首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Drug delivery》2013,20(5):224-235
Abstract

Context: Mucoadhesive buccal films containing three layers (mucoadhesive layer, nanosuspension containing layer and backing membrane) were incorporated with carvedilol nanosuspension.

Objective: Formulation and evaluation of nanosuspension incorporated mucoadhesive buccal films of carvedilol for bioavailability enhancement by avoiding first-pass metabolism.

Methods: Carvedilol-loaded nanosuspension was prepared by a precipitation–ultrasonication method with varying concentrations of the polymer. The formulation was analyzed for size, size distribution, surface charge and morphology. Optimized nanosuspension was incorporated into drug gel layer which was sandwiched between a mucoadhesive layer and a backing layer to form tri-layered buccal films. They were evaluated for their physical, mechanical and bioadhesive parameters followed by in vitro and in vivo studies.

Results and discussion: Nanosuspension showed a negative zeta potential (?17.21?mV) with a diameter of around 495 nm and a polydispersity index of 0.203. Nanosuspension incorporated drug gel layer (62.4% drug loading) was optimized to contain 3% HPMC and 50?mg Carbopol 934P. The mucoadhesive layer and the backing layer were optimized to contain 3% HPMC and 1% ethyl cellulose, respectively. In vitro drug release was 69% and 62.4% in 9?h across synthetic membrane and porcine buccal mucosa, respectively. In vivo studies conducted in rabbit model showed 916% increase in the relative bioavailability in comparison to marketed oral tablet formulation. The Cmax and Tmax of the prepared formulation increased due to increased surface area of drug and also by-passing hepatic metabolism.

Conclusion: The drug delivery system has been designed as a novel platform for potential buccal delivery of drugs having high first-pass metabolism.  相似文献   

2.
Bilayered oromucosal film preparations (buccal films) offer a promising way to enable drug administration via the oral cavity. Adding a non-soluble or slowly eroding/dissolving backing layer to a mucoadhesive drug-loaded layer enables unidirectional drug delivery.The aim of this study was to investigate different approaches to the manufacture of bilayered films and to examine their properties by applying different characterization methods including an optimized experimental setup for the study of drug release from bilayered films. A solvent suitability study was performed screening over 15 polymers with respect to their feasibility for viscous film formation for film preparation by solvent casting method. Two methods (double-casting and pasting) were found as suitable methods for bilayered film manufacturing. Results from drug release experiments indicated that slowly eroding hypromellose backing layer films revealed the best shielding of the drug-loaded layer to enable unidirectional drug release. In summary, manufacturing of bilayered films using the described methods was feasible. Furthermore, the use of an optimized experimental setup for drug dissolution studies enabled monitoring of drug release without delays in sampling.  相似文献   

3.
A bilayered mucoadhesive buccal film containing a combination of ornidazole (OD) and dexamethasone sodium phosphate (DEX) was prepared using solvent casting to treat oral ulcers. Films were systematically evaluated in vitro to obtain the optimum formulation. The therapeutic effects of these films were investigated in the rabbit oral ulcer model and the in vivo release of OD and DEX in the human oral cavity was also evaluated. The backing layer contained ethyl cellulose and an optimal mucoadhesive layer containing both OD and DEX was produced. Films from the optimum formulation were 0.427?±?0.015?mm thick, weighed 55.89?±?0.79?mg, and had a surface pH of 6.34?±?0.01. The drug content of the optimum formulation approximated the theoretical value with good uniformity (2.959?±?0.106?mg/cm2 for OD and 0.877?±?0.031?mg/cm2 for DEX). The formulation showed favorable swelling characteristics and both drugs were released at >95% after 4?h. Moreover, the compound film had a statistically significant effect on mucosal repair and reduced ulcer inflammation without stimulating the human oral mucosa. Cmax of OD in saliva was 37.04?μg/ml and that of DEX was 9.737?μg/ml. Given promising therapeutic effects, the compound film developed here could become a local drug delivery device for treating oral ulcers.  相似文献   

