首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The contraction of the rat aorta induced by endothelin-1 (ET-1) requires entry of extracellular Ca2+, but involvement of voltage-operated Ca2+ channel is minor. Using whole-cell recordings of patch-clamp and monitoring of the intracellular free Ca2+ concentration ([Ca2+]i), we characterized Ca2+ entry channels in A7r5 cells activated by ET-1. ET-1 activates three types of voltage-independent Ca2+ entry channels: two types of Ca2+-permeable nonselective cation channels (designated NSCC-1 and NSCC-2) and a store-operated Ca2+ channel (SOCC). Furthermore, it was found that these channels can be pharmacologically discriminated using Ca2+ channel blockers such as SK&F 96365 and LOE 908. NSCC-1 is resistant to SK&F 96365, but sensitive to LOE 908, whereas NSCC-2 is sensitive to both SK&F 96365 and LOE 908. SOCC is sensitive to SK&F 96365, but resistant to LOE 908. Using these channel blockers, we analyzed Ca2+ entry channels involved in the ET-1-induced contractions of rat thoracic aorta and increases in [Ca2+]i of single smooth muscle cells. The responses to lower concentrations of ET-1 (< or = 0.1 nM) were abolished by either SK&F 96365 or LOE 908 alone. In contrast, the responses to higher concentrations of ET-1 (> or = 1 nM) were suppressed by SK&F 96365 or LOE 908 to about 10% and 35% of controls, respectively, and abolished by combined treatment with SK&F 96365 and LOE 908. These results show that the responses of rat aorta to lower concentrations of ET-1 involve only one Ca2+ channel that is sensitive to SK&F 96365 and LOE 908 (NSCC-2), whereas those to higher concentrations of ET-1 involve NSCC-1, NSCC-2 and SOCC, contributing 10%, 55% and 35%, respectively, to total Ca2+ entry.  相似文献   

2.
We have recently shown that endothelin-1 (ET-1) activates two types of Ca2+-permeable nonselective cation channels (designated NSCC-1 and NSCC-2) and store-operated Ca2+ channel (SOCC). These channels can be pharmacologically discriminated using Ca2+ channel blockers such as SK&F 96365 and LOE 908. Here we characterized Ca2+ entry channels involved in ET-1-induced contractions of rat thoracic aortic rings and increases in the intracellular free Ca2+ concentration ([Ca2+]i) of single smooth muscle cells using these blockers. LOE 908 or a blocker of voltage-operated Ca2+ channel nifedipine had no effect on the contractions and increases in [Ca2+]i induced by thapsigargin or ionomycin, whereas SK&F 96365 abolished them. The contractions and increases in [Ca2+]i induced by ET-1 depended on extracellular Ca2+ but were resistant to nifedipine. The responses to lower concentrations (< or =0.1 nM) of ET-1 were abolished by either SK&F 96365 or LOE 908. The responses to higher concentrations (> or = 1 nM) were abolished by SK&F 96365, but were partially resistant to LOE 908. SK&F 96365 inhibited the LOE 908-resistant contractions induced by higher concentrations of ET-1 with IC50 values similar to those for contractions induced by thapsigargin or ionomycin. These results show that the contractions and increases in [Ca2+]i of rat aortic smooth muscles at lower concentrations of ET-1 involve only one Ca2+ entry channel which is sensitive to SK&F 96365 and LOE 908 (NSCC-2), whereas those at higher concentrations of ET-1 involve another Ca2+ entry channel which is sensitive to SK&F 96365 but resistant to LOE 908 (SOCC) in addition to the former channel.  相似文献   

3.
1) We have recently shown that endothelin-1 (ET-1) activates two types of Ca(2+)-permeable nonselective cation channels (designated NSCC-1 and NSCC-2) and store-operated Ca2+ channel (SOCC). These channels can be pharmacologically discriminated using Ca2+ channel blockers such as SK&F 96365 and LOE 908. Here we characterized Ca2+ entry channels involved in ET-1-induced contractions of rat thoracic aortic rings and increases in the intracellular free Ca2+ concentration ([Ca2+]i) of single smooth muscle cells using these blockers. 2) LOE 908 or a blocker of voltage-operated Ca2+ channel nifedipine had no effect on the contractions and increases in [Ca2+]i induced by thapsigargin, whereas SK&F 96365 abolished them. 3) The contractions and increases in [Ca2+]i induced by ET-1 depended on extracellular Ca2+ but were resistant to nifedipine. The responses to lower concentrations (< or = 0.1 nM) of ET-1 were abolished by either SK&F 96365 or LOE 908. The responses to higher concentrations (> or = 1 nM) were abolished by SK&F 96365, but were partially resistant to LOE 908. 4) These results show that the contractions and increases in [Ca2+]i of rat aortic smooth muscles at lower concentrations of ET-1 involve only one Ca2+ entry channel which is sensitive to SK&F 96365 and LOE 908 (NSCC-2), whereas those at higher concentrations of ET-1 involve another Ca2+ entry channel which is sensitive to SK&F 96365 but resistant to LOE 908 (SOCC) in addition to the former channel.  相似文献   

