首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the effects of caffeine on reaction time during a specific taekwondo task and athletic performance during a simulated taekwondo contest. Ten taekwondo athletes ingested either 5 mg·kg−1 body mass caffeine or placebo and performed two combats (spaced apart by 20 min). The reaction-time test (five kicks “Bandal Tchagui”) was performed immediately prior to the first combat and immediately after the first and second combats. Caffeine improved reaction time (from 0.42 ± 0.05 to 0.37 ± 0.07 s) only prior to the first combat (P = 0.004). During the first combat, break times during the first two rounds were shorter in caffeine ingestion, followed by higher plasma lactate concentrations compared with placebo (P = 0.029 and 0.014, respectively). During the second combat, skipping-time was reduced, and relative attack times and attack/skipping ratio was increased following ingestion of caffeine during the first two rounds (all P < 0.05). Caffeine resulted in no change in combat intensity parameters between the first and second combat (all P > 0.05), but combat intensity was decreased following placebo (all P < 0.05). In conclusion, caffeine reduced reaction time in non-fatigued conditions and delayed fatigue during successive taekwondo combats.  相似文献   

2.
Although the effects of caffeine supplementation on combat sports performance have been extensively investigated, there is currently no consensus regarding its ergogenic benefits.This systematic review with meta-analysis aimed to summarize the studies investigating the effects of caffeine supplementation on different aspects of performance in combat sports and to quantitatively analyze the results of these studies to better understand the ergogenic effect of caffeine on combat sports outcomes. A systematic search for randomized placebo-controlled studies investigating the effects of caffeine supplementation on combat sports’ performance was performed through Scopus, Pubmed, Web of Science and Cochrane Library databases up to 18 April 2022. Random-effects meta-analyses of standardized mean differences (Hedge’s g) were performed to analyze the data. Twenty-six studies of good and excellent methodological quality (based on the Pedro scale) fulfilled the inclusion criteria. The meta-analysis results revealed caffeine has a small but evident effect size (ES) on handgrip strength (ES = 0.28; 95% CI: 0.04 to 0.52; p = 0.02), and total number of throws during the special judo fitness test (SJFT) (ES = 0.42; 95% CI: 0.06 to 0.78; p = 0.02). Regarding the physiological responses, caffeine increased blood lactate concentration ([La]) in anaerobic exercise (ES = 1.23; 95% CI: 0.29 to 2.18; p = 0.01) and simulated combat (ES = 0.91; 95% CI: 0.34 to 1.47; p = 0.002). For Heart Rate (HR), caffeine increased HR final (ES = 0.31; 95% CI: 0.11 to 0.52; p = 0.003), and HR 1min (ES = 0.20; 95% CI 0.004 to 0.40; p = 0.045). However, caffeine had no impact on the countermovement jump height, the SJFT index, the judogi strength-endurance test, the number and duration of offensive actions, HR at the end of the fight, and the rating of perceived exertion. Caffeine supplementation may be ergogenic for a range of combat sports aspects involving isometric strength, anaerobic power, reaction time, and anaerobic metabolism. However, supplementation effects might be ineffective under certain circumstances, indicating supplementation needs to take into account the performance metric in question prior to creating a dosing protocol.  相似文献   

