首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to evaluate the deficiencies in target coverage and organ protection of 2-dimensional radiation therapy (2DRT) in the treatment of advanced T-stage (T3-4) nasopharyngeal carcinoma (NPC), and assess the extent of improvement that could be achieved with intensity modulated radiation therapy (IMRT), with special reference to of the dose to the planning organ-at-risk volume (PRV) of the brainstem and spinal cord. A dosimetric study was performed on 10 patients with advanced T-stage (T3-4 and N0-2) NPC. Computer tomography (CT) images of 2.5-mm slice thickness of the head and neck were acquired with the patient immobilized in semi-extended-head position. A 2D plan based on Ho’s technique, and an IMRT plan based on a 7-coplanar portals arrangement, were established for each patient. 2DRT was planned with the field borders and shielding drawn on the simulator radiograph with reference to bony landmarks, digitized, and entered into a planning computer for reconstruction of the 3D dose distribution. The 2DRT and IMRT treatment plans were evaluated and compared with respect to the dose-volume histograms (DVHs) of the targets and the organs-at-risk (OARs), tumor control probability (TCP), and normal tissue complication probabilities (NTCPs). With IMRT, the dose coverage of the target was superior to that of 2DRT. The mean minimum dose of the GTV and PTV were increased from 33.7 Gy (2DRT) to 62.6 Gy (IMRT), and 11.9 Gy (2DRT) to 47.8 Gy (IMRT), respectively. The D95 of the GTV and PTV were also increased from 57.1 Gy (2DRT) to 67 Gy (IMRT), and 45 Gy (2DRT) to 63.6 Gy (IMRT), respectively. The TCP was substantially increased to 78.5% in IMRT. Better protection of the critical normal organs was also achieved with IMRT. The mean maximum dose delivered to the brainstem and spinal cord were reduced significantly from 61.8 Gy (2DRT) to 52.8 Gy (IMRT) and 56 Gy (2DRT) to 43.6 Gy (IMRT), respectively, which were within the conventional dose limits of 54 Gy for brainstem and of 45 Gy for spinal cord. The mean maximum doses deposited on the PRV of the brainstem and spinal cord were 60.7 Gy and 51.6 Gy respectively, which were above the conventional dose limits. For the chiasm, the mean dose maximum and the dose to 5% of its volume were reduced from 64.3 Gy (2DRT) to 53.7 Gy (IMRT) and from 62.8 Gy (2DRT) to 48.7 Gy (IMRT), respectively, and the corresponding NTCP was reduced from 18.4% to 2.1%. For the temporal lobes, the mean dose to 10% of its volume (about 4.6 cc) was reduced from 63.8 Gy (2DRT) to 55.4 Gy (IMRT) and the NTCP was decreased from 11.7% to 3.4%. The therapeutic ratio for T3-4 NPC tumors can be significantly improved with IMRT treatment technique due to improvement both in target coverage and the sparing of the critical normal organ. Although the maximum doses delivered to the brainstem and spinal cord in IMRT can be kept at or below their conventional dose limits, the maximum doses deposited on the PRV often exceed these limits due to the close proximity between the target and OARs. In other words, ideal dosimetric considerations cannot be fulfilled in IMRT planning for T3-4 NPC tumors. A compromise of the maximal dose limit to the PRV of the brainstem and spinal cord would need be accepted if dose coverage to the targets is not to be unacceptably compromised. Dosimetric comparison with 2DRT plans show that these dose limits to PRV were also frequently exceeded in 2DRT plans for locally advanced NPC. A dedicated retrospective study on the incidence of clinical injury to neurological organs in a large series of patients with T3-4 NPC treated by 2DRT may provide useful reference data in exploring how far the PRV dose constraints may be relaxed, to maximize the target coverage without compromising the normal organ function.  相似文献   