4.
1. We have shown that in addition to voltage-operated Ca2+ channel (VOC), endothelin-1 (ET-1) activates two types of Ca2+-permeable nonselective cation channel (NSCC) in A7r5 cells: its lower concentrations (< or = 1 nM; lower [ET-1]) activate only an SK&F 96365-resistant channel (NSCC-1), whereas its higher concentrations (> or = 10 nM; higher [ET-1]) activate an SK&F 96365-sensitive channel (NSCC-2) as well. 2. We now characterized the effects of a blocker of Ca2+ entry channel LOE 908 on NSCCs and store-operated Ca2+ channel (SOCC) in A7r5 cells, and using two drugs, clarified the involvement of these channels in the ET-1-induced increase in the intracellular free Ca2+ concentrations ([Ca2+]i). Whole-cell recordings and [Ca2+]i monitoring with fluo-3 were used. 3. LOE 908 up to 10 microM had no effect on increases in [Ca2+]i induced by thapsigargin or ionomycin, but SK&F 96365 abolished them. 4. In the cells clamped at -60 mV, both lower and higher [ET-1] induced inward currents with linear iv relationships and the reversal potentials of -15.0 mV. Thapsigargin induced no currents. 5. In the presence of nifedipine, lower [ET-1] induced a sustained increase in [Ca2+]i, whereas higher [ET-1] induced a transient peak and a sustained increase. The sustained increases by lower and higher [ET-1] were abolished by removal of extracellular Ca2+, and they were suppressed by LOE 908 to 0 and 35%, respectively, with the LOE 908-resistant part being abolished by SK&F 96365. 6. These results show that LOE 908 is a blocker of NSCCs without effect on SOCC, and that the increase in [Ca2+]i at lower [ET-1] results from Ca2+ entry through NSCC-1 in addition to VOC, whereas the increase at higher [ET-1] involves NSCC-1, NSCC-2 and SOCC in addition to VOC.  相似文献   

5.
We have recently shown that in addition to L-type voltage-operated Ca2+ channel (VOC), endothelin-1 (ET-1) stimulation opens two types of Ca2+-permeable nonselective cation channels [designated nonselective cation channel-1 (NSCC-1) and NSCC-2]. However, in this Ca2+ entry, the involvement of store-operated Ca2+ channel (SOCC), which is suggested to exist in chromaffin cells, was unclear. Those NSCCs as well as SOCC can be pharmacologically discriminated using Ca2+ channel blockers such as SK&F 96365 and LOE 908. To clarify whether SOCC should actually exist and play a role in Ca2+ entry in chromaffin cells stimulated with ET-1, we examined the effects of removal of extracellular Ca2+, thapsigargin (TG, an inhibitor of endoplasmic reticulum Ca2+-ATPase), LOE 908 and SK&F 96365 on cytosolic free Ca2+ concentrations ([Ca2+]i) in cultured bovine adrenal chromaffin cells. After the cells were exposed to Ca2+-free medium followed by exposure to TG to deplete Ca2+ from the intracellular Ca2+ store, restoration of extracellular Ca2+ caused a gradual increase in [Ca2+]i (to about 200% of control). The increase was unaffected by LOE 908, but completely abolished by SK&F 96365. In the Ca2+-free medium, no increase in [Ca2+]i by ET-1 was observed, but the subsequent restoration of extracellular Ca2+ induced a rapid increase in [Ca2+]i (to the same level of [Ca2+]i as that evoked by ET-1 in the normal medium (1.0 mM Ca2+)). Since SK&F 96365 is also a blocker of SOCC, these results indicate that in bovine adrenal chromaffin cells, Ca2+ entry through SOCC (Ca2+ influx through the capacitative Ca2+ entry system) occurs but is comparably weak, and that it virtually does not work on the stimulation of ET-1.  相似文献   