3.
In soccer, physical, tactical, and decision-making processes are highly important facets of successful performance. Caffeine has well established effects for promoting both physical and cognitive performance, but the translation of such benefits specifically for soccer match play is not well established. This study examined the effects of acute caffeine ingestion on tactical performance during small-sided games (SSG) in professional soccer players. Nineteen soccer players (22 ± 4 years) underwent a randomized, counterbalanced, crossover, double-blind placebo-controlled trial. The protocol consisted of 5 bouts of 5-min SSG with 3 players plus a goalkeeper in each team (3 + GK × 3 + GK) with each SSG separated by 1 min rest intervals. Tactical performance was assessed using the system of tactical assessment in soccer (FUT-SAT). Prior to each experimental trial, participants ingested caffeine (5 mg·kg−1) or a placebo 60 min before the protocol. Overall, caffeine ingestion resulted in an increased ball possession time when compared to the placebo. When the offensive and defensive core principles were analyzed, the results were equivocal. Caffeine resulted in positive effects on some tactical decisions during the protocol, but it was deleterious or promoted no observed effect on other of the core tactical principles. Caffeine ingestion resulted in less offensive (during SSG3) and defensive (SSG 2, SSG3, and SSG4) errors. Caffeine ingestion also resulted in higher total offensive success during SSG 1 and SSG2, but it was detrimental during SSG3. Additionally, total defensive success was lower for the caffeine conditions during SSG 2 and SSG5 when compared to the placebo. In conclusion, caffeine influenced aspects of tactical decisions in soccer, resulting in fewer offensive and defensive errors, although it may be deleterious considering other tactical parameters. Future studies may clarify the effects of caffeine ingestion on specific decision-making parameters in soccer.  相似文献   

4.
Caffeine is often used in a variety of forms to enhance athletic performance; however, research regarding caffeine’s effects on strength and power in female athletes is lacking. Therefore, the purpose of this study was to analyze the acute effects of caffeine anhydrous (6 mg/kg of body mass) on jumping performance and maximal strength in female collegiate athletes. Eleven athletes (19.7 ± 0.9 yrs; 166.4 ± 10.2 cm, 67.7 ± 9.4 kg) performed two testing sessions separated by one week, and randomly received caffeine or placebo using a double-blind approach. Heart rate, blood pressure, and tympanic temperature were recorded before athletes received each condition, following 60 min of quiet sitting, and directly after performance testing. Athletes were assessed on unweighted and weighted squat jump height (SJH0, SJH20) and countermovement jump height (CMJH0, CMJH20), isometric mid-thigh pull peak force (IPF), and rate of force development from 0–200 ms (RFD200). Resting systolic blood pressure was significantly greater following caffeine administration compared to a placebo (p = 0.017). There were small, significant differences in SJH0 (p = 0.035, g = 0.35), SJH20 (p = 0.002, g = 0.49), CMJH0 (p = 0.015, g = 0.19), and CMJH20 (p < 0.001, g = 0.37) in favor of caffeine over placebo. However, there was no significant difference in IPF (p = 0.369, g = 0.12) and RFD200 (p = 0.235, g = 0.32) between conditions. Therefore, caffeine appears to enhance jumping performance, but not maximal strength in female collegiate athletes.  相似文献   

5.
Studies on muscle activation time in sport after caffeine supplementation confirmed the effectiveness of caffeine. The novel approach was to determine whether a dose of 9 mg/kg/ body mass (b.m.) of caffeine affects the changes of contraction time and the displacement of electrically stimulated muscle (gastrocnemius medialis) in professional athletes who regularly consume products rich in caffeine and do not comply with the caffeine discontinuation period requirements. The study included 40 professional male handball players (age = 23.13 ± 3.51, b.m. = 93.51 ± 15.70 kg, height 191 ± 7.72, BMI = 25.89 ± 3.10). The analysis showed that in the experimental group the values of examined parameters were significantly reduced (p ≤ 0.001) (contraction time: before = 20.60 ± 2.58 ms/ after = 18.43 ± 3.05 ms; maximal displacement: before = 2.32 ± 0.80 mm/after = 1.69 ± 0.51 mm). No significant changes were found in the placebo group. The main achievement of this research was to demonstrate that caffeine at a dose of 9 mg/kg in professional athletes who regularly consume products rich in caffeine has a direct positive effect on the mechanical activity of skeletal muscle stimulated by an electric pulse.  相似文献   