2.
Many patients with nasopharyngeal carcinoma (NPC) have marked anatomic change during intensity-modulated radiation therapy (IMRT). In this study, the magnitude of anatomic changes and its dosimetric effects were quantified. Fifteen patients with locally advanced NPC treated with IMRT had repeated computed tomography (CT) after 18 fractions. A hybrid plan was made to the anatomy of the second computed tomography scan. The dose of the original plan, hybrid plan, and new plan were compared. The mean volume of left and right parotid decreased 6.19 mL and 6.44 mL, respectively. The transverse diameters of the upper bound of odontoid process, the center of odontoid process, and the center of C2 vertebral body slices contracted with the mean contraction of 8.2 mm, 9.4 mm, and 7.6 mm. Comparing the hybrid plan with the treatment plan, the coverage of target was maintained while the maximum dose to the brain stem and spinal cord increased by 0.08 to 6.51 Gy and 0.05 to 7.8 Gy. The mean dose to left and right parotid increased by 2.97 Gy and 2.57 Gy, respectively. A new plan reduced the dose of spinal cord, brain stem, and parotids. Measurable anatomic changes occurring during the IMRT for locally advanced NPC maintained the coverage of targets but increased the dose to critical organs. Those patients might benefit from replanning.  相似文献   

3.
《Medical Dosimetry》2022,47(1):14-19
Background and purposeTo compare the dosimetric performance of Intensity Modulated Proton Therapy (IMPT) and Intensity Modulated Radiotherapy (IMRT) in terms of target volume coverage and sparing of neurological organs-at-risk (OARs) in salvaging recurrent nasopharyngeal carcinoma (rNPC). The maximum dose to the internal carotid artery (ICA) and nasopharyngeal (NP) mucosa, which are associated with potential carotid blowout and massive epistaxis, were also evaluated.Materials and methodsIMRT and IMPT treatment plans were created for twenty patients with locally advanced rNPC. Planning Target Volume (PTV) was used to account for the setup and spatial error/uncertainty in the IMRT planning. Robust optimization on Clinical Target Volume (CTV) coverage with consideration of range and setup uncertainty was employed to produce two IMPT plans with 3-field and 4-field arrangements. The planning objective was to deliver 60 Gy to the PTV (IMRT) and CTV (IMPT) without exceeding the maximum lifetime cumulative Biologically Effective Dose (BED) of the neurological OARs (applied to the Planning organs-at-risk volume). The target dose coverage as well as the maximum dose to the neurological OARs, ICA, and NP mucosa were compared.ResultsCompared with IMRT, 3-field IMPT achieved better coverage to GTV V100% (83.3% vs. 73.2%, P <0.01) and CTV V100% (80.5% vs. 72.4%, P <0.01), and lower maximum dose to the critical OARs including the spinal cord (19.2 Gy vs. 22.3 Gy, P <0.01), brainstem (30.0 Gy vs. 32.3 Gy, P <0.01) and optic chiasm (6.6 Gy vs. 9.8 Gy, P <0.01). The additional beam with the 4-fields IMPT plans further improved the target coverage from the 3-field IMPT (CTV V98%: 85.3% vs. 82.4%, P <0.01) with similar OAR sparing. However, the target dose was highly non-uniform with both IMPT plans, leading to a significantly higher maximum dose to the ICA (~68 Gy vs. 62.6 Gy, P <0.01) and NP mucosa (~72 Gy vs. 62.8 Gy, P <0.01) than IMRT.ConclusionIMPT demonstrated some dosimetric advantage over IMRT in treating rNPC. However, IMPT could also result in very high dose hot spots in the target volume. Careful consideration of the ICA and NP mucosal complications is recommended when applying IMPT on rNPC patients.  相似文献   