4.
Lamotrigine is a BCS class II drug with pH dependent solubility. The bilayered gastric mucoadhesive tablets of lamotrigine were designed such that the drug and controlled release polymers were incorporated in the upper layer and the lower layer had the mucoadhesive polymers. The major ingredients selected for the upper layer were the drug and control release polymer (either HPMC K15M or polyox) while the lower MA layer predominantly comprised of Carbopol 974P. A 23 full factorial design was constructed for this study and the tablets were optimized for parameters like tablet size, shape, ex vivo mucoadhesive properties and unidirectional drug release. Oval tablets with an average size of 14 mm diameter were set optimum. Maximum mucoadhesive bond strength of 79.3 ± 0.91 * 103 dyn/cm2 was achieved with carbopol when used in combination with a synergistic resin polymer. All the tested formulations presented a mucoadhesion time of greater than 12 h. The incorporation of methacrylic polymers in the lower layer ensured unidirectional drug release from the bilayered tablets. The unidirectional drug release was confirmed after comparing the dissolution results of paddle method with those of a modified basket method. Model independent similarity and dissimilarity factor methods were used for the comparison of dissolution results. Controlled drug release profiles with zero order kinetics were obtained with polyox and HPMC K15M which reported t90% at 6th and 12th hours, respectively. The “n” value with polyox was 0.992 and that with HPMC K15M was 0.946 indicating an approximate case II transport. These two formulations showed the potential for oral administration of lamotrigine as bilayered gastric mucoadhesive tablets by yielding highest similarity factor values, 96.06 and 92.47, respectively, between the paddle and modified basket method dissolution release profiles apart from reporting the best tablet physical properties and maximum mucoadhesive strength.  相似文献   

5.
Garg S  Kumar G 《Die Pharmazie》2007,62(4):266-272
The objective of the present study was to develop a bilayered buccal bioadhesive film formulation of nicotine hydrogen tartrate for smoking cessation therapy, comprising a bioadhesive drug layer and a backing layer, which releases the drug at a pre-determined rate for a period of 4 h. Formulations were prepared using various bioadhesive polymers and were evaluated for physical parameters like peelability, flexibility, softness, bioadhesive strength, tensile strength, dispersion time and pharmaceutical parameters such as thickness, swelling, content uniformity, water vapour permeability and drug release. Based on these parameters formulation N2, containing hydroxypropyl methylcellulose and polycarbophil as the bioadhesive polymers, was selected as the optimized formulation. The formulation showed suitable adhesion and an initial burst release of 40% drug in first 15 min followed by a total 80% drug release in a characteristic manner until 4 h; which is the desired time of application. This release pattern is beneficial for patients suffering from emergent cravings. Backing layers of the films were studied by a moisture vapor permeability test and it was observed that the percentage of moisture which permeated through single layered films was much higher than through bilayered films implying that a backing layer would prevent washing out of drug by the saliva.  相似文献   

6.
Bilayered mucoadhesive buccal patches for systemic administration of domperidone (DOM), a dopamine-receptor (D2) antagonist, were developed using hydroxy propyl methyl cellulose and PVPK30 as a primary layer and Eudragit RLPO and PEO as a secondary layer. Ex vivo drug permeation through porcine buccal membrane was performed. Bilayered buccal patches were developed by solvent casting technique and evaluated for in vitro drug release, moisture absorption, mechanical properties, surface pH, in vitro bioadhesion, in vivo residence time and ex vivo permeation of DOM through porcine buccal membrane from a bilayered buccal patch. Formulation DB4 was associated with 99.5% drug release with a higuchi model release profile and 53.9% of the drug had permeated in 6 h, with a flux of 0.492 mg/h/cm2 through porcine buccal membrane. DB4 showed 5.58 N and 3.28 mJ peak detachment force and work of adhesion, respectively. The physicochemical interactions between DOM and the polymer were investigated by differential scanning calorimetry (DSC) and fourier transform infrared (FTIR) Spectroscopy. DSC and FTIR studies revealed no interaction between drug and polymer. Stability studies for optimized patch DB4 was carried out at 40°C/75% relative humidity. The formulations were found to be stable over a period of 3 months with respect to drug content, in vitro release and ex vivo permeation through porcine buccal membrane. The results indicate that suitable bilayered mucoadhesive buccal patches with desired permeability could be prepared.  相似文献   