6.
(1) Background: Caffeine is one of the most consumed psychoactive stimulants worldwide. It has been suggested that caffeine intake at large doses can induce anxiety, whereas evidence of the role of low to moderate caffeine intake is scarce and inconsistent. Therefore, we aimed to assess the association between caffeine intake and general anxiety in adults recruited from the general population. (2) Methods: Participants from the French NutriNet-Santé web cohort with data on caffeine intake and general anxiety (assessed during 2013–2016 through the trait subscale of Spielberger’s State-Trait Anxiety Inventory Form Y; STAI-T, sex-specific top quartile = high trait anxiety) were included in this cross-sectional analysis (n = 24,197; 74.1% women; mean age = 53.7 ± 13.9 years). Mean dietary intake was estimated using ≥2 self-reported 24-h dietary records. Sex-specific tertiles of caffeine intake and low/high trait anxiety were calculated. Multivariable logistic regression models were fitted to assess the odds ratio (OR) and 95% confidence interval (CI) for the association between caffeine intake and general anxiety by sex. (3) Results: In the total sample, the mean caffeine intake (mg/day) from all dietary sources combined was 220.6 ± 165.0 (women = 212.4 ± 159.6; men = 243.8 ± 177.7, p < 0.01). Women in the highest tertile of caffeine intake showed significantly higher odds for high trait anxiety compared to those in the lowest tertile (reference), even after adjustment for potential confounders (OR: 1.13; 95% CI: 1.03–1.23). No significant associations were detected among men. Sensitivity analyses according to perceived stress level and sugar intake, respectively, showed similar results. (4) Conclusions: The results suggest that higher caffeine intake is associated with higher odds of general anxiety among women but not among men. Further research is needed to confirm the sex-specific findings and elucidate the potential causal relationship between caffeine intake and anxiety status.  相似文献   

7.
Sport nutrition knowledge has been shown to influence dietary habits of athletes. The purpose of the current study was to examine relationships between sport nutrition knowledge and body composition and examine potential predictors of body weight goals in collegiate athletes. Participants included National Collegiate Athletic Association Division III women (n = 42, height: 169.9 ± 6.9 cm; body mass: 67.1 ± 8.6 kg; fat-free mass: 51.3 ± 6.6 kg; body fat percent: 24.2 ± 5.3%) and men (n = 25, height: 180.8 ± 7.2 cm; body mass: 89.2 ± 20.5 kg; fat-free mass: 75.9 ± 12.2 kg; body fat percent: 13.5 ± 8.9%) athletes. Body composition was assessed via air displacement plethysmography. Athletes completed a validated questionnaire designed to assess sport nutrition knowledge and were asked questions about their perceived dietary energy and macronutrient requirements, as well as their body weight goal (i.e., lose, maintain, gain weight). Athletes answered 47.98 ± 11.29% of questions correctly on the nutrition questionnaire with no differences observed between sexes (men: 49.52 ± 11.76% vs. women: 47.03 ± 11.04%; p = 0.40). An inverse relationship between sport nutrition knowledge scores and body fat percentage (BF%) (r = −0.330; p = 0.008), and fat mass (r = −0.268; p = 0.032) was observed for all athletes. Fat mass (β = 0.224), BF% (β = 0.217), and body mass index (BMI) (β = 0.421) were all significant (p < 0.05) predictors of body weight goal in women. All athletes significantly (p < 0.001) underestimated daily energy (−1360 ± 610.2 kcal/day), carbohydrate (−301.6 ± 149.2 grams/day [g/day]), and fat (−41.4 ± 34.5 g/day) requirements. Division III collegiate athletes have a low level of sport nutrition knowledge, which was associated with a higher BF%. Women athletes with a higher body weight, BF% and BMI were more likely to select weight loss as a body weight goal. Athletes also significantly underestimated their energy and carbohydrate requirements based upon the demands of their sport, independent of sex.  相似文献   

