首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two simple, accurate and reproducible spectrophotometric methods; Q analysis and first order derivative method have been described for the simultaneous estimation of drotaverine hydrochloride and paracetamol in combined tablet dosage form. Absorption maxima of drotaverine hydrochloride and paracetamol in distilled water were found to be 303.5 nm and 243.5 nm respectively. Beer''s law was obeyed in the concentration range 5-50 μg/ml for drotaverine and 5-60 μg/ml for paracetamol. In Q analysis method, two wavelengths were selected at isobestic point (277 nm) and λmax of paracetamol (243.5 nm). In first order derivative method, zero crossing point for drotaverine hydrochloride and paracetamol were selected at 303.5 nm and 243.5 nm, respectively. The results of two methods were validated statistically and recovery studies were found to be satisfactory.  相似文献   

2.
Two sensitive spectrophotometric and atomic absorption spectrometric procedures are developed for the determination of certain cephalosporins (cefotaxime sodium and cefuroxime sodium). The spectrophotometric methods are based on the charge-transfer complex formation between these drugs as n-donors and 7,7,8,8-tetracyano-quinodimethane (TCNQ) or p-chloranilic acid (p-CA) as π-acceptors to give highly coloured complex species. The coloured products are measured spectrophotometrically at 838 and 529 nm for TCNQ and p-CA, respectively. Beer’s law is obeyed in a concentration range of 7.6–15.2 and 7.1–20.0 μg ml−1 with TCNQ, 95.0-427.5 and 89.0-400.5 μg ml−1 with p-CA for cefotaxime sodium and cefuroxime sodium, respectively. The atomic absorption spectrometric methods are based on the reaction of the above cited drugs after their alkali-hydrolysis with silver nitrate or lead acetate in neutral aqueous medium. The formed precipitates are quantitatively determined directly or indirectly through the silver or lead content of the precipitate formed or the residual unreacted metal in the filtrate by atomic absorption spectroscopy. The optimum conditions for hydrolysis and precipitation have been carefully studied. Beer’s law is obeyed in a concentration range of 1.9–11.4 and 1.78–8.90 μg ml−1 with Ag(I), 14.2–57.0 and 13.3–53.4 μg ml−1 with Pb(II) for cefotaxime sodium and cefuroxime sodium, respectively (for both direct and indirect procedures). The spectrophotometric and the atomic absorption spectrometric procedures hold well their accuracy and precision when applied to the analysis of cefotaxime sodium and cefuroxime sodium dosage forms.  相似文献   

3.
Two sensitive, spectrophotometric and atomic absorption spectrometric procedures are developed for the determination of two antihypertensive agents (enalapril maleate and ramipril). The spectrophotometric procedures for the two cited drugs are based on ternary complex formation. The first ternary complex (copper(II), eosin, and enalapril) was estimated by two methods; the first depends on its extraction with chloroform measuring at 533.4 nm. Beer's law was obeyed in concentration range from 56 to 112 microg ml(-1). The second method for the same complex depends on its direct measurement after addition of methylcellulose as surfactant at the pH value 5 at 558.8 nm. The concentration range is from 19 to 32 microg ml(-1). The second ternary complex (iron(III), thiocyanate, and ramipril) was extracted with methylene chloride, measuring at 436.6 nm, with a concentration range 60-132 microg ml(-1). The direct atomic absorption spectrometric method through the quantitative determination of copper or iron content of the complex was also investigated for the purpose of enhancing the sensitivity of the determination. The spectrophotometric and atomic absorption spectrometric procedures hold their accuracy and precision well when applied to the determination of ramipril and enalapril dosage forms.  相似文献   