4.
Dogan N  Leybovich LB  King S  Sethi A  Emami B 《Radiology》2002,223(1):57-64
PURPOSE: To improve dose conformity and normal tissue sparing in patients with concave-shaped head and neck cancers by using tomotherapy and static step-and-shoot intensity-modulated radiation therapy (IMRT) and by comparing results with those of three-dimensional (3D) conformal radiation therapy (CRT) and two-dimensional (2D) radiation therapy. MATERIALS AND METHODS: Treatment planning in 10 patients with concave-shaped head and neck tumors was performed by using tomotherapy and step-and-shoot IMRT, 3D CRT, and 2D techniques. IMRT plans were modified by placing "virtual critical structures" in regions outside the target where hot spots occurred. These modified plans were used for comparison because they provided better dose conformity. Critical structures were the spinal cord, the parotid glands, and the mandible. Comparisons were performed by means of dose-volume histograms, clinical target volume (CTV), target covered by 95% isodose (D(95%)), dose received by 5% of the critical structure volume (D(5%)), maximum dose, mean dose, and normal tissue complication probability for critical structures. RESULTS: Original IMRT plans showed more conformal dose distributions than those in 3D CRT and 2D plans. However, hot spots developed in the posterior and anterior neck. Introduction of virtual critical structures in IMRT plans resulted in removal of these hot spots without affecting target coverage. Modified IMRT plans also demonstrated better CTV coverage than that in 3D CRT and 2D plans. The average D(95%) was 97.3% with tomotherapy, 97.1% with step-and-shoot IMRT, 84.7% with 3D CRT, and 69.4% with 2D techniques. D(5%) for the spinal cord changed from approximately 45 Gy with 3D plans and 46 Gy with 2D plans to approximately 28 Gy with IMRT. CONCLUSION: IMRT demonstrated better target coverage and sparing of critical structures than that of 3D CRT and 2D techniques. Use of virtual critical structures resulted in removal of hot spots around the spinal cord.  相似文献   

5.
The purpose of this study was to compare 2 adaptive radiotherapy strategies with helical tomotherapy. A patient having mesothelioma with mediastinal nodes was treated using helical tomotherapy with pretreatment megavoltage CT (MVCT) imaging. Gross tumor volumes (GTVs) were outlined on every MVCT study. Two alternatives for adapting the treatment were investigated: (1) keeping the prescribed dose to the targets while reducing the dose to the OARs and (2) escalating the target dose while maintaining the original level of healthy tissue sparing. Intensity modulated radiotherapy (step-and-shoot IMRT) and 3D conformal radiotherapy (3DCRT) plans for the patient were generated and compared. The primary lesion and nodal mass regressed by 16.2% and 32.5%, respectively. Adapted GTVs and reduced planning target volume (PTV) margins of 4 mm after 22 fractions decrease the planned mean lung dose by 19.4%. For dose escalation, the planned prescribed doses may be increased from 50.0 to 58.7 Gy in PTV1 and from 60.0 to 70.5 Gy in PTV2. The step-and-shoot IMRT plan was better in sparing healthy tissue but did not provide target coverage as well as the helical tomotherapy plan. The 3DCRT plan resulted in a prohibitively high planned dose to the spinal cord. MVCT studies provide information both for setup correction and plan adaptation. Improved healthy tissue sparing and/or dose escalation can be achieved by adaptive planning.  相似文献   

6.
目的 探讨Halo-Vest支架对颈椎原发恶性肿瘤不同放疗技术剂量分布的影响。方法 选择10例曾接受Halo-Vest支架手术后进行放射治疗的颈椎原发恶性肿瘤患者进行回顾性研究,使用Monaco计划系统,在勾画Halo-Vest支架结构外轮廓的CT序列图像上设计调强放疗(IMRT)和容积旋转调强放疗(VMAT)计划,然后复制相同射野参数的IMRT和VMAT计划到不勾画Halo-Vest支架结构外轮廓的CT序列图像上重新计算剂量分布,比较靶区、危及器官和正常组织的剂量分布差异。结果 对于VMAT计划,两组计划的计划靶区(PTV)和计划肿瘤靶区(PGTV)的剂量学参数除PGTV107%外的各参数平均差异均< 1%。相比外轮廓勾画Halo-Vest支架,外轮廓不勾画支架的图像计算的脊髓和脊髓-PRV平均最大剂量分别增加0.38和0.42 Gy(Z=-2.803、-2.803,P<0.05),脊髓和脊髓PRV Dmean分别增加0.35和0.37 Gy(Z=-2.703、-2.801,P<0.05)。黏膜、甲状腺、腮腺、下颌骨、下颌关节和正常组织的V5V30Dmean最大差异为0.74%。对于IMRT计划,两组计划的PTV和PGTV间剂量学参数差异较VMAT技术的差异增大,大部分差异超过1%,最大差异为4.55%。相比外轮廓勾画Halo-Vest支架,外轮廓不勾画支架的图像计算的脊髓平均最大剂量和脊髓-PRV最大剂量分别增加0.48和0.59 Gy(P>0.05),脊髓和脊髓PRV的平均Dmean分别增加0.57和0.59 Gy(Z=-2.293、-2.293,P<0.05)。其他危及器官的最大差异为1.98%。结论 CT图像外轮廓勾画或不勾画Halo-Vest支架结构,VMAT计划间剂量差异很小,临床上可以忽略,但IMRT计划间剂量差异偏大,需要考虑忽略或部分勾画Halo-Vest支架结构的外轮廓时对剂量分布带来的影响。  相似文献   