6.
Endothelin-1 (ET-1) activates two types of Ca2+-permeable nonselective cation channels (designated NSCC-1 and NSCC-2) and a store-operated Ca2+ channel (SOCC) in Chinese hamster ovary cells expressing endothelinA receptors (CHO-ETAR). These channels can be distinguished by their sensitivity to Ca2+ channel blockers 1-(beta-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride (SK&F 96365) and (R,S)-(3,4-dihydro-6,7-dimethoxy-isochinolin-1-yl)-2-phenyl-N,N-di[2-(2,3,4-trimethoxyphenyl)ethyl]acetamid mesylate (LOE 908). NSCC-1 is sensitive to LOE 908 and resistant to SK&F 96365; NSCC-2 is sensitive to both blockers, and SOCC is resistant to LOE 908 and sensitive to SK&F 96365. In this study, we examined the mechanism of ET-1-induced arachidonic acid (AA) release. Both SK&F 96365 and LOE 908 inhibited ET-1-induced AA release with the IC50 values correlated to those of ET-1-induced Ca2+ influx. Moreover, combined treatment with these blockers abolished ET-1-induced AA release. Wortmannin and LY294002, inhibitors of phosphoinositide 3-kinase (PI3K), partially inhibited ET-1-induced AA release. LOE 908, but not SK&F 96365, inhibited ET-1-induced AA release in wortmannin-treated CHO-ETAR. ET-1 also induced AA release in CHO cells expressing ETAR truncated at the carboxyl terminal downstream of Cys385 (CHO-ETARDelta385) or an unpalmitoylated (Cys383 Cys385-388--> Ser383Ser385-388) ETAR (CHO-SerETAR), each of which is coupled with Gq or Gs/G12, respectively. In CHO-SerETAR, a dominant-negative mutant of G12 inhibited AA release. SK&F 96365 inhibited ET-1-induced AA release in CHO-ETARDelta385, whereas LOE 908 inhibited it in CHO-SerETAR. These results indicate the following: 1) ET-1-induced AA release depends on Ca2+ influx through NSCC-1, NSCC-2, and SOCC in CHO-ETAR; 2) Gq and G12 mediate AA release through ETAR in CHO cells; and 3) PI3K is involved in ET-1-induced AA release, which depends on NSCC-2 and SOCC.  相似文献   

7.
Ca(2+) channels activated by endothelin-1 (ET-1) in C6 glioma cells (C6 cells) were characterized using whole-cell patch-clamps and by monitoring the intracellular free Ca(2+) concentration ([Ca(2+)](i)), when administering Ca(2+) channel blockers such as LOE 908 and SK&F 96365. Using this methodology, the Ca(2+) channels involved in ET-1-induced mitogenesis were identified.The patch-clamp study and [Ca(2+)](i) monitoring showed that 10 nM ET-1 activated two types of Ca(2+)-permeable nonselective cation channels (NSCC); one was sensitive to LOE 908 but resistant to SK&F 96365 (NSCC-1) and the other was sensitive to both LOE 908 and SK&F 96365 (NSCC-2). Conversely, 0.1 nM ET-1 activated only NSCC-1.ET-1-induced mitogenesis in a concentration-dependent manner, with the maximum effect arising at concentrations > or =10 nM. LOE 908 completely suppressed the 10 nM ET-1-induced mitogenesis, whereas SK&F 96365 only partially suppressed it. The IC(50) values of these blockers for the ET-1-induced mitogenesis were similar to those for the 10 nM ET-1-induced increase in [Ca(2+)](i). In contrast, LOE 908 completely suppressed 0.1 nM ET-1-induced mitogenesis, whereas SK&F 96365 did not affect it.Collectively, these results demonstrate that the sustained increase in [Ca(2+)](i), via NSCC-1 and NSCC-2, may be essential for ET-1-induced mitogenesis in C6 cells. Moreover, the sensitivity of NSCC-1 to ET-1 is higher than that of NSCC-2 to ET-1.  相似文献   

8.
Endothelin-1 (ET-1) has been shown to activate three types of Ca2+ channel, namely two Ca2+-permeable nonselective cation channels (designated NSCC-1 and NSCC-2) and a store-operated Ca2+ channel (SOCC), and that these channels can be discriminated by Ca2+ channel blockers such as LOE 908 (a blocker of NSCC-1 and NSCC-2) and SK&F 96365 (a blocker of NSCC-2 and SOCC). This study pharmacologically compared Ca2+ entry channels involved in contractions of rat thoracic aorta without endothelium induced by ET-1, noradrenaline (NA), or arginine-vasopressin (AVP). These agonists-induced contractions of aortic rings without endothelium and increases in the intracellular free Ca2+ concentration ([Ca2+]i) of cultured aortic smooth muscle cells were abolished by removal of extracellular Ca2+. A blocker of L-type voltage-operated Ca2+ channel (VOCC), nifedipine had no effect on the responses to ET-1, but it suppressed the responses to NA and AVP to 70% and 65% of control responses, respectively. LOE 908 partially suppressed the nifedipine-resistant responses to ET-1 and AVP, but not those to NA. SK&F 96365 also partially suppressed the nifedipine-resistant responses to ET-1 and AVP, whereas it abolished the responses to NA. LOE 908 in combination with SK&F 96365 abolished the nifedipine-resistant responses to either of the agonists. These results show that the contraction of rat aorta involves different Ca2+ entry channel depending on agonists: (a) NSCC-1, NSCC-2, and SOCC for ET-1; (b) VOCC and SOCC for NA; and (c) VOCC, NSCC-1, NSCC-2, and SOCC for AVP.  相似文献   