7.
Mucoadhesive films represent the most developed medical form of buccal application. Despite the intense focus on buccal film-based systems, there are no standardized methods for their evaluation, which limits the possibility of comparison of obtained data and evaluation of the significance of influence of formulation and process variables on properties of resulting films. The used principal component analysis, together with a partial least squares regression provided a unique insight into the effects of in vitro parameters of mucoadhesive buccal films on their in vivo properties and into interdependencies among the studied variables. In the present study eight various mucoadhesive buccal films based on mucoadhesive polymers (carmellose, polyethylene oxide) were prepared using a solvent casting method or a method of impregnation, respectively. An ethylcellulose or hydrophobic blend of white beeswax and white petrolatum were used as a backing layer. The addition of polyethylene oxide prolonged the in vivo film residence time (from 53.24 ± 5.38–74.18 ± 5.13 min to 71.05 ± 3.15–98.12 ± 1.75 min), and even more when combined with an ethylcellulose backing layer (98.12 ± 1.75 min) and also improved the film’s appearance. Tested non-woven textile shortened the in vivo film residence time (from 74.18 ± 5.13–98.12 ± 1.75 min to 53.24 ± 5.38–81.00 ± 8.47 min) and generally worsened the film’s appearance. Mucoadhesive buccal films with a hydrophobic backing layer were associated with increased frequency of adverse effects.  相似文献   

8.
Nebivolol, a cardioselective β-blocker undergoes extensive metabolism in the liver after its oral administration resulting in low bioavailability. Oral administration of nebivolol also causes gastrointestinal disturbances characterised by stomach ache. To overcome these short comings, mucoadhesive buccal films of nebivolol were prepared using different concentrations of hydroxypropyl methylcellulose and hydroxyl ethylcellulose in the ratios of 2:1, 4:1 and 6:1 and hydroxypropyl methylcellulose and methylcellulose in the ratio of 2:2, 4:3 and 6:4 by solvent casting technique. All the prepared films were found to be smooth, elegant and uniform in thickness and weight. Among the three polymer combinations used, 6:4 (BFN6) showed increased in vitro residence time, which appeared to be mainly due to mucoadhesive nature of hydroxylpropyl methylcellulose and methylcellulose. Evaluation of the films showed uniform dispersion of the drug throughout the formulation (96.21±0.71 to 97.02±0.12%). In vitro drug release studies showed better results at the end of 8 h. The release profile of all the formulations was subjected to kinetic analyses, which suggested that the drug was released by diffusion mechanism following super case-II transport.  相似文献   

9.
The specific aim of this work was to prepare mucoadhesive patches containing tetracycline hydrochloride and carvacrol in an attempt to develop a novel oral drug delivery system for the treatment of mouth infections. The bilayered patches were prepared using ethyl cellulose as a backing layer and carbopol 934 as a matrix mucoadhesive layer. Patches were prepared with different loading amounts of tetracycline hydrochloride and carvacrol. The antimicrobial activity was assessed for the prepared patches using the disc-diffusion method against the yeast Candida albicans and five bacterial strains, including Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus, Staphylococcus aureus, and Bacillus bronchispti. In this work, we highlighted the possibility of occurrence of a synergistic action between carvacrol and tetracycline. The best formulation was selected based on microbiological tests, drug release, ex-vivo mucoadhesive performance, and swelling index. Physical characteristics of the selected formulations were determined. These included pH, patch thickness, weight uniformity, content uniformity, folding endurance, and patch stability.  相似文献   

10.

Back ground and the purpose of study

Sumatriptan succinate is a Serotonin 5- HT1 receptor agonist, used in treatment of migraine. It is absorbed rapidly but incompletely when given orally and undergoes first-pass metabolism, resulting in a low absolute bioavailability of about 15%. The aim of this work was to design mucoadhesive bilayered buccal tablets of sumatriptan succinate to improve its bioavailability.

Methods

Mucoadhesive polymers carbopol 934 (Carbopol), HPMC K4M, HPMC K15M along with ethyl cellulose as an impermeable backing layer were used for the preparation of mucoadhesive bilayered tablets. In vivo bioavailability studies was also conducted in rabbits for optimized formulation using oral solution of sumatriptan succinate as standard.

Results

Bilayered buccal tablets (BBT) containing the mixture of Carbopol and HPMC K4M in the ratio 1:1 (T1) had the maximum percentage of in vitro drug release within 6 hrs. The optimized formulation (T1) followed non-Fickian release mechanism. The percentage relative bioavailability of sumatriptan succinate from selected bilayered buccal tablets (T1) was found to be 140.78%.