7.
The aim of the study was to investigate the effect of the Hybrid technique which was created by combining of intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) for the treatment of nasopharyngeal cancer (NPC) patients. 7 to 9 field IMRT, triple arc VMAT, and Hybrid plans were generated for 10 advanced stage NPC patients. The homogeneity index (HI) and the conformity index (CI) of planning target volumes (PTVs) were calculated for each technique to evaluate the plan quality. The techniques were compared in terms of plan quality, sparing of organs at risk (OARs), monitor units (MUs), and delivery time. Hybrid technique significantly improved the target dose homogeneity and the conformity for PTV70 and PTV60 compared to IMRT and VMAT. Hybrid plans significantly reduced the maximum dose of the brainstem sparing compared to the VMAT plans and also improved the sparing of spinal cord compared to IMRT and VMAT. The MUs and the delivery time of Hybrid plans were found to be between values for IMRT and VMAT plans. Hybrid technique can be useful when IMRT and VMAT techniques are not adequate alone in the treatment of NPC patients.  相似文献   

8.
9.
To assess the dosimetric effect of using interpolated contours in planning intensity-modulated radiation therapy (IMRT) for advanced T-stage nasopharyngeal carcinoma. The present study focused on T3-T4 tumours where the proximity of targets to neurological organs poses a stringent test on the feasibility of such an approach. Contours of targets and organs were delineated on CT images of 2.5-mm interval and a reference IMRT plan was generated. An investigative (INV) IMRT plan was then generated with the same planning protocol, but based on interpolated contours that replaced deleted contours on alternate slices. The reference and INV plans were compared. Regarding target coverage, all targets in the INV plans met the acceptance criteria except for the PTV in one case. Regarding organs, the mean dose to 1% volume of the brainstem and spinal cord in the INV plans were kept below their dose limits. No significant differences in the mean doses to others organs were found. Satisfactory target coverage and protection of critical organs to a degree similar to full-scale contouring could be achieved with use of interpolated contours. The saving in manpower time for contouring is expected to significantly improve the throughput of the IMRT planning process.  相似文献   

10.
Radiation therapy for squamous cell carcinoma of the oral cavity may be curative, but carries a risk of permanent damage to bone, salivary glands, and other soft tissues. We studied the potential of intensity modulated radiotherapy (IMRT) to improve target volume coverage, and normal tissue sparing for advanced oral cavity carcinoma (OCC). Six patients with advanced OCC requiring bilateral irradiation to the oral cavity and neck were studied. Standard 3D conformal radiotherapy (3DCRT) and inverse-planned IMRT dose distributions were compared by using dose-volume histograms. Doses to organs at risk, including spinal cord, parotid glands, and mandible, were assessed as surrogates of radiation toxicity. PTV1 mean dose was 60.8 ± 0.8 Gy for 3DCRT and 59.8 ± 0.1 Gy for IMRT (p = 0.04). PTV1 dose range was 24.7 ± 6 Gy for 3DCRT and 15.3 ± 4 Gy for IMRT (p = 0.001). PTV2 mean dose was 54.5 ± 0.8 Gy for 3DCRT and for IMRT was 54.2 ± 0.2 Gy (p = 0.34). PTV2 dose range was improved by IMRT (7.8 ± 3.2 Gy vs. 30.7 ± 12.8 Gy, p = 0.006). Homogeneity index (HI) values for PTV2 were closer to unity using IMRT (p = 0.0003). Mean parotid doses were 25.6 ± 2.7 Gy for IMRT and 42.0 ± 8.8 Gy with 3DCRT (p = 0.002). The parotid V30 in all IMRT plans was <45%. The mandible V50, V55, and V60 were significantly lower for the IMRT plans. Maximum spinal cord and brain stem doses were similar for the 2 techniques. IMRT provided superior target volume dose homogeneity and sparing of organs at risk. The magnitude of reductions in dose to the salivary glands and mandible are likely to translate into reduced incidence of xerostomia and osteoradionecrosis for patients with OCC.  相似文献   

11.