9.
We demonstrated recently that endothelin-1 (ET-1) activates two types of Ca(2+)-permeable nonselective cation channels [designated nonselective cation channel (NSCC)-1 and NSCC-2] and a store-operated Ca(2+) channel (SOCC) in rabbit internal carotid artery vascular smooth muscle cells (ICA VSMCs). These channels can be distinguished by their sensitivity to Ca(2+) channel blockers 1-(beta-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride (SK&F 96365) and (R,S)-(3,4-dihydro-6,7-dimethoxy-isochinolin-1-yl)-2-phenyl-N,N-di[2-(2,3,4-trimethoxyphenyl)ethyl]acetamid mesylate (LOE 908). NSCC-1 is sensitive to LOE 908 and resistant to SK&F 96365, NSCC-2 is sensitive to both LOE 908 and SK&F 96365, and SOCC is resistant to LOE 908 and sensitive to SK&F 96365. The purpose of the present study was to identify the Ca(2+) channels involved in the ET-1-induced, proline-rich tyrosine kinase 2 (PYK2) phosphorylation in ICA VSMCs. Based on sensitivity to nifedipine, an L-type voltage-operated Ca(2+) channel (VOCC) blocker, Ca(2+) influx through VOCC seems to play a minor role in the ET-1-induced PYK2 phosphorylation. In the presence of nifedipine, PYK2 phosphorylation was abolished by blocking Ca(2+) influx through NSCC-1, NSCC-2, and SOCC. The phosphoinositide 3-kinase (PI3K) inhibitors wortmannin and 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY 294002), inhibited ET-1-induced Ca(2+) influx through NSCC-2 and SOCC. In addition, these inhibitors blocked PYK2 phosphorylation that depends on Ca(2+) influx through NSCC-2 and SOCC. These results indicate that 1) Ca(2+) influx through NSCC-1, NSCC-2, and SOCC plays essential roles in ET-1-induced PYK2 phosphorylation, 2) NSCC-2 and SOCC are stimulated by ET-1 via a PI3K-dependent cascade, whereas NSCC-1 is stimulated via a PI3K-independent cascade, and 3) PI3K is involved in the PYK2 phosphorylation that depends on Ca(2+) influx through SOCC and NSCC-2.  相似文献   

10.
We recently demonstrated that endothelin-1 (ET-1) activates two types of Ca(2+)-permeable nonselective cation channel (designated NSCC-1 and NSCC-2) and a store-operated Ca(2+) channel (SOCC) in Chinese hamster ovary cells expressing endothelin(A) receptor (CHO-ET(A)R). In addition, these channels can be discriminated using Ca(2+) channel blockers (R,S)-(3,4-dihydro-6,7-dimethoxy-isochinolin-1-yl)-2-phenyl-N,N-di[2-(2,3,4-trimethoxyphenyl)ethyl]acetamid mesylate (LOE 908) and 1-(beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole (SK&F 96365). LOE 908 is a blocker of NSCC-1 and NSCC-2, whereas SK&F 96365 is a blocker of SOCC and NSCC-2. In this study, we investigated the effects of phosphoinositide 3-kinase (PI3K) on the ET-1-induced activation of these channels and mitogenesis in CHO-ET(A)R using wortmannin and 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY 294002), inhibitors of phosphoinositide 3-kinase (PI3K). ET-1-induced Ca(2+) influx was partially inhibited in CHO-ET(A)R pretreated with wortmannin or LY 294002. In contrast, addition of wortmannin or LY 294002 after stimulation with ET-1 did not suppress Ca(2+) influx. The Ca(2+) channels activated by ET-1 in wortmannin or LY 294002-treated CHO-ET(A)R were sensitive to LOE 908 and resistant to SK&F 96365. Wortmannin also partially inhibited ET-1-induced mitogenesis. LOE 908, but not SK&F 96365, abolished the wortmannin-resistant part of mitogenesis. The IC(50) values (~30 nM) of wortmannin for the ET-1-induced Ca(2+) influx and mitogenesis were similar to those for the ET-1-induced PI3K activation. In conclusion, NSCC-2 and SOCC are stimulated by ET-1 via PI3K-dependent cascade, whereas NSCC-1 is stimulated via PI3K-independent cascade. Moreover, PI3K seems to be required for the activation of the Ca(2+) entry, but not for its maintenance. In addition, PI3K is involved in the ET-1-induced mitogenesis that depends on the extracellular Ca(2+) influx through SOCC and NSCC-2.  相似文献   

