首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this issue of Cancer Cell, Phung and coworkers demonstrate that sustained endothelial activation of Akt by expression of constitutively activated Akt1 (myrAkt1) leads to blood vessels that essentially recapitulate the complex structural and functional abnormalities of tumor vessels. The authors provide evidence that rapamycin inhibition of PI3K/Akt/mTOR signaling in endothelial cells (ECs), by either reducing Akt activity or blocking mTOR, reverses the pathologic effects associated with excess VEGF signaling in the tumor vasculature. However, unexpected findings following mTOR inhibition in vivo highlight the seemingly paradoxical and complex effects of rapamycin on various cell types within the tumor microenvironment.  相似文献   

2.
Enhanced radiation damage of tumor vasculature by mTOR inhibitors   总被引:3,自引:0,他引:3  
Shinohara ET  Cao C  Niermann K  Mu Y  Zeng F  Hallahan DE  Lu B 《Oncogene》2005,24(35):5414-5422
It is known that radiation activates the phosphoinositol-3 kinase (PI3K)/Akt pathway and that inhibition of PI3K or Akt sensitizes tumor vasculature to radiotherapy. Mammalian target of rapamycin (mTOR) is a downstream target of Akt, and we hypothesized that irradiation activates mTOR signaling in both glioma and endothelial cells (ECs) and that radiosensitization results from inhibiting mTOR signaling. mTOR inhibitors, rapamycin and RAD001 (everolimus) were found to radiosensitize vascular ECs, but failed to sensitize glioma cells as determined by clonogenic assay. Therefore, we investigated the anti-angiogenic effects of mTOR inhibitors. Increased phospho-mTOR protein was detected in irradiated human umbilical vein endothelial cells (HUVEC), but not in GL261 glioma cells. Phospho-S6, a biomarker for mTOR signaling, was also found to be induced following irradiation in HUVEC and this effect was inhibited by PI3K or mTOR inhibitors. Significant increase in cleaved caspase 3 was detected when Rad001 was combined with radiation. Endothelial tube formation was significantly diminished following treatment with rapamycin and 3 Gy of radiation. Histological sections of GL261 tumors from mice showed a greatly reduced vascular density when treated with RAD001 and radiation. Power Weighted Doppler of glioma xenografts in mice showed a significant reduction in vasculature and blood flow compared with mice treated with 3 Gy or RAD001 alone. We conclude that irradiation activates mTOR signaling in vascular endothelium and that rapamycin and RAD001 increased apoptosis of ECs in response to radiation. To the authors' best knowledge this is the first study which demonstrates that mTOR inhibitors may be a way to target the vasculature by radiosensitizing the vascular endothelium resulting in better tumor control as seen in experiments demonstrating increased tumor growth delay in mice treated with rapamycin with radiation compared with mice treat with either treatment alone. We conclude that mTOR inhibitors have increased efficacy as antiangiogenics when combined with radiation.  相似文献   

3.
Chronic activation of Akt signaling in the endothelium recapitulates the salient features of a tumor vasculature and can be inhibited by rapamycin, an inhibitor of mammalian target of rapamycin. This led to the hypothesis that the antitumor efficacy of rapamycin may be partially dependent on its ability to inhibit endothelial Akt signaling, making rapamycin an antiangiogenic agent and endothelial Akt pathway inhibitor. Dose-response studies with rapamycin showed that primary human endothelial cells and fibroblasts had a bimodal Akt response with effective reductions in phosphorylated Akt (pAkt) achieved at 10 ng/mL. In contrast, rapamycin increased pAkt levels in tumor cell lines. When tumor-bearing mice were treated with rapamycin doses comparable to those used clinically in transplant patients, we observed strong inhibition of mammary tumor growth. To test whether Akt activation in the endothelium was rate-limiting for this antitumor response, we engineered mouse mammary tumor virus-polyoma virus middle T antigen mice with endothelial cell-specific expression of constitutively activated Akt. We observed that the antitumor efficacy of rapamycin was reduced in the presence of elevated endothelial Akt activation. Just as we observed in MCF7 cells in vitro, rapamycin doses that were antiangiogenic resulted in increased pAkt levels in total mouse mammary tumor virus-polyoma virus middle T antigen tumor lysates, suggesting that tumor cells had an opposite Akt response following mammalian target of rapamycin inhibition compared with tumor endothelial cells. Together, these data support the hypothesis that endothelial Akt signaling in the tumor vasculature is an important target of the novel anticancer drug rapamycin.  相似文献   