Purpose

To compare the effect of two different intensity-modulated radiation therapy (IMRT) planning techniques on parotid gland doses in patients with nasopharyngeal carcinoma (NPC).

Patients and methods

Radiotherapy for 10 NPC patients referred to the University of Istanbul Cerrahpasa Medical School was planned with arc- and static seven-field IMRT. The simultaneous integrated boost (SIB) technique was used to deliver 70 Gy (2.12 Gy per fraction) to the primary tumor and involved nodes; 60 Gy (1.81 Gy per fraction) to the entire nasopharynx and 54 Gy (1.63 Gy per fraction) to elective lymph nodes in 33 fractions. Plans also aimed to keep the mean parotid dose below 26 Gy and limit the maximum doses to the spinal cord and brain stem to 45 and 54 Gy, respectively. Mean parotid gland doses for the two planning techniques were compared using a paired t-test. Target coverage and dose inhomogeneity were evaluated by calculating conformity- (CI) and homogeneity index (HI) values.

Results

Target coverage and dose homogeneity were identical and good for both planning techniques: CI?=?1.05?±?0.08 and 1.05?±?0.08; HI?=?1.08?±?0.02 and 1.07?±?0.01 for arc- and static field IMRT, respectively. Mean doses to contralateral parotid glands were 25.73?±?4.27 and 27.73?±?3.5 Gy(p?=?0.008) for arc- and static field IMRT plans, respectively, whereas mean ipsilateral parotid doses were 30.65?±?6.25 and 32.55?±?5.93 Gy (non-significant p-value), respectively. Mean monitor units (MU) per fraction for the 10 patients were considerably lower for arc- than for static field treatments—540.5?±?130.39 versus 1288.4?±?197.28 (p?<?0.001).

Conclusion

Normal tissues—particularly the parotid glands—are better spared with the arc technique in patients with NPC. MU and treatment times are considerably reduced in arc IMRT plans.  相似文献   

12.
13.
14.
Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range (<10 Gy) in comparison to the AP/PA plan; however, the IMRT plan irradiated a smaller liver volume within the higher dose region (>10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits. In conclusion, our study suggests a dosimetric benefit of IMRT over conventional planning, and suggests an important role for IMRT in the neoadjuvant treatment of gastric cancer.  相似文献   

15.
Radiation therapy plays an integral role in the treatment of gastric cancer in the postsurgery setting, the inoperable/palliative setting, and, as in the case of the current report, in the setting of neoadjuvant therapy prior to surgery. Typically, anterior-posterior/posterior-anterior (AP/PA) or 3-field techniques are used. In this report, we explore the use of intensity-modulated radiotherapy (IMRT) treatment in a patient whose care was transferred to our institution after 3-field radiotherapy (RT) was given to a dose of 30 Gy at an outside institution. If the 3-field plan were continued to 50 Gy, the volume of irradiated liver receiving greater than 30 Gy would have been unacceptably high. To deliver the final 20 Gy, an opposed parallel AP/PA plan and an IMRT plan were compared to the initial 3-field technique for coverage of the target volume as well as dose to the kidneys, liver, small bowel, and spinal cord. Comparison of the 3 treatment techniques to deliver the final 20 Gy revealed reduced median and maximum dose to the whole kidney with the IMRT plan. For this 20-Gy boost, the volume of irradiated liver was lower for both the IMRT plan and the AP/PA plan vs. the 3-field plan. Comparing the IMRT boost plan to the AP/PA boost-dose range (<10 Gy) in comparison to the AP/PA plan; however, the IMRT plan irradiated a smaller liver volume within the higher dose region (>10 Gy) in comparison to the AP/PA plan. The IMRT boost plan also irradiated a smaller volume of the small bowel compared to both the 3-field plan and the AP/PA plan, and also delivered lower dose to the spinal cord in comparison to the AP/PA plan. Comparison of the composite plans revealed reduced dose to the whole kidney using IMRT. The V20 for the whole kidney volume for the composite IMRT plan was 30% compared to approximately 60% for the composite AP/PA plan. Overall, the dose to the liver receiving greater than 30 Gy was lower for the composite IMRT plan and was well below acceptable limits. In conclusion, our study suggests a dosimetric benefit of IMRT over conventional planning, and suggests an important role for IMRT in the neoadjuvant treatment of gastric cancer.  相似文献   