11.
This study attempted to characterize Ca2+ channels involved in endothelin-1-induced contraction of rabbit basilar artery using whole-cell patch-clamp and measurement of intracellular free Ca2+ concentration. Endothelin-1 activates two types of Ca2+-permeable nonselective cation channels (NSCC-1 and NSCC-2) and a store-operated Ca2+ channel (SOCC) in addition to the voltage-operated Ca2+ channel (VOCC). These channels can be discriminated using Ca2+ channel blockers, SK&F 96365 and LOE 908. Tension study was conducted to clarify the Ca2+ channels involved in endothelin-1-induced contraction of basilar artery. Endothelin-1-induced basilar artery contraction is fully dependent on extracellular Ca2+ influx. Based on sensitivity to nifedipine, an L-type VOCC blocker, VOCCs have a minor role in endothelin-1-induced contraction. Both LOE 908 and SK&F 96365 inhibit endothelin-1-induced contraction in a concentration-dependent manner, and their combination abolished it. The median inhibitory concentrations of these blockers for endothelin-1-induced contraction correlated well with those of the endothelin-1-induced [Ca2+]i responses. Thus, the inhibitory action of these blockers on endothelin-1-induced contraction may be mediated by blockade of NSCC-1, NSCC-2, and the SOCC. Extracellular Ca2+ influx through NSCC-1, NSCC-2, and SOCC may be essential for endothelin-1-induced basilar artery contraction.  相似文献   

12.
Endothelin-1 (ET-1) has been proven to activate two types of Ca2+-permeable nonselective cation channels (designated NSCC-1 and NSCC-2) and a store-operated Ca2+ channel (SOCC) in rabbit internal carotid artery vascular smooth muscle cells (ICA VSMCs). Ca2+ influx through these channels plays an essential role for ET-1-induced mitogenesis in ICA VSMCs. The purpose of the current study was to investigate the effects of Ca2+ influx on intracellular pathways of ET-1-induced mitogenesis in ICA VSMCs using receptor-operated Ca2+ channel blockers, SK&F 96365 and LOE 908. We focused on extracellular-signal regulated kinase 1 and 2 (ERK1/2) in this context. PD 98059, an inhibitor of mitogen-activated protein kinase kinase, abolished the ET-1-induced increase in ERK1/2 activity, but only partially suppressed the mitogenesis. ERK1/2 activation by ET-1 was partially suppressed in the absence of extracellular Ca2+. Moreover, based on the sensitivity to SK&F 96365 and LOE 908, Ca2+ influx through NSCC-1, NSCC-2 and SOCC plays essential roles in the extracellular Ca2+-dependent component of ERK1/2 activity. In addition, Ca2+ influx through these channels was also involved in the PD 98059-resistant component of ET-1-induced mitogenesis. These results indicate that (1) the ET-1-induced mitogenesis involves both ERK1/2-dependent and -independent mechanisms in ICA VSMCs (2), ERK1/2 activation by ET-1 involves a Ca2+ influx-dependent cascade as well as a Ca2+ influx-independent cascade (3), Ca2+ influx through NSCC-1, NSCC-2 and SOCC has important roles in the Ca2+ influx-dependent component of ERK1/2-dependent mitogenesis, and (4) Ca2+ influx through these channels also plays important roles in mitogenic pathways downstream of ERK1/2.  相似文献   

13.
To clarify the mechanism for the endothelin-1 (ET-1)-induced release of catecholamines from the adrenal gland, we examined the effects of removal of extracellular Ca2+, blockers of L-, N-, P- and Q-types of voltage-operated Ca2+ channels (VOCC) such as nifedipine (L-type), omega-conotoxin GVIA (N-type), omega-agatoxin IVA (P-type) and omega-conotoxin MVIIC (Q-type) and blockers of voltage-independent Ca2+ entry channel such as SK&F 96365 and LOE 908 on release of catecholamines, the cytosolic free Ca2+ concentration ([Ca2+]i), and 45Ca2+ uptake in cultured bovine adrenal chromaffin cells. ET-1 but not ET-3 induced increases in release of catecholamines, [Ca2+]i, and 45Ca2+ uptake. The responses to ET-1 were abolished by the antagonist for ET(A) receptors, BQ-123, but not by the antagonist for ET(B) receptors, BQ-788, and they were abolished by removal of extracellular Ca2+. The increases were only partially inhibited (to about 65% of control) by nifedipine but unaffected by any of the omega-toxins. The nifedipine-resistant increase was inhibited by SK&F 96365 (to about 40%) and abolished by LOE 908 alone. These results indicate that ET-1 augments the release of catecholamines from adrenal chromaffin cells through ET(A) receptors, by activating two types of Ca2+ entry channels in addition to L-type VOCC: one (nonselective cation channel-1; NSCC-1) is sensitive to LOE 908 but resistant to SK&F 96365, whereas the other (NSCC-2) is sensitive to both LOE 908 and SK&F 96365.  相似文献   

