated one. Structural and electrochemical characterizations indicate that the significant enhancement is correlated to the high charge transfer efficiency from nitriding nanosheet products Fe3N. Our report here may provide new insight on the development of high-performance, low-cost and binder-free supercapacitor electrodes for flexible and portable electronic device applications with multiple anions.  相似文献   

5.
The effect of iron and yttrium additions on glass forming ability and corrosion resistance of Al88Y8-xFe4+x (x = 0, 1, 2 at.%) alloys in the form of ingots and melt-spun ribbons was investigated. The crystalline multiphase structure of ingots and amorphous-crystalline structure of ribbons were examined by a number of analytical techniques including X-ray diffraction, Mössbauer spectroscopy, and transmission electron microscopy. It was confirmed that the higher Fe additions contributed to formation of amorphous structures. The impact of chemical composition and structure of alloys on their corrosion resistance was characterized by electrochemical tests in 3.5% NaCl solution at 25 °C. The identification of the mechanism of chemical reactions taking place during polarization test along with the morphology and internal structure of the surface oxide films generated was performed. It was revealed that the best corrosion resistance was achieved for the Al88Y7Fe5 alloy in the form of ribbon, which exhibited the lowest corrosion current density (jcorr = 0.09 μA/cm2) and the highest polarization resistance (Rp = 96.7 kΩ∙cm2).  相似文献   

6.
Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2) and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm −2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8–15 μC/cm2. When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10−2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10−3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.  相似文献   

7.
Although the force/pressure applied onto a textile substrate through a uniaxial compression is constant and independent of the yarn direction, it should be noted that such mechanical action causes a geometric change in the substrate, which can be identified by the reduction in its lateral thickness. Therefore, the objective of this study was to investigate the influence of the fabric orientation on both knitted and woven pressure sensors, in order to generate knowledge for a better design process during textile piezoresistive sensor development. For this purpose, these distinct textile structures were doped with different concentrations of graphene nanoplatelets (GNPs), using the screen-printing technique. The chemical and physical properties of these screen-printed fabrics were analysed using Field Emission Scanning Electron Microscopy, Ground State Diffuse Reflectance and Raman Spectroscopy. Samples were subjected to tests determining linear electrical surface resistance and piezoresistive behaviour. In the results, a higher presence of conductive material was found in woven structures. For the doped samples, the electrical resistance varied between 105 Ω and 101 Ω, for the GNPs’ percentage increase. The lowest resistance value was observed for the woven fabric with 15% GNPs (3.67 ± 8.17 × 101 Ω). The samples showed different electrical behaviour according to the fabric orientation. Overall, greater sensitivity in the longitudinal direction and a lower coefficient of variation CV% of the measurement was identified in the transversal direction, coursewise for knitted and weftwise for woven fabrics. The woven fabric doped with 5% GNPs assembled in the weftwise direction was shown to be the most indicated for a piezoresistive sensor, due to its most uniform response and most accurate measure of mechanical stress.  相似文献   

8.
In this paper, the study of defects in InAs/GaSb type-II superlattices using high-resolution an x-ray diffraction method as well as scanning (SEM) and transmission (TEM) electron microscopy is presented. The investigated superlattices had 200 (#SL200), 300 (#SL300), and 400 (#SL400) periods and were grown using molecular beam epitaxy. The growth conditions differed only in growth temperature, which was 370 °C for #SL400 and #SL200, and 390 °C for #SL300. A wings-like diffuse scattering was observed in reciprocal space maps of symmetrical (004) GaSb reflection. The micrometer-sized defect conglomerates comprised of stacking faults, and linear dislocations were revealed by the analysis of diffuse scattering intensity in combination with SEM and TEM imaging. The following defect-related parameters were obtained: (1) integrated diffuse scattering intensity of 0.1480 for #SL400, 0.1208 for #SL300, and 0.0882 for #SL200; (2) defect size: (2.5–3) μm × (2.5–3) μm –#SL400 and #SL200, (3.2–3.4) μm × (3.7–3.9) μm –#SL300; (3) defect diameter: ~1.84 μm –#SL400, ~2.45 μm –#SL300 and ~2.01 μm –#SL200; (4) defect density: 1.42 × 106 cm−2 –#SL400, 1.01 × 106 cm−2 –#SL300, 0.51 × 106 cm−2 –#SL200; (5) diameter of stacking faults: 0.14 μm and 0.13 μm for #SL400 and #SL200, 0.30 μm for #SL300.  相似文献   