4.
Recent reports have suggested that phosphatidylinositol 3-kinase/Akt signaling can induce angiogenesis and tumor growth by activating the hypoxia-inducible factor-1 (HIF-1). However, the absence of specific biochemical inhibitors of HIF-1 signaling has prevented a direct test of the requirement for HIF-1 activity in Akt-dependent tumorigenesis. To genetically test the relationship between HIF-1 and Akt, activated Akt was expressed in a hepatoma cell line lacking HIF-1. Akt expression was associated with a dramatic increase in tumor size, despite the absence of HIF-1. Tumor size was not further increased in cells with reconstituted HIF-1 activity, indicating that the effects of Akt on tumorigenesis were not limited by the absence of HIF-1. Increased tumor size in Akt-expressing, HIF-deficient cells was associated with vascular endothelial growth factor secretion and tumor vascularization. In addition to vascular endothelial growth factor production, Akt also conferred a cell-autonomous competitive advantage to tumor cells in an in vivo competition experiment. Thus, Akt has potent, HIF-1-independent oncogenic and angiogenic activities.  相似文献   

5.
Doxazosin is an α1 adrenergic receptor blocker that also exerts antitumor effects. However, the underlying mechanisms by which it modulates PI3K/Akt intracellular signaling are poorly understood. In this study, we reveal that doxazosin functions as a novel antiangiogenic agent by inhibiting vascular endothelial growth factor (VEGF)-induced cell migration and proliferation. It also inhibited VEGF-induced capillary-like structure tube formation in vitro. Doxazosin inhibited the phosphorylation of VEGF receptor-2 (VEGFR-2) and downstream signaling, including PI3K, Akt, 3-phosphoinositide-dependent protein kinase 1 (PDK1), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor 1 (HIF-1α). However, it had no effect on VEGF-induced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation. Furthermore, doxazosin reduced tumor growth and suppressed tumor vascularization in a xenograft human ovarian cancer model. These results provide evidence that doxazosin functions in the endothelial cell system to modulate angiogenesis by inhibiting Akt and mTOR phosphorylation and interacting with VEGFR-2.  相似文献   

6.
Thioridazine, a member of the phenothiazine family, is a powerful anti-anxiety and anti-psychotic drug. It can also suppress the growth of several types of tumor in vitro. In the current study, we evaluated the direct anti-tumor and anti-angiogenic effects of thioridazine in vivo. The injection of thioridazine into human ovarian tumor xenografts in nude mice significantly inhibited tumor growth by ~fivefold, and also decreased tumor vascularity. In addition, thioridazine inhibited the phosphorylation of the signaling molecules downstream of phosphatidylinositol-3’-kinase (PI3K), including Akt, phosphoinositide-dependent protein kinase 1 (PDK1), and mammalian target of rapamycin (mTOR), during ovarian tumor progression via vascular endothelial growth factor receptor 2 (VEGFR-2). These results provide convincing evidence that thioridazine regulates endothelial cell function and subsequent angiogenesis by inhibiting VEGFR-2/PI3K/mTOR signal transduction. Collectively, these results strongly suggest that thioridazine might be a novel anti-tumor and anti-angiogenic agent for use in ovarian cancer.  相似文献   