14.
1. Endothelin-1 (ET-1) activates two types of Ca(2+)-permeable nonselective cation channels (designated NSCC-1 and NSCC-2) and a store-operated Ca(2+) channel (SOCC) in vascular smooth muscle cells (VSMCs). These channels can be distinguished by their sensitivity to Ca(2+)-channel blockers, SK&F 96365 and LOE 908. LOE 908 is sensitive to NSCC-1 and NSCC-2, and SK&F 96365 is sensitive to NSCC-2 and SOCC. Moreover, these channels play essential roles in ET-1-induced epidermal growth factor receptor protein tyrosine kinase (EGFR PTK) transactivation. The main purpose of the present study was to demonstrate the involvement of EGFR PTK transactivation in ET-1-induced arachidonic acid release in VSMCs. 2. Both SK&F 96365 and LOE 908 inhibited ET-1-induced arachidonic acid release with the IC(50) values correlated to those of ET-1-induced Ca(2+) influx. Moreover, combined treatment with these blockers abolished ET-1-induced arachidonic acid release. 3. AG1478, a specific inhibitor of EGFR PTK, inhibited ET-1-induced arachidonic acid release and extracellular signal-regulated kinase 1 and 2 (ERK1/2). The IC(50) values of AG1478 for ET-1-induced arachidonic acid release and ERK1/2 correlated well with those for ET-1-induced EGFR PTK transactivation. 4. Mitogen-activated protein kinase kinase inhibitor, PD 98059, inhibited ET-1-induced arachidonic acid release. The IC(50) values of PD 98059 for ET-1-induced arachidonic acid release were similar to those for ET-1-induced ERK1/2 activity. In contrast, PD 98059 failed to inhibit ET-1-induced EGFR PTK transactivation. 5. These results indicate that (1) extracellular Ca(2+) influx through NSCCs and SOCC plays important roles for ET-1-induced arachidonic acid release, (2) EGFR PTK transactivation/ERK1/2 pathways are involved in ET-1-induced arachidonic acid release.  相似文献   

15.
Ca(2+) channels involved in the endothelin-1-induced mitogenic response of cultured rat thoracic aorta smooth muscle cells, A7r5 cells, were characterized using the Ca(2+) channel blockers, LOE 908 and SK&F 96365. Stimulation of A7r5 cells with endothelin-1 induced a mitogenic response as well as a biphasic increase in the intracellular-free Ca(2+) concentration. Based on the sensitivity to nifedipine, a specific blocker of L-type voltage-operated Ca(2+) channel (VOCC), Ca(2+) influx through VOCC has a minor role in endothelin-1-induced mitogenic responses. On the other hand, Ca(2+) influx through voltage-independent Ca(2+) channels (VICCs) plays an important part in endothelin-1-induced mitogenesis. Moreover, based on their sensitivity to SK&F 96365 and LOE 908, VICCs consist of two types of Ca(2+)-permeable nonselective cation channels (designated NSCC-1 and NSCC-2) and a store-operated Ca(2+) channel (SOCC). Ca(2+) influx through NSCC-1, NSCC-2 and SOCC contributes to 35%, 30% and 35%, respectively, to the nifedipine-resistant component of the endothelin-1 mitogenic response.  相似文献   