9.
High-entropy alloys are a new generation of materials that have attracted the interest of numerous scientists because of their unusual properties. It seems interesting to use these alloys in biomedical applications. However, for this purpose, the basic condition of corrosion resistance must be fulfilled. In this article, selected corrosion properties of self-composed high-entropy alloys are investigated and compared with conventional biomedical alloys, that is titanium alloys and stainless steels. Corrosive parameters were determined using the potentiodynamic method. X-ray diffraction studies were performed to characterize the crystal structures. Microstructures of the prepared materials were examined using a scanning electron microscope, and surface hardness was measured by the Vickers method. The results show that investigated high-entropy alloys are characterized by simple structures. Three out of four tested high-entropy alloys had better corrosion properties than conventional implant alloys used in medicine. The Al0.7CoCrFeNi alloy was characterized by a corrosion potential of −224 mV and a corrosion current density of 0.9 μA/cm2; CoCrFeNiCu by −210 mV and 1.1 μA/cm2; TiAlFeCoNi by −435 mV and 4.6 μA/cm2; and Mn0.5TiCuAlCr by −253 mV and 1.3 μA/cm2, respectively. Therefore, the proposed high-entropy alloys can be considered as potential materials for biomedical applications, but this requires more studies to confirm their biocompatibility.  相似文献   

10.
New apparatus and a new process for the sputter deposition of modified barium titanate thin-films were developed. Films were deposited at temperatures up to 900 °C from a Ba0.96Ca0.04Ti0.82Zr0.18O3 (BCZTO) target directly onto Si, Ni and Pt surfaces and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Film texture and crystallinity were found to depend on both deposition temperature and substrate: above 600 °C, the as-deposited films consisted of well-facetted crystallites with the cubic perovskite structure. A strongly textured Pt (111) underlayer enhanced the (001) orientation of BCZTO films deposited at 900 °C, 10 mtorr pressure and 10% oxygen in argon. Similar films deposited onto a Pt (111) textured film at 700 °C and directly onto (100) Si wafers showed relatively larger (011) and diminished intensity (00ℓ) diffraction peaks. Sputter ambients containing oxygen caused the Ni underlayers to oxidize even at 700 °C: Raising the process temperature produced more diffraction peaks of NiO with increased intensities. Thin-film capacitors were fabricated using ~500 nm thick BCZTO dielectrics and both Pt and Ni top and bottom electrodes. Small signal capacitance measurements were carried out to determine capacitance and parallel resistance at low frequencies and from these data, the relative permittivity (εr) and resistivity (ρ) of the dielectric films were calculated; values ranged from ~50 to >2,000, and from ~104 to ~1010 Ω∙cm, respectively.  相似文献   

11.
This paper outlines notable advances in the wire electrical discharge machining of polycrystalline silicon workpieces for wafer preparation. Our use of assisting electrodes permits the transfer of aluminum particles to the machined surface of the polycrystalline silicon workpieces, to enhance conductivity and alter surface topography regardless of the silicon’s crystallographic structure and diamond-type lattice. This in-process surface modification technique was shown to promote material removal and simultaneously preserve the integrity of the machined surfaces with preferable surface textures. In the validation experiment, the 25 mm-thick assisting electrodes deposited a notable concentration of aluminium on the machined surface (~3.87 wt %), which greatly accelerated the rate of material removal (~9.42 mg/s) with minimal surface roughness (Sa ~5.49 μm) and moderate skewness (−0.23). The parameter combination used to obtain the optimal surface roughness (Sa 2.54 μm) was as follows: open voltage (80 V), electrical resistance (1.7 Ω), pulse-on time (30 μs), and electrode thickness (15 mm). In multiple objective optimization, the preferred parameter combination (open voltage = 80 V, resistance = 1.4 Ω, pulse-on time = 60 μs, and assisting electrode thickness = 25 mm) achieved the following appreciable results: surface modification of 3.26 ± 0.61 wt %, material removal rate of 7.08 ± 2.2 mg/min, and surface roughness of Sa = 4.3 ± 1.67 μm.  相似文献   