7.
The mechanism of tumor cell killing by OXI4503 was investigated by studying vascular functional and morphological changes post drug administration. SCID mice bearing MHEC5-T hemangioendothelioma were given a single dose of OXI4503 at 100 mg/kg. Tumor blood flow, measured by microsphere fluorescence, was reduced by 50% at 1 hr, and reached a maximum level 6-24 hr post drug treatment. Tumor vascular permeability, measured by Evan's blue and hemoglobin, increased significantly from 3 hr and peaked at 18 hr. The elevated tumor vessel permeability was accompanied by an increase in vascular endothelial growth factor (VEGF) from 1 hr post drug treatment. Immunohistochemical staining for CD31 and laminin showed that tumor blood vessels were affected as early as 3 hr but more prominent from 6 hr. From 12 hr, the vessel structure was completely destroyed. Histopathological and double immunohistochemical staining showed morphological change and induction of apoptosis in endothelial cells at 1-3 hr, followed by tumor cell necrosis from 6-72 hr. There were no statistically significant changes of Evan's blue and hemoglobin contents in liver tissue over the time course. These results suggest that OXI4503 selectively targets tumor blood vessels, and induces blood flow shutdown while it enhances tumor blood vessel permeability. The early induction of endothelial cell apoptosis leads to functional changes of tumor blood vessels and finally to the collapse of tumor vasculature, resulting in massive tumor cell necrosis. The time course of the tumor vascular response observed with OXI4503 treatment supports this drug for development as a stand alone therapy, and also lends support for the use of the drug in combination with other cancer therapies.  相似文献   

8.
There is increasing interest in the use of vascular targeted therapy for the treatment of non-small-cell lung cancer (NSCLC). Current approaches include antiangiogenic drugs, which prevent growth of new vessels, and tumor vascular disrupting drugs, which further compromise the function of tumor vasculature and induce vascular failure. Preclinical studies have led to the development of the two main classes of tumor vascular disrupting agent-tubulin polymerization inhibitors such as combretastatin A4 phosphate (CA4P) and the flavonoid class that includes flavone acetic acid (FAA) and ASA404 (vadimezan). Each class of drug has shown antitumor activity in preclinical models of lung cancer, including both rodent tumors and human tumor xenografts. Tubulin polymerization inhibitors act primarily by disrupting the tubulin network of the endothelial cell cytoskeleton, leading to shape changes and increased vascular permeability, but these agents also affect the actin cytoskeleton and endothelial cell junctions. Flavonoid vascular disrupting agents appear to accentuate pathologic signaling by cytokines such as tumor necrosis factor and vascular endothelial growth factor, leading to changes in the actin cytoskeleton, increased vascular permeability, and endothelial apoptosis. Several approaches to the measurement of vascular disrupting effects in preclinical models have been developed. They include measurement of tumor blood flow, the induction of tumor hypoxia, and the release of serotonin from platelets, measured in plasma as the metabolite 5-hydroxyindoleacetic acid. Both classes of agent combine with standard cytotoxic drugs in the treatment of experimental tumors, but consideration of the timing of combination administration is important because tumor vascular disruption will affect delivery of a second agent.  相似文献   

9.
Aberrant activation of phosphoinositide-3-kinase (PI3K)/Akt signaling has been implicated in the development and progression of multiple human cancers. During the process of skin tumor promotion induced by treatment with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), activation of epidermal Akt occurs as well as several downstream effectors of Akt, including the activation of mTORC1. Rapamycin, an established mTORC1 inhibitor, was used to further explore the role of mTORC1 signaling in epithelial carcinogenesis, specifically during the tumor promotion stage. Rapamycin blocked TPA-induced activation of mTORC1 as well as several downstream targets. In addition, TPA-induced epidermal hyperproliferation and hyperplasia were inhibited in a dose-dependent manner with topical rapamycin treatments. Immunohistochemical analyses of the skin from mice in this multiple treatment experiment revealed that rapamycin also significantly decreased the number of infiltrating macrophages, T cells, neutrophils, and mast cells seen in the dermis following TPA treatment. Using a two-stage skin carcinogenesis protocol with 7,12-dimethylbenz(a)anthracene (DMBA) as initiator and TPA as the promoter, rapamycin (5-200 nmol per mouse given topically 30 minutes prior to TPA) exerted a powerful antipromoting effect, reducing both tumor incidence and tumor multiplicity. Moreover, topical application of rapamycin to existing papillomas induced regression and/or inhibited further growth. Overall, the data indicate that rapamycin is a potent inhibitor of skin tumor promotion and suggest that signaling through mTORC1 contributes significantly to the process of skin tumor promotion. The data also suggest that blocking this pathway either alone or in combination with other agents targeting additional pathways may be an effective strategy for prevention of epithelial carcinogenesis.  相似文献   