8.
The aim of this study was to provide information on energy availability (EA), macronutrient intake, nutritional periodization practices, and nutrition knowledge in young female cross-country skiers. A total of 19 skiers filled in weighted food and training logs before and during a training camp. Nutrition knowledge was assessed via a validated questionnaire. EA was optimal in 11% of athletes at home (mean 33.7 ± 9.6 kcal·kgFFM−1·d−1) and in 42% at camp (mean 40.3 ± 17.3 kcal·kgFFM−1·d−1). Most athletes (74%) failed to meet recommendations for carbohydrate intake at home (mean 5.0 ± 1.2 g·kg−1·d−1) and 63% failed to do so at camp (mean 7.1 ± 1.6 g·kg−1·d−1). The lower threshold of the pre-exercise carbohydrate recommendations was met by 58% and 89% of athletes while percentages were 26% and 89% within 1 h after exercise, at home and at camp, respectively. None of the athletes met the recommendations within 4 h after exercise. Nutrition knowledge was associated with EA at home (r = 0.52, p = 0.023), and with daily carbohydrate intake at home (r = 0.62, p = 0.005) and at camp (r = 0.52, p = 0.023). Carbohydrate intake within 1 and 4 h post-exercise at home was associated with better nutrition knowledge (r = 0.65, p = 0.003; r = 0.53, p = 0.019, respectively). In conclusion, young female cross-county skiers had difficulties meeting recommendations for optimal EA and carbohydrate intake. Better nutrition knowledge may help young athletes to meet these recommendations.  相似文献   

9.
This study assessed the effects of a 7-day creatine (CRE) supplementation on the load–velocity profile and repeated sub-maximal bouts in the deep squat using mean propulsive velocity (MPV) and mean propulsive power (MPP). Eleven strength-trained men (31.4 ± 5.4 years) supplemented 0.3 g·kg−1·d−1 CRE or a placebo (PLA, maltodextrin) for seven days in a randomized order, separated by a 30-day washout period. Prior to and after the supplementation, the subjects performed an incremental maximal strength (1RM) test, as well as 3 × 10 repetitions and a repetitions-to-failure test (RFT), all at 70% 1RM. Maximal strength remained statistically unaltered in CRE (p = 0.107) and PLA (p = 0.568). No statistical main effect for time (p = 0.780) or interaction (p = 0.737) was observed for the load–velocity profile. The number of repetitions during RFT remained statistically unaltered in both conditions (CRE: +16.8 ± 32.8%, p = 0.112; PLA: +8.2 ± 47.2%, p = 0.370), but the effect size was larger in creatine compared to placebo (g = 0.51 vs. g = 0.01). The total work during RFT increased following creatine supplementation (+23.1 ± 35.9%, p = 0.043, g = 0.70) but remained statistically unaltered in the placebo condition (+15.0 ± 60.8%, p = 0.801, g = 0.08; between conditions: p = 0.410, g = 0.25). We showed that CRE loading over seven days did not affect load–velocity characteristics but may have increased total work and power output during submaximal deep squat protocols, as was indicated by moderate effect sizes.  相似文献   

10.
This study analyzed the effects of caffeine intake on whole-body substrate metabolism and exercise tolerance during cycling by using a more individualized intensity for merging the subjects into homogeneous metabolic responses (the workload associated with the maximal lactate steady state—MLSS). MLSS was firstly determined in eight active males (25 ± 4 years, 176 ± 7 cm, 77 ± 11 kg) using from two to four constant-load tests of 30 min. On two following occasions, participants performed a test until exhaustion at the MLSS workload 1 h after taking either 6 mg/kg of body mass of caffeine or placebo (dextrose), in a randomized, double-blinded manner. Respiratory exchange ratio was calculated from gas exchange measurements. There was an improvement of 22.7% in time to exhaustion at MLSS workload following caffeine ingestion (95% confidence limits of ±10.3%, p = 0.002), which was accompanied by decrease in respiratory exchange ratio (p = 0.001). These results reinforce findings indicating that sparing of the endogenous carbohydrate stores could be one of the several physiological effects of caffeine during submaximal performance around 1 h.  相似文献   