Conclusions

Bilayered buccal tablets of sumatriptan succinate was successfully prepared with improved bioavailability.  相似文献   

11.
Objectives The aim of this study was to assess the potential of a novel delivery device for administering drugs that suffer from a high degree of first‐pass metabolism. Methods A tri‐layered buccal mucoadhesive patch, comprising a medicated dry tablet adhered to a mucoadhesive film, was prepared and characterized by its physicochemical properties and mucoadhesive strength. Nicotine was used as a model drug for the characterization of drug release and drug permeation. The influence of different adsorbents on the release of nicotine base from the patches was evaluated in vitro. Different molecular forms of nicotine (base and complex salt) were evaluated for their effect on release performance and permeation in vitro. Key findings Results demonstrated acceptable physicochemical and mucoadhesive properties for the tri‐layered patch. Rapid release of nicotine was observed when nicotine base was incorporated with calcium sulfate dihydrate as the adsorbent. Patches incorporating nicotine base showed distinct advantages over those containing nicotine polacrilex, in terms of drug release (complete drug release achieved at 30 vs 60 min) and transmucosal permeation (37.28 ± 4.25 vs 2.87 ± 0.26% of the dose permeating through mucosa within 120 min). Conclusions The novel tri‐layered patch can effectively adhere to, and deliver an active ingredient through the buccal mucosa, confirming its potential for buccal mucoadhesive drug delivery.  相似文献   

12.
A new mucoadhesive film for topical administration in the oral cavity of flufenamic acid, a poorly soluble anti-inflammatory drug, has been developed, using complexation with hydroxypropyl-β-cyclodextrin (HPβCD) to improve drug dissolution and release rate. Buccal films were prepared utilising chitosan as mucoadhesive polymer, KollicoatIR® as film-forming polymer and glycerol as plasticiser. Different combinations of these components were used and the obtained films were characterised for weight, thickness, swelling, mucoadhesive and mechanical properties. The film containing chitosan 2%, glycerol 7.5% and KollicoatIR® 1% showed the best properties for the development of the film formulation. The selected film was loaded with the plain drug and its colyophilised and coground products with HPβCD, and in vitro release studies in simulated saliva were performed. The improved drug dissolution properties, obtained by complexation with HPβCD, were critical to achieve complete release from film formulation during 4–5 h. On the contrary, film loaded with the plain drug showed incomplete release, not exceeding 70% release after 5 h. The developed film formulation containing the drug as complex with HPβCD can assure a prolonged drug release directly at the inflammation site and can be proposed as a new therapeutic tool in the treatment of oral mucosa inflammations.  相似文献   

13.
The objective of present research work was to design and characterize the venlafaxine HCl-loaded sodium alginate-based mucoadhesive microcapsules by ionic gelation technique using HPMC K100M as mucoadhesive polymer. The Placket-Burman Design was applied for preliminary screening of the formulations and systematic optimization by using Box-Behnken Design. The prepared microcapsules were characterized for drug content, entrapment efficiency, micromeritic properties, particle size, swelling index, mucoadhesive strength, in vitro drug release and in vivo antidepressant activity. FTIR and differential scanning calorimetry studies showed no incompatibility. Surface morphology studies revealed spherical nature of the prepared microcapsules. In vitro drug release studies revealed sustained release by diffusion mechanism. Further, the microcapsules were effective in reducing the depression induced by forced swimming test in Sprague-Dawley rats compared to the pure drug. The microcapsules were found to be stable under accelerated stability conditions, which suggest them as better alternative delivery systems for enhanced therapeutic efficacy of antidepressant drug, venlafaxine HCl.  相似文献   

14.
Intranasal drug administration is receiving increased attention as a delivery method for bypassing the blood–brain barrier and rapidly targeting therapeutics to the CNS. However, rapid mucociliary clearance in the nasal cavity is a major hurdle. The purpose of this study was to evaluate the effect of mucoadhesive polymers in enhancing the delivery of nimodipine microemulsion to the brain via the intranasal route. The optimized mucoadhesive microemulsion was characterized, and the in vitro drug release and in vivo nasal absorption of drug from the new formulation were evaluated in rats. The optimized formulation consisted of Capmul MCM as oil, Labrasol as surfactant, and Transcutol P as co-surfactant, with a particle size of 250 nm and zeta potential value of −15 mV. In vitro and ex vivo permeation studies showed an initial burst of drug release at 30 min and sustained release up to 6 h, attributable to the presence of free drug entrapped in the mucoadhesive layer. In vivo pharmacokinetic studies in rats showed that the use of the mucoadhesive microemulsion enhanced brain and plasma concentrations of nimodipine. These results suggest that incorporation of a mucoadhesive agent in a microemulsion intranasal delivery system can increase the retention time of the formulation and enhance brain delivery of drugs.KEY WORDS: Blood–brain barrier, Entrapment, Permeation, Pharmacokinetics, Nasal mucosa  相似文献   