4.
A simple, precise, accurate and economic simultaneous UV spectrophotometric method has been developed for the estimation of amlodipine besylate, valsartan and hydrochlorothiazide in combination in bulk mixture and tablet. The estimation was based upon measurement of absorbance at absorbance maxima of 359 nm, 317 nm and 250 nm for amlodipine besylate, hydrochlorothiazide and valsartan in methanol, respectively in bulk mixture and tablet. The Beer Lambert''s law obeyed in the concentration range 5-25 μg/ml, 10-50 μg/ml and 5-25 μg/ml for amlodipine besylate, hydrochlorothiazide and valsartan, respectively. The estimation of bulk mixture and tablet was carried out by simultaneous equation, Q-analysis and area under curve method for estimation of amlodipine besylate and hydrochlorothiazide and standard curve method for estimation of valsartan. The results were found to be in the range of 99.6±1.52% to 102±0.51%. Method was validated with respect to specificity, linearity, range, accuracy, precision, LOD, LOQ, robustness, ruggedness and can be applied for routine analysis of tablet dosage forms.  相似文献   

5.
A simple, accurate and precise spectrophotometric method has been developed for simultaneous estimation of escitalopram oxalate and clonazepam in combined dosage form. Simultaneous equation method is employed for simultaneous determination of escitalopram oxalate and clonazepam from combined dosage forms. In this method, the absorbance was measured at 238 nm for escitalopram oxalate and 273 nm for clonazepam. Linearity was observed in range of 5-100 μg/ml and 5-50 μg/ml for escitalopram and clonazepam respectively. Recovery studies confirmed the accuracy of proposed method and results were validated as per ICH guidelines. The method can be used for routine quality control of pharmaceutical formulation containing escitalopram and clonazepam.  相似文献   

6.
An accurate, simple, reproducible and sensitive method for the determination of paracetamol, caffeine and codeine phosphate has been developed and validated. Paracetamol, caffeine and codeine phosphate were separated using a μBondapack C8 column by isocratic elution with flow rate 1.0 ml/min. The mobile phase composition was 420/20/30/30 (v/v/v/v) 0.01 M KH2PO4, methanol, acetonitrile, isopropyl alcohol and spectrophotometric detection was carried out at 215 nm. The linear range of detection for paracetamol, caffeine and codeine phosphate were between 0.400 and 1500 μg/ml; 0.075 and 90 μg/ml; 0.300 and 30 μg/ml, respectively. The method has been shown to be linear, reproducible, specific, sensitive and rugged.  相似文献   

7.
Two UV spectrophotometric methods have been developed, based on first derivative spectrophotometry for simultaneous estimation of doxylamine succinate, pyridoxine hydrochloride, and folic acid in tablet formulations. In method I, the concentrations of these drugs were determined by using linear regression equation. Method II is also based on first derivative spectrophotometry however simultaneous equations (Vierdot''s method) were derived on derivative spectra. The first derivative amplitudes at 270.0, 332.8 and 309.2 nm were utilized for simultaneous estimation of these drugs respectively by both methods. In both the methods, linearity was obtained in the concentration range 2.5-50 μg/ml, 1-40 μg/ml and 1-30 μg/ml for doxylamine succinate, pyridoxine hydrochloride, and folic acid respectively. The developed methods show best results in terms of linearity, accuracy, precision, LOD, LOQ and ruggedness for standard laboratory mixtures of pure drugs and marketed formulations. The common excipients and additives did not interfere in their determinations.  相似文献   

8.
A rapid high performance liquid chromatographic method has been developed and validated for the estimation of ramipril and telmisartan simultaneously in combined dosage form. A Genesis C18 column having dimensions of 4.6×250 mm and particle size of 5 μm in isocratic mode, with mobile phase containing a mixture of 0.01 M potassium dihydrogen phosphate buffer (adjusted to pH 3.4 using orthophosphoric acid): methanol:acetonitrile (15:15:70 v/v/v) was used. The mobile phase was pumped at a flow rate of 1.0 ml/min and the eluents were monitored at 210 nm. The selected chromatographic conditions were found to effectively separate ramipril (Rt: 3.68 min) and telmisartan (Rt: 4.98 min) having a resolution of 3.84. The method was validated in terms of linearity, accuracy, precision, specificity, limit of detection and limit of quantitation. Linearity for ramipril and telmisartan were found in the range of 3.5-6.5 μg/ml and 28.0-52.0 μg/ml, respectively. The percentage recoveries for ramipril and telmisartan ranged from 99.09-101.64% and 99.45-100.99%, respectively. The limit of detection and the limit of quantitation for ramipril was found to be 0.5 μg/ml and 1.5 μg/ml respectively and for telmisartan was found to be 1.5 μg/ml and 3.0 μg/ml, respectively. The method was found to be robust and can be successfully used to determine the drug content of marketed formulations.  相似文献   