12.
In order to solve issues related to bridge girders, expansion devices and road surfaces, as well as other structures that are prone to fatigue failure, a kind of fatigue-resistant elastic polyurethane concrete (EPUC) was obtained by adding waste rubber particles (40 mesh with 10% fine aggregate volume replacement rate) to conventional engineering polyurethane concrete (PUC). Based on the preparation and properties of EPUC, its constitutive relation was proposed through compression and tensile tests; then, a scanning electron microscope (SEM), an atomic force microscope (AFM) and a 3D non-contact surface profilometer were used to study the failure morphology and micromechanisms of EPUC. On this basis, four-point bending fatigue tests of EPUC were carried out at different temperature levels (−20 °C, 0 °C, 20 °C) and different strain levels (400 με~1200 με). These were used to analyze the stiffness modulus, hysteresis angle and dissipated energy of EPUC, and our results outline the fatigue life prediction models of EPUC at different temperatures. The results show that the addition of rubber particles fills the interior of EPUC with tiny elastic structures and effectively optimizes the interface bonding between aggregate and polyurethane. In addition, EPUC has good mechanical properties and excellent fatigue resistance; the fatigue life of EPUC at a room temperature of 600 με can grow by more than two million times, and it also has a longer service life and reduced disease frequency, as well as fewer maintenance requirements. This paper will provide a theoretical and design basis for the fatigue resistance design and engineering application of building materials. Meanwhile, the new EPUC material has broad application potential in terms of roads, bridges and green buildings.  相似文献   

13.
AIM: To study the uptake of bacterial lipopolysaccharides (LPS) and expression of tumor necrosis factor α-mRNA (TNF-α-mRNA) with cultured rat intrahepatic bile duct epithelial cells.METHODS: By using fluorescent, immunohistochemical and in situ hybridization techniques, the uptake of Escherichia coli LPS and expression of TNF-α-mRNA with isolated rat intrahepatic bile duct epithelial cells were observed with confocal laser scanning microscopy.RESULTS: Positive reactions to LPS were found in the cytoplasm of isolated intrahepatic bile duct epithelial cells after incubation with LPS for 15 min and the FITC fluorescent intensity against LPS was significantly higher than that of the controls (121.45 μFI/μm2 ± 15.62 μFI/μm2 vs 32.12 μFI/μm2 ± 9.64 μFI/μm2, P < 0.01). After incubation with LPS for 3 h, fluorescein isocyanate (FITC) fluorescent intensities of the expression of TNF-α-mRNA with fluorescent in situ hybridization in the cytoplasm and nuclei of the cultured bile duct epithelial cells were significantly higher than those of the controls (189.15 μFI/μm2 ± 21.33 μFI/μm2 vs 10.00 μFI/μm2 ± 8.99 μFI/μm2, 64.85 μFI/μm2 ± 14.99 μFI/μm2 vs 21.20 μFI/μm2 ± 2.04 μFI/μm2, respectively (P < 0.01)). The increase of FITC fluorescent intensity of TNF-α-mRNA expression in the cytoplasm peaked at 6 h after incubation (221.38 μFI/μm2 ± 22.99 μFI/μm2). At various time points after incubation with LPS, the increase of fluorescent intensities of TNF-α-mRNA in the cytoplasm were much higher than those in the nuclei (P < 0.01).CONCLUSION: LPS can act on and enter into isolated intrahepatic bile duct epithelial cells and stimulate the expression of TNF-α-mRNA.  相似文献   