16.
We have recently shown that endothelin-1 activates two types of Ca2+-permeable nonselective cation channels (NSCC-1 and NSCC-2) in C6 glioma cells. These channels can be distinguished by their sensitivity to blockers of the receptor-operated Ca2+ channel, 1-[b-(3-[4-methoxyphenyl]propoxy)-4-methoxyphenethyl]-1H-imidazole hydrochloride (SK&F 96365) and (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxyphenyl)ethyl]-acetamide (LOE 908). NSCC-1 is sensitive to LOE 908 and resistant to SK&F 96365, whereas NSCC-2 is sensitive to both LOE 908 and SK&F 96365. Moreover, extracellular Ca2+ influx through these channels plays an essential role in endothelin-1-induced mitogenesis in C6 glioma cells. The purpose of the present study was to investigate the effects of extracellular Ca2+ influx on intracellular pathways of endothelin-1-induced mitogenic responses in C6 glioma cells. We focused on extracellular signal-regulated kinase 1 and 2 (ERK1/2) in this context. An inhibitor of mitogen-activated protein kinase, 2-[2-amino-3-methoxyphenyl]-4H-1-benzopyran-4-one (PD 98059), abolished the endothelin-1-induced increase in ERK1/2 activity, but only partially suppressed the mitogenic response. ERK1/2 activation by endothelin-1 was partially suppressed in the absence of extracellular Ca2+. On the basis of the sensitivity to LOE 908 and SK&F 96365, Ca2+ influx through NSCC-1 and NSCC-2 plays an essential role in the extracellular Ca2+-dependent component of ERK1/2 activity. In contrast, Ca2+ influx through NSCC-2 is involved in the ERK1/2-independent component of endothelin-1-induced mitogenesis. These results indicate that (1) the endothelin-1-induced mitogenic response involves both ERK1/2-dependent and -independent mechanisms, (2) ERK1/2 activation by endothelin-1 involves an extracellular Ca2+ influx-dependent cascade as well as an extracellular Ca2+ influx-independent cascade, (3) because endothelin-1-induced mitogenesis is completely dependent on extracellular Ca2+ influx, extracellular Ca2+ influx also plays an important role in mitogenic pathways downstream of ERK1/2, (4) extracellular Ca2+ influx through NSCC-1 and NSCC-2 has an important role in the extracellular Ca2+ influx-dependent component of ERK1/2-dependent mitogenesis, (5) extracellular Ca2+ influx through NSCC-2 has an important role in ERK1/2-independent mitogenesis, and (6) Ca2+ influx through each Ca2+ channel may play a distinct role in intracellular mitogenic cascades.  相似文献   

17.
Noradrenaline (NA) produces sustained contractions in conduit arteries such as aorta isolated from various animal species. In guinea-pig aorta, NA-produced sustained contraction is largely dependent upon the influx of extracellular Ca2+, but is refractory to the treatment with organic Ca2+ entry blockers. In the present study, we attempted to characterize pharmacologically the Ca2+ entry channel responsible for NA-produced sustained contraction of guinea-pig aorta using SK&F 96365 (1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenylethyl]-1H-imi dazole) and LOE 908 ((R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2- (2,3,4-trimethoxyphenyl)ethyl]-acetamide), both of which block voltage-independent Ca2+ channels. The effects of SK&F 96365 and LOE 908 on NA-produced contraction were compared with those on extracellular Ca2+-dependent contractile and endothelium-dependent relaxant responses to thapsigargin (TSG), an inhibitor of Ca2+-pump Ca2+-ATPase. NA (3x10(-6) M)-produced sustained contraction of guinea-pig aorta without endothelium exhibited a strong dependency on the extracellular Ca2+. Nicardipine (10(-7) M), diltiazem (10(-5) M) and verapamil (10(-5) M) did not show any appreciable inhibitory effects on NA-produced sustained contraction. SK&F 96365 concentration-dependently (10(-6)-10(-4) M) attenuated the NA-produced sustained contraction whereas LOE 908 did not affect it at concentrations up to 10(-4) M. Similarly, extracellular Ca2+-dependent contraction of guinea-pig aorta without endothelium in response to TSG was also diminished by SK&F 96365 but was unaffected by LOE 908. In fura-PE3-loaded vascular preparations, SK&F 96365 decreased both cytoplasmic Ca2+ level ([Ca2+]i) and muscle tension elevated by NA and TSG. Both SK&F 96365 and LOE 908 did not affect an endothelium-dependent relaxation of guinea-pig aorta in response to TSG. These findings suggest that in guinea-pig aortic smooth muscle cells, NA activates Ca2+ influx across the plasma-membrane through the Ca2+-permeable channel which is identical with or has similar properties to the store-operated Ca2+ channel (SOCC) stimulated by TSG, but is distinct from endothelial cell SOCC.  相似文献   