10.
Tumor cells exploit their microenvironment by growth factors and cytokines such as vascular endothelial growth factor (VEGF) to stimulate abnormal vessel formation that is leaky and tortuous, causing irregular blood flow. The combination of poor perfusion, raised interstitial fluid pressure and areas of vascular collapse leads to hypoxia within tumor. The latter activates factors such as hypoxia inducible factor 1 (HIF-1) that serve to make cancer cells more aggressive and also markedly influences the response of malignant tumors to conventional irradiation and chemotherapy. Accumulating data now suggest that blockade of oncogenic signaling, for example by PI3K/Akt/mTOR inhibitors, might consist a promising strategy since these agents do not only possess antitumor effects but can also alter tumor vasculature and oxygenation to improve the response to radiation and chemotherapy. In many cases, these changes are related to downregulation of HIF-1α and VEGF. Here, we review the pathophysiology of tumor microenvironment (TME) and how it adversely affects cancer treatment. The complex interaction of tumor vasculature and radiotherapy is examined together the preclinical evidence supporting a proinvasive/metastatic role for ionising radiation. We will discuss the expanding role of oncogenic signaling, especially PI3K/Akt/mTOR, on tumor angiogenesis. Special emphasis will be paid to the potential of different oncogenic pathways blockade and other indirect antivascular strategies to alter the TME for the benefit of cancer treatment, as an alternative to the classical angiogenetic treatment.  相似文献   

11.
This research aimed to explore the influence of Src homology-2 containing protein tyrosine phosphatase (SHP- 2) on the functions of tyrosine kinase receptors with immunoglobulin and EGF homology domains 2 (Tie2)-expressing monocyte/macrophages (TEMs) and the influence of the angiopoietin(Ang)/Tie2-phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) (Ang/Tie2-PI3K/Akt/mTOR) signaling pathway on the tumor microvascular remodeling in an immunosuppressive microenvironment. In vivo, SHP-2- deficient mice were used to construct colorectal cancer (CRC) liver metastasis models. SHP-2-deficient mice had significantly more metastatic cancer and inhibited nodules on the liver surface than wild-type mice, and the high-level expression of p-Tie2 was found in the liver tissue of the macrophages’ specific SHP-2-deficient mice (SHP-2MACKO) + planted tumor mice. Compared with the SHP-2 wild type mice (SHP-2WT) + planted tumor group, the SHP-2MAC-KO + planted tumor group experienced increased expression of p-Tie2, p-PI3K, p-Akt, p-mTOR, vascular endothelial growth factor (VEGF), cyclooxygenase-2 (COX-2), matrix metalloproteinase 2 (MMP2), and MMP9 in the liver tissue. TEMs selected by in vitro experiments were co-cultured with remodeling endothelial cells and tumor cells as carriers. It was found that when Angpt1/2 was used for stimulation, the SHP-2MAC-KO + Angpt1/2 group displayed evident increases in the expression of the Ang/Tie2-PI3K/Akt/mTOR pathway. The number of cells passing through the lower chamber and the basement membrane and the number of blood vessels formed by cells compared with the SHP-2WT + Angpt1/2 group, while these indexes were subjected to no changes under the simultaneous stimulation of Angpt1/2 + Neamine. To sum up, the conditional knockout of SHP-2 can activate the Ang/Tie2-PI3K/Akt/mTOR pathway in TEMs, thereby strengthening tumor micro angiogenesis in the microenvironment and facilitating CRC liver metastasis.  相似文献   

12.
The suppressor of MEK null (sMEK1) protein possesses pro-apoptotic activities. In the current study, we reveal that sMEK1 functions as a novel anti-angiogenic factor by suppressing vascular endothelial growth factor (VEGF)-induced cell proliferation, migration, and capillary-like tubular structure in vitro. In addition, sMEK1 inhibited the phosphorylation of the signaling components up- and downstream of Akt, including phospholipase Cγ1 (PLC-γ1), 3-phosphoinositide-dependent protein kinase 1 (PDK1), endothelial nitric oxide synthetase (eNOS), and hypoxia-inducible factor 1 (HIF-1α) during ovarian tumor progression via binding with vascular endothelial growth factor receptor 2 (VEGFR-2). Furthermore, sMEK1 decreased tumor vascularity and inhibited tumor growth in a xenograft human ovarian tumor model. These results supply convincing evidence that sMEK1 controls endothelial cell function and subsequent angiogenesis by suppressing VEGFR-2-mediated PI3K/Akt/eNOS signaling pathway. Taken together, our results clearly suggest that sMEK1 might be a novel anti-angiogenic and anti-tumor agent for use in ovarian tumor.  相似文献   