9.
A simple, specific and accurate reverse phase liquid chromatographic method was developed for the simultaneous determination of losartan potassium and ramipril in table dosage forms. A hypersil ODS C18, 4.6×250 mm, 5 μm column in isocratic mode, with mobile phase acetonitrile:methanol:10 mM tetra butyl ammonium hydrogen sulphate in water in the ratio of 30:30:40% v/v/v was used. The flow rate was 1.0 ml/min and effluent was monitored at 210 nm. The retention times of losartan potassium and ramipril were 4.7 and 3.3 min, respectively. The linearity range for losartan potassium and ramipril were in the range of 0.04-100 μg/ml and 0.2-300 μg/ml, respectively. The proposed method was also validated and successfully applied to the estimation of losartan potassium and ramipril in combined tablet formulations.  相似文献   

10.
UV, first, second and third derivative spectrophotometric methods have been developed for the determination of ezetimibe in pharmaceutical formulation. The solutions of standard and sample were prepared in methanol. For the first method, UV spectrophotometry, the quantitative determination of the drug was carried at 233 nm and the linearity range was found to be 6-16 μg/ml. For the first, second and third derivative spectrophotometric methods the drug was determined at 259.5 nm, 269 nm and 248 nm with the linearity ranges 4-14 μg/ml, 4-14 μg/ml and 4-16 μg/ml. The calibration graphs constructed at their wavelength of determination were found to be linear for UV and derivative spectrophotometric methods. All the proposed methods have been extensively validated. The described methods can be readily utilized for the analysis of pharmaceutical formulation. There was no significant difference between the performance of the proposed methods regarding the mean values and standard deviations.  相似文献   

11.
Four new methods are described for the simultaneous determination of mefenamic acid (MEF) and paracetamol (PAR) in their combination. In the first method, ratio spectra derivative method, analytical signals were measured at the wavelengths corresponding to either maximums or minimums for both drugs in the first derivative spectra of the ratio spectra obtained by dividing the standard spectrum of one of two drugs in 0.1 M NaOH:methanol (1:9). In the chemometric techniques, classical least-squares, inverse least-squares and principal component regression (PCR), the training was randomly prepared by using the different mixture compositions containing two drugs in 0.1 M NaOH:methanol (1:9). The absorbance data was obtained by the measurements at 13 points in the wavelength range 235–355 nm in the absorption spectra. Chemometric calibrations were constructed by the absorbance data and training set for the prediction of the amount of MEF and PAR in samples. In the third chemometric method, PCR, the covariance matrix corresponding to the absorbance data was calculated for the basis vectors and matrix containing the new coordinates. The obtained calibration was used to determine the title drugs in their mixture. Linearity range in all the methods was found to be 2–10 μg/ml of MEF and 4–20 μg/ml of PAR. Mean recoveries were found satisfactory (>99%). The procedures do not require any separation step. These methods were successfully applied to a pharmaceutical formulation, tablet, and the results were compared with each other.  相似文献   

12.
Two sensitive, spectrophotometric and atomic absorption spectrometric procedures are developed for the determination of ramipril and perindopril. Both methods are based on the formation of a ternary complex, extractable with chloroform, between copper(II), eosin and the two cited drugs. Spectrophotometrically under the optimum condition, the ternary complexes showed an absorption maximum at 535 nm, with apparent molar absorptivities of 6.55 and 4.00×103 mol−1cm−1 and Sandell’s sensitivities of 5.80×10−2 and 1.04×10−1μg cm−2 for perindopril and ramipril, respectively. The solution of ternary complex obeyed Beer’s law in concentration ranges 10–60 and 20–100 μg ml−1 for perindopril and ramipril, respectively. The proposed method was applied to the determination of the two cited drugs in pharmaceutical tablets. The atomic absorption spectrometric method, directly through the quantitative determination of copper content of the organic extract of the complex, was also investigated for the purpose of enhancing the sensitivity of the determination. The spectrophotometric and atomic absorption spectrometric procedures hold their accuracy and precision well when applied to the determination of ramipril and perindopril dosage forms.  相似文献   