15.
The study of drug release from microspheres adhered on pig vesical mucosa   总被引:3,自引:0,他引:3  
The object of our work is the preparation of a mucoadhesive drug delivery system intended for intravesical application. In the present work, microspheres with Eudragit RS matrix polymer and different mucoadhesive polymers, i.e. chitosan hydrochloride (Ch), sodium salt of carboxymethyl cellulose (CMC) and polycarbophil (PC) were prepared to evaluate their influence on the mucoadhesive properties of microspheres. Different parameters were determined and their influence on pipemidic acid release from microspheres adhered on intact and damaged pig vesical mucosa was evaluated: swelling of polymers, mucoadhesion strength of polymeric films and drug dissolution according to USP XXIV method. The dissolution rate from microspheres containing different mucoadhesive polymers decreases as follows: PC>Ch>CMC. PC swelled to the largest volume among all polymers and as a result the fastest release of the drug from PC microspheres was obtained. The release rate of pipemidic acid from microspheres adhered on intact mucosa followed the order PC>CMC>Ch. These results show that both drug dissolution and mucoadhesion strength strongly influence drug release from adhered microspheres. The slowest release from Ch microspheres could be interpreted by the largest mucoadhesion strength of Ch polymeric films. The release rate of pipemidic acid from microspheres adhered on damaged mucosa followed the order PC=Ch>CMC. The results obtained on pathologically changed mucosa model support the indication of the role of glycosaminoglycans and polymer charge in the mucoadhesion process on vesical mucosa. Analysis of release data shows that the drug dissolution profiles follow the Higuchi kinetics better than the release profiles from adhered microspheres and different kinetics might be a consequence of different release mechanisms.  相似文献   

16.
Objective of the present study was to develop and evaluate vaginal films with essential in vitro studies. Films were developed using hydroxypropyl methylcellulose as a polymer and formulations were coded. The developed films were evaluated with Fourier transform infrared spectroscopy, drug content, viscosity, surface pH, thickness, mechanical characterisation and in vitro drug release study. Fourier transform infrared spectroscopy results confirmed that there is no chemical interaction between drug and stabilisers/excipients. The batch variation was not more than 5% for average thickness and weight of the films. The drug content for the prepared formulation was in the range of 72.32±0.18% to 94.48±0.54%. Viscosity of the formulations increased with the increase in concentration of polymer. Mechanical characterisation revealed that tensile strength and percentage elongation of the films improved as there is increase in degree of substitution of the polymer, but the values of modulus decreased which confirmed that all the prepared films are soft in nature. The in vitro study indicated that 1 and 2% concentrations of polymer are the least concentrations to control the release of drug whereas the 4% concentration of polymer is a good and more effective concentration to control the release. Only one prepared formulation released the drug by following anomalous transport whereas other film formulations released the fluconazole by following Fickian diffusion mechanism. Prepared vaginal films may be an important alternative for the treatment of vaginal candidiasis, because these prepared films suggest the benefits of controlled release of fluconazole at the site of absorption.  相似文献   

17.
The objective of the present study was to develop the mucoadhesive buccal film of valdecoxib for the treatment of oral sub mucous fibrosis, a localized buccal disease. Valdecoxib, a novel COX-2 inhibitor has been reported to be used in various osteopathic and rheumatoid conditions as oral therapy. The films were made out of chitosan and HPMC K4M as polymers. Sodium taurocholate was used as a permeation enhancer. All the formulations were examined for film thickness, swelling properties, drug content, weight variation, in vitro release studies, bioadhesive force, tensile strength, diffusion studies using pig mucosa and pharmacokinetic study in healthy male volunteers. Prepared films were thin, flexible, smooth and transparent. Bioadhesive force and tensile strength of the optimized formulation were found to be 75 ± 4 kg m?1 S?2 and more than 2.5 kg/3 cm2, respectively. The percent drug content was 98.5 ± 1.3%. The in vitro drug release from the selected formulation showed that about 69.34% of the drug payload was released up to 6 hours. The drug permeation through the dialysis sac and pig buccal mucosa was found to be 62.70% and 54.39%, respectively. Pharmacokinetic studies of the buccal mucoadhesive film showed that the drug was released locally at the target site of action, and a very small amount might have absorbed systemically.  相似文献   