11.
Caffeine is widely consumed among elite athletes for its well-known ergogenic properties, and its ability to increase exercise performance. However, studies to date have predominantly focused on the anhydrous form of caffeine in male participants. The aim of the study was to investigate the effect of caffeinated coffee ingestion on lower-upper body muscular endurance, cognitive performance, and heart rate variability (HRV) in female athletes. A total of 17 participants (mean ± standard deviation (SD): age = 23 ± 2 years, body mass = 64 ± 4 kg, height = 168 ± 3 cm) in a randomized cross-over design completed three testing sessions, following the ingestion of 3 mg/kg/bm of caffeine (3COF), 6 mg/kg/bm of caffeine (6COF) provided from coffee or decaffeinated coffee (PLA) in 600 mL of hot water. The testing results included: (1) repetition number for muscular endurance performance; (2): reaction time and response accuracy for cognitive performance; (3): HRV parameters, such as standard deviation of normal-to-normal (NN) intervals (SDNN), standard deviation of successive differences (SDSD), root mean square of successive differences (RMSSD), total power (TP), the ratio of low- and high-frequency powers (LF/HF), high-frequency power (HF), normalized HF (HFnu), low-frequency power (LF), and normalized LF (LFnu). A one-way repeated measures ANOVA revealed that 3COF (p = 0.024) and 6COF (p = 0.036) improved lower body muscular endurance in the first set as well as cognitive performance (p = 0.025, p = 0.035 in the post-test, respectively) compared to PLA. However, no differences were detected between trials for upper body muscular endurance (p = 0.07). Lastly, all HRV parameters did not change between trials (p > 0.05). In conclusion, ingesting caffeinated coffee improved lower body muscular endurance and cognitive performance, while not adversely affecting cardiac autonomic function.  相似文献   

12.
Background: EPA and DHA n-3 FA play crucial roles in both neurological and cardiovascular health and high dietary intakes along with supplementation suggest potential neuroprotection and concussion recovery support. Rugby athletes have a high risk of repetitive sub-concussive head impacts which may lead to long-term neurological deficits, but there is a lack of research looking into n-3 FA status in rugby players. We examined the dietary n-3 FA intake through a FFQ and n-3 FA status by measuring the percentage of n-3 FA and O3I in elite Canadian Rugby 7s players to show distribution across O3I risk zones; high risk, <4%; intermediate risk, 4 to 8%; and low risk, >8%. Methods: n-3 FA profile and dietary intake as per FFQ were collected at the beginning of the 2017–2018 Rugby 7s season in male (n = 19; 24.84 ± 2.32 years; 95.23 ± 6.93 kg) and female (n = 15; 23.45 ± 3.10 years; 71.21 ± 5.79 kg) athletes. Results: O3I averaged 4.54% ± 1.77, with female athlete scores slightly higher, and higher O3I scores in supplemented athletes (4.82% vs. 3.94%, p = 0.183), with a greater proportion of non-supplemented athletes in the high-risk category (45.5% vs. 39.1%). Dietary intake in non-supplemented athletes did not meet daily dietary recommendations for ALA or EPA + DHA compared to supplemented athletes. Conclusions: Overall, despite supplementation, O3I score remained in the high-risk category in a proportion of athletes who met recommended n-3 FA dietary intakes, and non-supplemented athletes had a higher proportion of O3I scores in the high-risk category, suggesting that dietary intake alone may not be enough and athletes may require additional dietary and n-3 FA supplementation to reduce neurological and cardiovascular risk.  相似文献   