16.
17.
We aimed to compare prototype treatment plans for a new biology-guided radiotherapy (BgRT) machine in its intensity-modulated radiation therapy (IMRT) mode with those using existing IMRT delivery techniques in treatment of nasopharyngeal carcinoma (NPC). We retrospectively selected ten previous NPC patients treated in 33 fractions according to the NRG-HN001 treatment protocol. Three treatment plans were generated for each patient: a helical tomotherapy (HT) plan with a 2.5-cm jaw, a volumetric modulated arc therapy (VMAT) plan using 2 to 4 6-MV arc fields, and a prototype IMRT plan for a new BgRT system which uses a 6-MV photon beam on a ring gantry that rotates at 60 rotations per minute with a couch that moves in small incremental steps. Treatment plans were compared using dosimetric parameters to planning target volumes (PTVs) and organs at risk (OARs) as specified by the NRG-HN001 protocol. Plans for the three modalities had comparable dose coverage, mean dose, and dose heterogeneity to the primary PTV, while the prototype IMRT plans had greater dose heterogeneity to the non-primary PTVs, with the average homogeneity index ranging from 1.28 to 1.50 in the prototype plans. Six of all the 7 OAR mean dose parameters were lower with statistical significance in the prototype plans compared to the HT and VMAT plans with the other mean dose parameter being comparable, and all the 18 OAR maximum dose parameters were comparable or lower with statistical significance in the prototype plans. The average left and right parotid mean doses in the prototype plans were 10.5 Gy and 10.4 Gy lower than those in the HT plans, respectively, and were 5.1 Gy and 5.2 Gy lower than those in the VMAT plans, respectively. Compared to that with the HT and VMAT plans, the treatment time was longer with statistical significance with the prototype IMRT plans. Based on dosimetric comparison of ten NPC cases, the prototype IMRT plans achieved comparable or better critical organ sparing compared to the HT and VMAT plans for definitive NPC radiotherapy. However, there was higher dose heterogeneity to non-primary targets and longer estimated treatment time with the prototype plans.  相似文献   

18.
19.
20.
PURPOSE: To explore the potential of helical tomotherapy (HT) in the treatment of nasopharynx cancer. PATIENTS AND METHODS: Six T1-4 N1-3 patients were considered. A simultaneous integrated boost (SIB) technique was planned with inversely optimized conventional intensity-modulated radiotherapy (IMRT; dynamic multileaf collimator using the Eclipse-Helios Varian system) and HT. The prescribed (median) doses were 54 Gy, 61.5 Gy, and 64.5 Gy delivered in 30 fractions to PTV1 (planning target volume), PTV2, and PTV3, respectively. The same constraints for PTV coverage and for parotids, spinal cord, mandible, optic structures, and brain stem were followed in both modalities. The planner also tried to reduce the dose to other structures (mucosae outside PTV1, larynx, esophagus, inner ear, thyroid, brain, lungs, submental connective tissue, bony structures) as much as possible. RESULTS: The fraction of PTV receiving >95% of the prescribed dose (V95%) increased from 97.6% and 94.3% (IMRT) to 99.6% and 97% (HT) for PTV1 and PTV3, respectively (p<0.05); median dose to parotids decreased from 30.1 Gy for IMRT to 25.0 Gy for HT (p<0.05). Significant gains (p<0.05) were found for most organs at risk (OARs): mucosae (V30 decreased from 44 cm(3) [IMRT] to 18 cm(3) [HT]); larynx (V30: 25 cm(3) vs. 11 cm(3)); thyroid (mean dose: 48.7 Gy vs. 41.5 Gy); esophagus (V45: 4 cm(3) vs. 1 cm(3)); brain stem (D1%: 45.1 Gy vs. 37.7 Gy). CONCLUSION: HT improves the homogeneity of dose distribution within PTV and PTV coverage together with a significantly greater sparing of OARs compared to linac five-field IMRT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号