18.
5-Aminosalicylic acid (5-ASA) loaded N-Succinyl-chitosan (SucCH) microparticle and freeze-dried system were prepared as potential delivery systems to the colon. Physicochemical characterization and in vitro release and swelling studies were previously assessed and showed that the two formulations appeared to be good candidates to deliver the drug to the colon. In this work the effectiveness of these two systems in the treatment of inflammatory bowel disease was evaluated. In vitro mucoadhesive studies showed excellent mucoadhesive properties of both the systems to the inflamed colonic mucosa. Experimental colitis was induced by rectal instillation of 2,4,6-trinitrobenzene sulfonic acid (TNBS) into male Wistar rats. Colon/body weight ratio, clinical activity score system, myeloperoxidase activity and histological evaluation were determined as inflammatory indices. The two formulations were compared with drug suspension and SucCH suspension. The results showed that the loading of 5-ASA into SucCH polymer markedly improved efficacy in the healing of induced colitis in rats.  相似文献   

19.
Glipizide is mainly absorbed in the proximal areas of the gastrointestinal tract. The purpose of this study was formulation and evaluation of mucoadhesive films to prolong the stay of drug in its absorption area. Glipizide was formulated in a mucoadhesive film that could be retained in the stomach for prolonged intervals. Polymeric films were designed with various compositions of hydroxypropyl cellulose and polyethylene glycol 400 (PEG 400). Properties of the mucoadhesive film such as tensile strength, percentage elongation, swelling index, moisture content, pH and viscosity of polymeric dispersion, film thickness, content uniformity and mucoadhesion in a simulated gastric environment were characterized. In addition, percentage drug retained in stomach mucosa was estimated using a simulated dynamic stomach system as a function of time. Increase in hydroxypropyl cellulose concentration resulted in a higher tensile strength and elongation at break, while increase in concentration of PEG 400 was reflected in a decrease in tensile strength and increase of elongation at break. Glipizide/hydroxypropyl cellulose/PEG 400 (2.5:1:0.5) (GF5) was found to be the optimal composition for a novel mucoadhesive stomach formulation that showed good peelability, relatively high swelling index, moderate tensile strength, and stayed on rat stomach mucosa up to 8 h. In vivo testing of the mucoadhesive films with glipizide demonstrated a potential hypoglycemic effect.  相似文献   

20.
Abstract

The conventional formulation of prednisolone is considered to be low in efficacy, primarily on account of their failure in providing and maintaining effective therapeutic drug levels. This study aims to focus on development of a mucoadhesive buccal delivery system with a twofold objective of offering a rapid as well as a prolonged delivery of prednisolone coupled with enhanced therapeutic efficacy. Buccoadhesive films of prednisolone were prepared by solvent-casting method using hydroxyl propyl methyl cellulose (K100), Carbopol 940 and/or Eudragit® NE 40?D. Placebo films possessing the most desirable physicomechanical properties were selected for drug loading. The effect of polymer and its content on film properties, i.e. mucoadhesive strength, swelling and hydration, in vitro drug release was studied. Based on these studies, film F7D was selected for ex vivo permeation across porcine cheek mucosa. The steady state flux of prednisolone across the buccal mucosa was found to be 105.33?±?32.07?µg/cm2/h. A comparative pharmacokinetic study of prepared film (F7D) and oral suspension of prednisolone was conducted. In vivo data of buccal film show greater bioavailability (AUC0–α: 24.26?±?4.06?µg.h/ml versus 10.65?±?2.15?µg.h/ml) and higher Cmax (2.70?±?0.38?µg/ml versus 2.29?±?0.32?µg/ml) value when compared to oral suspension. The data observed from this study highlight the feasibility of the buccal route as a viable option for delivery of prednisolone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号