13.
14.
The phosphatidylinositol 3'-kinase (PI3k)/protein kinase B (PKB/Akt) signal transduction pathway plays a critical role in mediating endothelial cell survival and function during oxidative stress. The role of the PI3k/Akt signaling pathway in promoting cell viability was studied in vascular endothelial cells treated with ionizing radiation. Western blot analysis showed that Akt was rapidly phosphorylated in response to radiation in primary culture endothelial cells (human umbilical vascular endothelial cells) in the absence of serum or growth factors. PI3k consists of p85 and p110 subunits, which play a central upstream role in Akt activation in response to exogenous stimuli. The delta isoform of the p110 subunit is expressed in endothelial cells. We studied the effects of the p110delta specific inhibitor IC486068, which abrogated radiation-induced phosphorylation of Akt. IC486068 enhanced radiation-induced apoptosis in endothelial cells and reduced cell migration and tubule formation of endothelial cells in Matrigel following irradiation. In vivo tumor growth delay was studied in mice with Lewis lung carcinoma and GL261 hind limb tumors. Mice were treated with daily i.p. injections (25 mg/kg) of IC486068 during 6 days of radiation treatment (18 Gy). Combined treatment with IC486068 and radiation significantly reduced tumor volume as compared with either treatment alone. Reduction in vasculature was confirmed using the dorsal skinfold vascular window model. The vascular length density was measured by use of the tumor vascular window model and showed IC486068 significantly enhanced radiation-induced destruction of tumor vasculature as compared with either treatment alone. IC486068 enhances radiation-induced endothelial cytotoxicity, resulting in tumor vascular destruction and tumor control when combined with fractionated radiotherapy in murine tumor models. These findings suggest that p110delta is a therapeutic target to enhance radiation-induced tumor control.  相似文献   

15.
Growth factor enhancement of endothelial cell viability occurs through phosphatidylinositol 3-kinase (PI3K)/Akt-mediated inhibition of apoptosis. The PI3K/Akt signal transduction pathway was activated by both vascular endothelial growth factor and ionizing radiation. Radiation- and vascular endothelial growth factor-induced phosphorylation of Akt was inhibited by PI3K antagonists. To determine whether this signal transduction pathway represents a therapeutic target in tumor vascular endothelium, we examined the effects of the PI3K inhibitors wortmannin and LY294002 on irradiated endothelium. Wortmannin and LY294002 enhanced radiation-induced apoptosis and cytotoxicity in endothelial cells. Tumor vascular window and Doppler ultrasound showed that PI3K antagonists enhanced radiation-induced destruction of tumor blood vessels. Tumor growth delay was significantly increased after treatment with LY294002 followed by irradiation as compared with either agent alone. PI3K in tumor vascular endothelium is a potential therapeutic target to enhance the efficacy of ionizing radiation.  相似文献   

16.
17.
Unlike vascular endothelial growth factor (VEGF)-A, the effect of VEGF-C on tumor angiogenesis, vascular permeability, and leukocyte recruitment is not known. To this end, we quantified in vivo growth and vascular function in tumors derived from two VEGF-C-overexpressing (VC+) and mock-transfected cell lines (T241 fibrosarcoma and VEGF-A-/- embryonic stem cells) grown in murine dorsal skinfold chambers. VC+ tumors grew more rapidly than mock-transfected tumors and exhibited parallel increases in tumor angiogenesis. Furthermore, VEGF-C overexpression elevated vascular permeability in T241 tumors, but not in VEGF-A-/- tumors. Surprisingly, unlike VEGF-A, VEGF-C did not increase leukocyte rolling or adhesion in tumor vessels. Administration of VEGF receptor (VEGFR)-2 neutralizing antibody DC101 reduced vascular density and permeability of both VC+ and mock-transduced T241 tumors. These data suggest that VEGFR-2 signaling is critical for tumor angiogenesis and vascular permeability and that VEGFR-3 signaling does not compensate for VEGFR-2 blockade. An alternate VEGFR, VEGFR-1 or neuropilin-1, may modulate adhesion of leukocytes to tumor vessels.  相似文献   