13.
This study investigated low-dose caffeine ingestion, conditioning activity (CA) effects on psycho-physical performances in young taekwondo athletes. In a randomized, double-blind, counterbalanced, crossover design, 20 athletes (10 males; 17.5 ± 0.7 yrs) performed taekwondo-specific agility test (TSAT), 10 s/multiple frequency speed of kick test (FSKT-10s/FSKT-mult) after ingesting 3 mg·kg−1 caffeine (CAF) or placebo (PL) 60 min before performing standard warm-up without (NoCA) or with CA (3 × 10 vertical jumps above 40 cm), resulting in four experimental (PL + NoCA, CAF + NoCA, PL + CA, and CAF + CA) and one control (warm-up session without CAF or CA) conditions. Mood/physical symptoms (MPSS), subjective vitality (SVS), and feeling (FS) scales were analyzed post-to-pre for all conditions. Ratings of perceived-exertion and perceived-recovery status were determined after tests. For TSAT, CAF + CA induced better performance compared with all conditions (p < 0.001). For FSKT-10s and FSKT-mult, CAF + CA induced better performance compared with all conditions (p < 0.001). For MPSS, FS, CAF + NoCA induced higher scores than PL + NoCA and PL + CA (p = 0.002, 0.009 for MPSS; p = 0.014, 0.03 for FS). For SVS, PL + CA elicited lower scores than PL + NoCA and CAF + NoCA (p = 0.01, 0.004). Sex comparisons resulted in better performances for males for TSAT (p = 0.008), FSKT-10s (p < 0.001), FSKT-mult (p < 0.01), MPSS (p = 0.02), SVS (p = 0.028), and FS (p = 0.020) scores. Caffeine and conditioning activity are two efficient performance-enhancing strategies, which could synergistically result in greater psycho-physical performances.  相似文献   

14.
There are limited data on the fluid balance characteristics and fluid replenishment behaviors of high-performance adolescent athletes. The heterogeneity of hydration status and practices of adolescent athletes warrant efficient approaches to individualizing hydration strategies. This study aimed to evaluate and characterize the hydration status and fluid balance characteristics of high-performance adolescent athletes and examine the differences in fluid consumption behaviors during training. In total, 105 high-performance adolescent athletes (male: 66, female: 39; age 14.1 ± 1.0 y) across 11 sports had their hydration status assessed on three separate occasions—upon rising and before a low and a high-intensity training session (pre-training). The results showed that 20–44% of athletes were identified as hypohydrated, with 21–44% and 15–34% of athletes commencing low- and high-intensity training in a hypohydrated state, respectively. Linear mixed model (LMM) analyses revealed that athletes who were hypohydrated consumed more fluid (F (1.183.85)) = 5.91, (p = 0.016). Additional K-means cluster analyses performed highlighted three clusters: “Heavy sweaters with sufficient compensatory hydration habits,” “Heavy sweaters with insufficient compensatory hydration habits” and “Light sweaters with sufficient compensatory hydration habits”. Our results highlight that high-performance adolescent athletes with ad libitum drinking have compensatory mechanisms to replenish fluids lost from training. The approach to distinguish athletes by hydration characteristics could assist practitioners in prioritizing future hydration intervention protocols.  相似文献   

15.
By using deceptive experiments in which participants are informed that they received caffeine when, in fact, they received an inert substance (i.e., placebo), several investigations have demonstrated that exercise performance can be enhanced to a similar degree as a known caffeine dose. This ‘placebo effect’ phenomenon may be part of the mechanisms explaining caffeine’s ergogenicity in exercise. However, there is no study that has established whether the placebo effect of caffeine is also present for other benefits obtained with acute caffeine intake, such as enhanced fat oxidation during exercise. Therefore, the aim of this investigation was to investigate the placebo effect of caffeine on fat oxidation during exercise. Twelve young men participated in a deceptive double-blind cross-over experiment. Each participant completed three identical trials consisting of a step incremental exercise test from 30 to 80% of V.O2max. In the two first trials, participants ingested either 3 mg/kg of cellulose (placebo) or 3 mg/kg of caffeine (received caffeine) in a randomized order. In the third trial, participants were informed that they had received 3 mg/kg of caffeine, but a placebo was provided (informed caffeine). Fat oxidation rates were derived from stoichiometric equations. In received caffeine, participants increased their rate of fat oxidation over the values obtained with the placebo at 30%, 40%, 50%, and 60% of V.O2max (all p < 0.050). In informed caffeine, participants increased their rate of fat oxidation at 30%, 40%, 50% 60%, and 70% of V.O2max (all p < 0.050) over the placebo, while there were no differences between received versus informed caffeine. In comparison to placebo (0.32 ± 0.15 g/min), the rate of maximal fat oxidation was higher in received caffeine (0.44 ± 0.22 g/min, p = 0.045) and in informed caffeine (0.41 ± 0.20 g/min, p = 0.026) with no differences between received versus informed caffeine. However, the intensity at which maximal fat oxidation rate was obtained (i.e., Fatmax) was similar in placebo, received caffeine, and informed caffeine trials (42.5 ± 4.5, 44.2 ± 9.0, and 41.7 ± 10.5% of V.O2max, respectively, p = 0.539). In conclusion, the expectancy of having received caffeine produced similar effects on fat oxidation rate during exercise than actually receiving caffeine. Therefore, the placebo effect of caffeine is also present for the benefits of acute caffeine intake on substrate oxidation during exercise and it may be used to enhance fat oxidation during exercise in participants while reducing any risks to health that this substance may have.  相似文献   