13.
Two spectrophotometric procedures are described for the determination of clobetasol propionate(I), halobetasol propionate(II) (corticosteroids) and quinagolide hydrochloride(III) (prolactin inhibitor). For corticosteroid drugs, the procedures are based on the formation of phenyl hydrazones of the corticosteroids which are subsequently subjected to charge transfer complexation reaction with either 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) as π-acceptor or with iodine as σ-acceptor. Prolactin inhibitor was reacted directly with the previous reagents. The molar ratios of the reactants were established and the experimental conditions were studied giving maximum absorption at 588 and 290 nm with DDQ and iodine methods, respectively for the three drugs. The concentration ranges were 20–150, 50–300, and 20–80 μg ml−1 in DDQ method for (I), (II), and (III), respectively and 13–20, 15–40, and 8–32 μg ml−1 in iodine method for (I), (II) and (III), respectively.  相似文献   

14.
A simple, precise, and accurate isocratic RP-UFLC stability-indicating assay method has been developed to determine trospium chloride in tablet dosage form. Isocratic separation was achieved on an Enable-C18G (250 mm × 4.6 mm i.d., particle size 5 μm) column at room temperature, the mobile phase consisted of acetonitrile:0.01M TBAHS (50:50, v/v) at a flow rate of 1.0 ml/min, the injection volume was 20 μl, and PDA detection was carried out at 215 nm. The drug was subjected to acid and alkali hydrolysis, oxidation, photolysis, and heat as stress conditions. The method was validated for specificity, linearity, precision, accuracy, robustness, and system suitability. The method was linear in the drug concentration range of 10–300 μg/ml with the correlation coefficient being 0.999. The RSD for repeatability and intermediate precision was well below 2%. The mean recoveries were between 100.52–101.68% for trospium chloride.  相似文献   

15.
A simple, precise and accurate isocratic RP-HPLC stability-indicating assay method has been developed to determine diclofenac potassium and metaxalone in their combined dosage forms. Isocratic separation was achieved on a Hibar-C18, Lichrosphere-100® (250 mm × 4.6 mm i.d., particle size 5 μm) column at room temperature in isocratic mode, the mobile phase consists of methanol: water (80:20, v/v) at a flow rate of 1.0 ml/min, the injection volume was 20 μl and UV detection was carried out at 280nm. The drug was subjected to acid and alkali hydrolysis, oxidation, photolysis and heat as stress conditions. The method was validated for specificity, linearity, precision, accuracy, robustness and system suitability. The method was linear in the drug concentration range of 2.5–30 μg/ml and 20–240 μg/ml for diclofenac potassium and metaxalone, respectively. The precision (RSD) of six samples was 0.83 and 0.93% for repeatability, and the intermediate precision (RSD) among six-sample preparation was 1.63 and 0.49% for diclofenac potassium and metaxalone, respectively. The mean recoveries were between 100.99–102.58% and 99.97–100.01% for diclofenac potassium and metaxalone, respectively. The proposed method can be used successfully for routine analysis of the drug in bulk and combined pharmaceutical dosage forms.  相似文献   

16.
The paper describes a highly sensitive and selective extraction spectrophotometric method for determination of aluminum in dialysis concentrates with new reagent 3,5-ditertbutylsalicylfluorone abbreviated as DTBSF, in which the ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate abbreviated as [C4tmsim][PF6] was used as novel medium for liquid/liquid extraction of aluminum(III). Under optimal condition, DTBSF reacted with aluminum(III) to form a neutral Al–DTBSF complex rapidly, the complex was then extracted into the [C4tmsim][PF6] phase, the absorbance of the complex in ionic liquid at 542 nm was recorded and used to determine aluminum(III). The apparent molar absorptivity of the complex and detection limit were found to be 3.52 × 106 l mol−1 cm−1 and 0.06 μg/l, respectively. The absorbance of the complex at 542 nm increases linearly with the concentration of aluminum(III) up to 3 μg of aluminum(III) in 250 ml of aqueous solution. The interference study show the determination of aluminum is free from interferences of almost all positive and negative ions found in dialysis concentrate samples. The determination of aluminum in dialysis concentrates were carried out by the present method and electrothermal atomic absorption spectrometry (GTAAS). The results were satisfactorily comparable so that the applicability of the proposed method with the ionic liquid system was also investigated. Moreover, the synthesis of and conditions for the formation and extraction of Al–DTBSF complex were investigated as well.  相似文献   