18.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Adiponectin is a protein hormone secreted predominantly by differentiated adipocytes. On the other hand, angiogenesis is a critical step in tumor growth and metastasis. However, the relationship of adiponectin with vascular endothelial growth factor-A (VEGF-A) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study we first demonstrated that the expression of adiponectin was correlated with tumor stage of human chondrosarcoma tissues. In addition, we also found that adiponectin increased VEGF-A expression in human chondrosarcoma cells and subsequently induced migration and tube formation in human endothelial progenitor cells (EPCs). Adiponectin promoted VEGF-A expression through adiponectin receptor (AdipoR), phosphoinositide 3 kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF)-1α signaling cascades. Knockdown of adiponectin decreased VEGF-A expression and also abolished chondrosarcoma conditional medium-mediated tube formation in EPCs in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. Therefore, adiponectin is crucial for tumor angiogenesis and growth, which may represent a novel target for anti-angiogenic therapy in human chondrosarcoma.  相似文献   

19.
Rapamycin (or sirolimus), the prototypical inhibitor of the mammalian target of rapamycin (mTOR) and an immunosuppressant used for the prevention of renal transplant rejection, has recently emerged as an effective treatment for Kaposi's sarcoma (KS), an enigmatic vascular tumor and a model for pathologic angiogenesis. Indeed, recent work supports a role for mTOR as a central player in the transformation of endothelial cells by the KS-associated herpesvirus-encoded G protein-coupled receptor (vGPCR), the viral oncogene believed to be responsible for causing KS. However, emerging evidence that rapamycin may transiently promote the activation of Akt may limit its use as an anti-KS therapy. Here, we show that activation of Akt in endothelial cells expressing vGPCR is augmented by treatment with rapamycin, resulting in the up-regulation of several Akt proliferative and survival pathways. However, use of a novel dual phosphatidylinositol 3-kinase alpha (PI3Kalpha)/mTOR inhibitor, PI-103, effectively and independently blocked activation of both PI3K and mTOR in vGPCR-expressing endothelial cells. This resulted in more effective inhibition of endothelial cell proliferation and survival in vitro and tumor growth in vivo. Our results suggest that PI-103 may be an effective therapeutic option for the treatment of patients with KS. Moreover, as KS may serve as a model for pathologic angiogenesis, our results further provide the basis for the early assessment of PI-103 as an antiangiogenic chemotherapeutic.  相似文献   

20.
This study found that phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling was activated in human T-cell lymphotropic virus type I (HTLV-1)-infected leukemia cells. Rapamycin (1-100 nM, 48h), the inhibitor of mTOR and its analog RAD001 (1-100 nM, 48 h)-induced growth inhibition and G0/G1 cell cycle arrest of these cells in association with de-phosphorylation of p70S6K and 4E-BP-1, although IC50 was not achieved. Paradoxically, rapamycin-stimulated phosphorylation of Akt at Ser473. Blockade of Akt signaling by the PI3K inhibitor LY294002 (1-20 microM, 48 h) also resulted in the growth inhibition and G0/G1 cell cycle arrest of HTLV-1-infected cells, with IC50 ranging from 5 to 20muM, and it caused de-phosphorylation of p70S6K and 4E-BP-1. Of note, when rapamycin was combined with LY294002, rapamycin-induced phosphorylation of Akt was blocked, and the ability of rapamycin to induce growth arrest of HTLV-1-infected T-cells and suppress the p-p70S6K and p-4E-BP-1 proteins was potentiated. Moreover, both LY294002 and rapamycin down-regulated the levels of c-Myc and cyclin D1 proteins in these cells, and their combination further decreased levels of these cell cycle-regulating proteins. Taken together, longitudinal inhibition of PI3K/Akt/mTOR signaling represents a promising treatment strategy for individuals with adult T-cell leukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号