16.
Adequate fluid replacement during exercise is an important consideration for athletes, however sweat rate (SR) can vary day-to-day. The purpose of this study was to investigate day-to-day variations in SR while performing self-selected exercise sessions to evaluate error in SR estimations in similar temperature conditions. Thirteen endurance-trained athletes completed training sessions in a case-series design 1x/week for a minimum 30 min of running/biking over 24 weeks. Body mass was recorded pre/post-training and corrected for fluid consumption. Data were split into three Wet-Bulb Globe Thermometer (WBGT) conditions: LOW (<10 °C), MOD (10–19.9 °C), HIGH (>20 °C). No significant differences existed in exercise duration, distance, pace, or WBGT for any group (p > 0.07). Significant differences in SR variability occurred for all groups, with average differences of: LOW = 0.15 L/h; MOD = 0.14 L/h; HIGH = 0.16 L/h (p < 0.05). There were no significant differences in mean SR between LOW-MOD (p > 0.9), but significant differences between LOW-HIGH and MOD-HIGH (p < 0.03). The assessment of SR can provide useful data for determining hydration strategies. The significant differences in SR within each temperature range indicates a single assessment may not accurately represent an individual’s typical SR even in similar environmental conditions.  相似文献   

17.
Special Operations Forces (SOF) regularly engage in physically demanding combat operations and field training exercises, resulting in high daily energy expenditure, and thus increased energy requirements. However, the majority of studies assessing energy requirements of SOF have been conducted on soldiers going through intense SOF initiation training. The objective of the current investigation was to determine the energy expenditure of SOF conducting military training operations. Thirty-one soldiers taking part in Pre-Mission Training (PMT n = 15) and Combat Diver Qualification Courses (CDQC n = 16) volunteered to participate in this observational study. Energy expenditure was determined using doubly labeled water. Body weight (83 ± 7 kg) remained stable during both training periods. Overall energy expenditure adjusted for body composition was 17,606 ± 2326 kJ·day−1. Energy expenditure was 19,110 ± 1468 kJ·day−1 during CDQC and 16,334 ± 2180 kJ·day−1 during PMT, with physical activity levels of 2.6 ± 0.2 and 2.2 ± 0.3 during CDQC and PMT, respectively. Compared to the Military Dietary Reference Intakes for energy (13,598 kJ·day−1), these data are in agreement with previous reports that energy requirement for SOF Soldiers exceed that of the average soldier.  相似文献   