14.
Developing a joining technology for 2G HTS tapes without significantly reducing their superconducting property is crucial for numerous applications (MRI, motor/generator, power transmission, etc.). In this study, low sintering temperature (~230 °C) nano-silver paste was used as solder to join two 2G HTS tapes. In addition, two heating methods, i.e., furnace heating (heat flux outside-in) and resistive Joule heating (heat flux inside-out), were studied. This study indicates that the heat flux from internal by resistive Joule heating method shows less deteriorating impact to the 2G RE-Ba-Cu-O tape (RE: rare earth element) during the sintering process with the best specific resistance of 0.074 μΩ∙cm2 and Ic retention percentage of 99% (i.e., Ic reduced from 100 A before joining to 99 A after joining). This study indicates that nano-silver paste together with resistive Joule heating can possibly be used as soldering materials to join 2G HTS tapes.  相似文献   

15.
Extrusion-based ceramic printing is fast and convenient, but the green body strength is too low, and the application prospect is not high. An extrusion-based printing method of alumina ceramics toughened by short carbon fiber is reported in this paper. The bending strength and fracture toughness of 3D-printed alumina ceramics were improved by adding short carbon fiber. The toughening effects of four carbon fiber lengths (100 μm, 300 μm, 700 μm, and 1000 μm) and six carbon fiber contents (1, 2, 3, 4, 5, and 6 wt%) on ceramics were compared. The experimental results show that when the length of carbon fiber is 700 μm, and carbon fiber is 5 wt%, the toughening effect of fiber is the best, and the uniform distribution of fiber is an effective toughening method. Its bending strength reaches 33.426 ± 1.027 MPa, and its fracture toughness reaches 4.53 ± 0.46 MPa·m1/2. Compared with extrusion-based printed alumina ceramics without fiber, the bending strength and fracture toughness increase by 55.38% and 47.56%, respectively.  相似文献   

16.
We investigated characteristics of highly flexible and stretchable electrodes consisting of Galinstan (i.e., a gallium-based liquid metal alloy) under various conditions including sub-zero temperature (i.e., <0 °C) and demonstrated solar-blind photodetection via the spontaneous oxidation of Galinstan. For this work, a simple and rapid method was introduced to fabricate the Galinstan electrodes with precise patterns and to exfoliate their surface oxide layers. Thin conductive films possessing flexibility and stretchability can be easily prepared on flexible substrates with large areas through compression of a dried suspension of Galinstan microdroplets. Furthermore, a laser marking machine was employed to facilitate patterning of the Galinstan films at a high resolution of 20 μm. The patterned Galinstan films were used as flexible and stretchable electrodes. The electrical conductivity of these electrodes was measured to be ~1.3 × 106 S m−1, which were still electrically conductive even if the stretching ratio increased up to 130% below 0 °C. In addition, the surface oxide (i.e., Ga2O3) layers possessing photo-responsive properties were spontaneously formed on the Galinstan surfaces under ambient conditions, which could be solely exfoliated using elastomeric stamps. By combining Galinstan and its surface oxide layers, solar-blind photodetectors were successfully fabricated on flexible substrates, exhibiting a distinct increase of up to 14.7% in output current under deep ultraviolet irradiation (254 nm wavelength) with an extremely low light intensity of 0.1 mW cm−2, whereas no significant change was observed under visible light irradiation.  相似文献   

17.
Electronic skin that is deformable, self-healable, and self-powered has high competitiveness for next-generation energy/sense/robotic applications. Herein, we fabricated a stretchable, self-healable triboelectric nanogenerator (SH-TENG) as electronic skin for energy harvesting and tactile sensing. The elongation of SH-TENG can achieve 800% (uniaxial strain) and the SH-TENG can self-heal within 2.5 min. The SH-TENG is based on the single-electrode mode, which is constructed from ion hydrogels with an area of 2 cm × 3 cm, the output of short-circuit transferred charge (Qsc), open-circuit voltage (Voc), and short-circuit current (Isc) reaches ~6 nC, ~22 V, and ~400 nA, and the corresponding output power density is ~2.9 μW × cm−2 when the matching resistance was ~140 MΩ. As a biomechanical energy harvesting device, the SH-TENG also can drive red light-emitting diodes (LEDs) bulbs. Meanwhile, SH-TENG has shown good sensitivity to low-frequency human touch and can be used as an artificial electronic skin for touch/pressure sensing. This work provides a suitable candidate for the material selection of the hydrogel-based self-powered electronic skin.  相似文献   