17.
Liquid chromatographic method was developed for simultaneous quantitative determination of dicyclomine hydrochloride, mefenamic acid and paracetamol in their combined dosage form. The separation was achieved using a C18 column (250×4.6 mm id, 5 μm) using acetonitrile:20 mM potassium dihydrogen phosphate 70:30 (v/v) adjusted to pH 4 using orthophosphoric acid as mobile phase at a flow rate of 1 ml/min and detection at 220 nm. Separation was completed within 12 min. The retention times of dicyclomine hydrochloride, mefenamic acid and paracetamol were 3.8, 9.3 and 2.5 minutes respectively. The proposed method was found to have linearity in concentration range of 10–100 μg/ml for dicyclomine hydrochloride, 0.05-10 μg/ml for mefenamic acid and 0.1−20 μg/ml for paracetamol. The developed method has been statistically validated and was found to be simple, precise, reproducible and accurate. The developed and validated method was successfully used for the quantitative analysis of commercially available dosage form.  相似文献   

18.
A simple, fast, and efficient RP-HPLC method has been developed and validated for the simultaneous estimation of Levodropropizine, Chloropheniramine, Methylparaben, Propylparaben, and the quantification of Levodropropizine impurities in the Reswas syrup dosage form. A gradient elution method was used for the separation of all the actives and Levodropropizine impurities by using the X-Bridge C18, 150 mm × 4.6 mm, 3.5 μm column with a flow rate of 1.0 mL/min and detector wavelength at 223 nm. The mobile phase consisted of a potassium dihydrogen orthophosphate buffer and acetonitrile. All the peaks were symmetrical and well-resolved (resolution was greater than 2.5 for any pair of components) with a shorter run time. The limit of detection for Levodropropizine and its Impurity B was 0.07 μg/ml & 0.05 μg/ml, whereas the limit of quantification was 0.19 μg/ml & 0.15 μg/ml respectively. The method was validated in terms of precision, accuracy, linearity, robustness, and specificity. Degradation products resulting from the stress studies were well-resolved and did not interfere with the detection of Levodropropizine, Chloropheniramine, Methylparaben, Propylparaben, and Levodropropizine Impurity B, thus the test method is stability-indicating. Validation of the method was carried out as per International Conference on Harmonization (ICH) guidelines.  相似文献   

19.
A simple, sensitive, rapid, accurate and precise spectrophotometric method has been developed for estimation of ropinirole hydrochloride in bulk and tablet dosage forms. Ropinirole hydrochloride shows maximum absorbance at 250 nm with molar absorptivity of 8.703×103 l/mol.cm. Beer''s law was obeyed in the concentration range of 5-35 μg/ml. Results of analysis were validated statistically and by recovery studies.  相似文献   

20.
A simple rapid spectrophotometric method has been developed for estimation of cefuroxime axetil from bulk drug and tablet dosage form by using 1-nitroso-2-napthol and sodium hydroxide. The method is based on the formation of yellow-orange coloured complex of drug with 1-nitroso-2-napthol having absorbance maxima at 424 nm. The Beer’s law is obeyed in the concentration range of 10-50 μg/ml of the drug but more precisely it obeys in the range of 10- 30 μg/ml. The slope and intercept values are 0.0101 and 0.0838, respectively. Results of analysis of this method were validated statistically and by recovery studies. The method is applied to the marketed tablet formulation. Result of analysis of tablet formulation given as percentage of label claim ±standard deviation is 99.17±1.57. The precision and accuracy was examined by performing recovery studies and was found to be 99.50±1.82. Sandell’s correlation coefficient is calculated as 0.4434. The developed method is simple, sensitive and reproducible and can be used for routine analysis of cefuroxime axetil from bulk and tablet dosage form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号