18.
Coffee is one of the most widely consumed beverages worldwide and caffeine is known to improve performance in physical exercise. Some substances in coffee have a positive effect on glucose metabolism and are promising for post-exercise muscle glycogen recovery. We investigated the effect of a coffee beverage after exhaustive exercise on muscle glycogen resynthesis, glycogen synthase activity and glycemic and insulinemic response in a double-blind, crossover, randomized clinical trial. Fourteen endurance-trained men performed an exhaustive cycle ergometer exercise to deplete muscle glycogen. The following morning, participants completed a second cycling protocol followed by a 4-h recovery, during which they received either test beverage (coffee + milk) or control (milk) and a breakfast meal, with a simple randomization. Blood samples and muscle biopsies were collected at the beginning and by the end of recovery. Eleven participants were included in data analysis (age: 39.0 ± 6.0 years; BMI: 24.0 ± 2.3 kg/m2; VO2max: 59.9 ± 8.3 mL·kg−1·min−1; PPO: 346 ± 39 W). The consumption of coffee + milk resulted in greater muscle glycogen recovery (102.56 ± 18.75 vs. 40.54 ± 18.74 mmol·kg dw−1; p = 0.01; d = 0.94) and greater glucose (p = 0.02; d = 0.83) and insulin (p = 0.03; d = 0.76) total area under the curve compared with control. The addition of coffee to a beverage with adequate amounts of carbohydrates increased muscle glycogen resynthesis and the glycemic and insulinemic response during the 4-h recovery after exhaustive cycling exercise.  相似文献   

19.
Fatty acids play a significant role in maintaining cellular and DNA protection and we previously found an inverse relationship between blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and DNA damage. The aim of this study was to explore differences in proteomic profiles, for 117 pro-inflammatory proteins, in two previously defined groups of individuals with different DNA damage and EPA and DHA levels. Healthy children and adolescents (n = 140) aged 9 to 13 years old in an urban area of Brazil were divided by k-means cluster test into two clusters of DNA damage (tail intensity) using the comet assay (cluster 1 = 5.9% ± 1.2 and cluster 2 = 13.8% ± 3.1) in our previous study. The cluster with higher DNA damage and lower levels of DHA (6.2 ± 1.6 mg/dL; 5.4 ± 1.3 mg/dL, p = 0.003) and EPA (0.6 ± 0.2 mg/dL; 0.5 ± 0.1 mg/dL, p < 0.001) presented increased expression of the proteins CDK8–CCNC, PIK3CA–PIK3R1, KYNU, and PRKCB, which are involved in pro-inflammatory pathways. Our findings support the hypothesis that low levels of n-3 long-chain PUFA may have a less protective role against DNA damage through expression of pro-inflammatory proteins, such as CDK8–CCNC, PIK3CA–PIK3R1, KYNU, and PRKCB.  相似文献   

20.
We assessed whether a protein supplementation protocol could attenuate running-induced muscle soreness and other muscle damage markers compared to iso-caloric placebo supplementation. A double-blind randomized controlled trial was performed among 323 recreational runners (age 44 ± 11 years, 56% men) participating in a 15-km road race. Participants received milk protein or carbohydrate supplementation, for three consecutive days post-race. Habitual protein intake was assessed using 24 h recalls. Race characteristics were determined and muscle soreness was assessed with the Brief Pain Inventory at baseline and 1–3 days post-race. In a subgroup (n = 149) muscle soreness was measured with a strain gauge algometer and creatine kinase (CK) and lactate dehydrogenase (LDH) concentrations were measured. At baseline, no group-differences were observed for habitual protein intake (protein group: 79.9 ± 26.5 g/d versus placebo group: 82.0 ± 26.8 g/d, p = 0.49) and muscle soreness (protein: 0.45 ± 1.08 versus placebo: 0.44 ± 1.14, p = 0.96). Subjects completed the race with a running speed of 12 ± 2 km/h. With the Intention-to-Treat analysis no between-group differences were observed in reported muscle soreness. With the per-protocol analysis, however, the protein group reported higher muscle soreness 24 h post-race compared to the placebo group (2.96 ± 2.27 versus 2.46 ± 2.38, p = 0.039) and a lower pressure muscle pain threshold in the protein group compared to the placebo group (71.8 ± 30.0 N versus 83.9 ± 27.9 N, p = 0.019). No differences were found in concentrations of CK and LDH post-race between groups. Post-exercise protein supplementation is not more preferable than carbohydrate supplementation to reduce muscle soreness or other damage markers in recreational athletes with mostly a sufficient baseline protein intake running a 15-km road race.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号