18.
The design of flexible sensors which can be incorporated in textile structures is of decisive importance for the future development of wearables. In addition to their technical functionality, the materials chosen to construct the sensor should be nontoxic, affordable, and compatible with future recycling. Conductive fibres were produced by incorporation of carbon black into regenerated cellulose fibres. By incorporation of 23 wt.% and 27 wt.% carbon black, the surface resistance of the fibres reduced from 1.3 × 1010 Ω·cm for standard viscose fibres to 2.7 × 103 and 475 Ω·cm, respectively. Fibre tenacity reduced to 30–50% of a standard viscose; however, it was sufficient to allow processing of the material in standard textile operations. A fibre blend of the conductive viscose fibres with polyester fibres was used to produce a needle-punched nonwoven material with piezo-electric properties, which was used as a pressure sensor in the very low pressure range of 400–1000 Pa. The durability of the sensor was demonstrated in repetitive load/relaxation cycles. As a regenerated cellulose fibre, the carbon-black-incorporated cellulose fibre is compatible with standard textile processing operations and, thus, will be of high interest as a functional element in future wearables.  相似文献   

19.
The traditional solid-state reaction method was employed to synthesize bulk calcium cobaltite (Ca349/Ca3Co4O9) ceramics via ball milling the precursor mixture. The samples were compacted using conventional sintering (CS) and spark plasma sintering (SPS) at 850, 900, and 950 °C. The X-ray diffraction (XRD) pattern indicates the presence of the Ca349 phase for samples sintered at 850 and 900 °C. In addition, SPS fosters higher densification (81.18%) than conventional sintering (50.76%) at elevated sintering temperatures. The thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA) performed on the precursor mixture reported a weight loss of ~25.23% at a temperature range of 600–820 °C. This current work aims to analyze the electrical properties (Seebeck coefficient (s), electrical resistivity (ρ), and power factor) of sintered samples as a function of temperature (35–500 °C). It demonstrates that the change in sintering temperature (conventional sintering) did not evince any significant change in the Seebeck coefficient (113–142 μV/K). However, it reported a low resistivity of 153–132 μΩ-m and a better power factor (82–146.4 μW/mK2) at 900 °C. On the contrary, the SPS sintered samples recorded a higher Seebeck coefficient of 121–181 μV/K at 900 °C. Correspondingly, the samples sintered at 950 °C delineated a low resistivity of 145–158 μΩ-m and a better power factor (97–152 μW/mK2).  相似文献   

20.
An arsenic doping technique for depositing up to 40-μm-thick high-resistivity layers is presented for fabricating diodes with low RC constants that can be integrated in closely-packed configurations. The doping of the as-grown epi-layers is controlled down to 5 × 1011 cm−3, a value that is solely limited by the cleanness of the epitaxial reactor chamber. To ensure such a low doping concentration, first an As-doped Si seed layer is grown with a concentration of 1016 to 1017 cm−3, after which the dopant gas arsine is turned off and a thick lightly-doped epi-layer is deposited. The final doping in the thick epi-layer relies on the segregation and incorporation of As from the seed layer, and it also depends on the final thickness of the layer, and the exact growth cycles. The obtained epi-layers exhibit a low density of stacking faults, an over-the-wafer doping uniformity of 3.6%, and a lifetime of generated carriers of more than 2.5 ms. Furthermore, the implementation of a segmented photodiode electron detector is demonstrated, featuring a 30 pF capacitance and a 90 Ω series resistance for a 7.6 mm2 anode area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号