18.
We have recently shown that noradrenaline induces extracellular Ca(2+) influx through nonselective cation channel (NSCC) in Chinese hamster ovary cells expressing alpha(1A)-adrenoceptors (CHO-alpha(1A)). Moreover, this NSCC is sensitive to (R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxyphenyl)ethyl]-acetamide (LOE 908) and resistant to 1-[b-(3-[4-Methoxyphenyl]propoxy)-4-methoxyphenethyl]-1H-imidazole hydrochloride (SK&F 96365). In the present study, we characterized the effects of extracellular Ca(2+) influx through NSCC on noradrenaline-induced mitogenic responses and activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) of CHO-alpha(1A) using LOE 908 and SK&F 96365. Noradrenaline induced a mitogenic response in CHO-alpha(1A). LOE 908 completely inhibited the noradrenaline-induced mitogenesis, whereas SK&F 96365 did not inhibit it. The IC(50) value of LOE 908 for noradrenaline-induced mitogenesis was similar to that for the noradrenaline-induced increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)). Noradrenaline stimulated ERK1/2 activity. The magnitude of noradrenaline-induced ERK1/2 activity in the absence of extracellular Ca(2+) was 40% of that in the presence of extracellular Ca(2+). LOE 908 partially (60%) inhibited the noradrenaline-induced ERK1/2 activity, whereas SK&F 96365 did not inhibit it. The IC(50) value of LOE 908 for noradrenaline-induced ERK1/2 activity was similar to that for the noradrenaline-induced increase in [Ca(2+)](i). Collectively, these results demonstrate that extracellular Ca(2+) influx through LOE 908-sensitive and SK&F 96365-resistant NSCC may be essential for noradrenaline-induced mitogenesis in CHO-alpha(1A). Moreover, the noradrenaline-induced ERK1/2 activity involves two distinct pathways, one dependent on extracellular Ca(2+) influx through NSCC, whereas the other is independent of the influx.  相似文献   

19.
Hyperforin activates nonselective cation channels (NSCCs)   总被引:1,自引:0,他引:1  
A large body of evidence supports the preclinical antidepressant profile of hyperforin including inhibition of the synaptosomal uptake of several neurotransmitters by hyperforin and studies in behavioural models. In contrast to other antidepressants, hyperforin does not directly inhibit neurotransmitter transporters, but instead uptake inhibition seems to be the consequence of an elevated intracellular sodium concentration ([Na+]i). The mechanism of hyperforin-induced elevation of [Na+]i was investigated using two different cell types: human platelets and rat pheochromocytoma cells (PC12 cells). In both cell systems, hyperforin increased both [Na+]i and free intracellular Ca2+ concentration ([Ca2+]i). One pathway for Na+ and Ca2+ entry is mediated by nonselective cation channels (NSCCs), which can be blocked by SK&F 96365 and LOE 908. LOE 908 is a blocker of both NSCC1 and NSCC2 subclasses, while SK&F 96365 blocks NSCC2 only. Both SK&F 96365 and LOE 908 completely inhibited the hyperforin-induced influx of Na+ and Ca2+ into platelets and PC12 cells. This indicates that hyperforin is mainly active upon NSCC2. The effect of hyperforin is inhibited by La3+ and Gd3+, indicating that there is a potential homology with canonical transient receptor potential protein channels (TRPC channels). Moreover, La3+ and Gd3+ attenuate the effect of hyperforin on serotonin uptake in human platelets. Additionally, hyperforin induces barium influx in PC12 cells and this influx can be inhibited by SK&F 96365, LOE 908, Gd3+ and La3+. In summary, these findings suggest that hyperforin represents a new principle for preclinical antidepressant activity, modulating brain neurotransmission by inhibition of neurotransmitter uptake via activation of NSCCs.British Journal of Pharmacology (2005) 145, 75-83. doi:10.1038/sj.bjp.0706155.  相似文献   

20.
We recently demonstrated that endothelin-1 (ET-1) activates two types of Ca(2+)-permeable nonselective cation channels (NSCC-1 and NSCC-2) in C6 glioma cells. It is possible to discriminate between these channels by using the Ca(2+) channel blockers SK&F 96365 (1-[beta-(3-[4-methoxyphenyl]propoxy)-4-methoxyphenethyl]-1H-imidazole hydrochloride) and LOE 908 [(R,S)-(3,4-dihydro-6,7-dimethoxy-isoquinoline-1-yl)-2-phenyl-N,N-di-[2-(2,3,4-trimethoxyphenyl)ethyl]-acetamide]. LOE 908 is a blocker for NSCC-1 and NSCC-2, whereas SK&F 96365 is an inhibitor for NSCC-2. The purpose of the present study was to identify the G-proteins that are involved in ET-1-activated Ca(2+) channels in C6 glioma cells. ET-1 activated only NSCC-1 in C6 glioma cells preincubated with U73122 (1-[6-[((17beta)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione), a phospholipase C (PLC) inhibitor. Microinjection of the dominant negative mutant of G(12)/G(13) (G(12)G228A/G(13)G225A) abolished activation of NSCC-1 and NSCC-2. In contrast, pertussis toxin did not affect any of the Ca(2+) channels in the ET-1-stimulated C6 glioma cells. These results indicate that G(12)/G(13) may couple with endothelin receptors and play an important role in the activation of NSCCs in C6 glioma cells. Moreover, the activation mechanisms of NSCC-1 and NSCC-2 by ET-1 were different. NSCC-1 activation depended upon a G(12)/G(13)-dependent cascade, whereas NSCC-2 activation depended upon both G(q)/PLC- and G(12)/G(13)-dependent cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号