首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces Parkinson-like symptoms in humans, nonhuman primates, and mice. Several studies suggest that MPTP is metabolized by monoamine oxidase (MAO) type B to yield N-methyl-4-phenyl-pyridinium (MPP+), which is responsible for the neurotoxic effects of the drug. In the present study, the pharmacological properties of [3H]MPTP binding sites in C57BL/6 mouse brain membranes were investigated, and a possible relationship to the sigma binding sites was examined. Both equilibrium binding experiments and kinetic assays indicate that [3H]MPTP labels two distinct binding sites in C57BL/6 mouse brain. The high affinity [3H]MPTP binding sites (Kd = 13 nM) are selectively blocked by the MAO type A inhibitor clorgyline, and the residual low affinity [3H]MPTP sites (Kd = 1100 nM) display the pharmacological specificity of MAO-B binding sites. In contrast, the low affinity [3H]MPTP binding sites are blocked by the selective MAO-B inhibitor (-)-deprenyl, and the drug-specificity profile of the remaining high affinity sites is consistent with the properties of MAO-A binding sites. The affinities of several MAO inhibitors tested and of MPTP for the high affinity MPTP/MAO-A binding sites correlate well (r = 0.96) with their affinities for the sigma binding sites labeled with [(+)-[3H]-3-PPP]. The sigma receptor ligand (+)-3-PPP displays moderately high affinity for the MPTP/MAO-A binding sites but negligible affinity for MPTP/MAO-B sites. Moreover, (+)-3-PPP alters the dissociation kinetics of MPTP from the high affinity MPTP/MAO-A sites. The finding that [3H]MPTP labels MAO-B sites supports the hypothesis that the drug is a substrate for these enzyme binding sites. However, the finding that the high affinity sites, labeled by [3H] MPTP, are particularly sensitive to MAO-A inhibitors, which also display high affinity for the sigma binding sites, may suggest a possible relationship between MAO-A and sigma binding sites. In turn, the kinetic experiments imply that sigma ligands [i.e., (+)-3-PPP] may allosterically modulate the binding to MAO-A binding sites.  相似文献   

2.
A series of new pyrrole derivatives have been synthesized and evaluated for their monoamine oxidase (MAO) A and B inhibitory activity and selectivity. N-Methyl,N-(benzyl),N-(pyrrol-2-ylmethyl)amine (7) and N-(2-benzyl),N-(1-methylpyrrol-2-ylmethyl)amine (18) were the most selective MAO-B (7, SI = 0.0057) and MAO-A (18, SI = 12500) inhibitors, respectively. Docking and molecular dynamics simulations gave structural insights into the MAO-A and MAO-B selectivity. Compound 18 forms an H-bond with Gln215 through its protonated amino group into the MAO-A binding site. This H-bond is absent in the 7/MAO-A complex. In contrast, compound 7 places its phenyl ring into an aromatic cage of the MAO-B binding pocket, where it forms charge-transfer interactions. The slightly different binding pose of 18 into the MAO-B active site seems to be forced by a bulkier Tyr residue, which replaces a smaller Ile residue present in MAO-A.  相似文献   

3.
A series of nuclear substituted derivatives of pargyline has been prepared and tested (under controlled conditions designed to measure the competitive component of the inhibition) as competitive inhibitors of MAO-A and -B. Adequate correlation of the biological data with the physiochemical constants of substituent groups was obtained only when the m- and p-substituted derivatives were considered separately. Due to the narrow range of activity displayed by the p-substituted derivates when inhibiting MAO-B, meaningful correlations were not found. However, the inhibition of MAO-B by the m-substituted derivatives required the inclusion of the Verloop L parameter for adequate correlation, suggesting that the inhibitor binding site of MAO-B is present within a cavity of more limited lateral dimensions than that present on the MAO-A surface. Inhibition of both MAO-A and -B demonstrated a parabolic relationship between inhibitory activity and pi. Whereas this parabolic relationship showed a maximal value for inhibition of MAO-A (mean pi o = 0.86), inhibition of MAO-B demonstrated a minimal value of pi (pi min = -0.5) i.e. the optimal value of pi for inhibition of MAO-B has not been achieved for this series of compounds but such would be greater than that demonstrated for MAO-A. The Hammett sigma function was important or significant only in the inhibition of MAO-A by the p-substituted derivatives.  相似文献   

4.
This study demonstrated the existence of specific binding sites for [3H]Ro 19-6327 in human platelet membranes. This compound is a novel, time-dependent inhibitor of monoamine oxidase type B (MAO-B) and is structurally closely related to [3H]Ro 16-6491. The density of the sites labelled with high affinity by [3H]Ro 19-6327 was similar to that observed in previous studies with [3H]Ro 16-6491 as ligand. Binding was reversible at 20 degrees C and showed a relatively slow dissociation (t1/2 = 220 min). The dissociation rate was markedly decreased (t1/2 = greater than 24h) at 0 degrees C. MAO-B, but not MAO-A inhibitors, effectively prevented the binding of [3H]Ro 19-6327. Like [3H]Ro 16-6491, [3H]Ro 19-6327 is recognized as a substrate by MAO-B, being eventually deaminated by the enzyme. Since the deaminated aldehyde derivative of Ro 19-6327 did not inhibit MAO-B, a still unidentified reversible adduct, formed at the MAO-B active site, might explain the high potency and selectivity of [3H]Ro 19-6327. Incubation of the radioligand-enzyme complex from platelet and brain membranes with NaBH3CN and acetic acid (to pH 4.5) caused the irreversible incorporation of the radioactivity into a single polypeptide as shown by SDS-PAGE analysis. This polypeptide had a molecular weight identical to that of the MAO-B subunit, i.e. 58,000. The presence of unlabelled MAO-B inhibitors in the incubation mixture prevented the covalent incorporation of [3H]Ro 19-6327. The irreversible MAO-B inhibitor, [3H] pargyline, labelled a protein with a molecular weight identical to the protein labelled by [3H]Ro 19-6327.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
1. Previous studies with indolyl derivatives as monoamine oxidase (MAO) inhibitors have shown the relevance of the indole structure for recognition by the active site of this enzyme. We now report a new series of molecules with structural features which determine the selectivity of MAO inhibition. 2. A benzyloxy group attached at position 5 of the indole ring is critical for this selective behaviour. Amongst all of these benzyloxy-indolyl methylamines, N-(2-propynyl)-2-(5-benzyloxyindol)methylamine FA-73 was the most potent MAO-B 'suicide' inhibitor studied. 3. The Ki values for MAO-A and MAO-B were 800+/-60 and 0.75+/-0.15 nM, respectively. These data represent a selectivity value of 1066 for MAO-B, being 48 times more selective than L-deprenyl (Ki values of 376+/-0.032 and 16.8+/-0.1 nM for MAO A and MAO-B, respectively). The IC50 values for dopamine uptake in striatal synaptosomal fractions from rats were 150+/-8 microM for FA-73 and 68 +/- 10 microM for L-deprenyl whereas in human caudate tissue the IC50 values were 0.36+/-0.015 microM for FA-73 and 0.10+/-0.007 microM for L-deprenyl. Moreover, mouse brain MAO-B activity was 90% ex vivo inhibited by both compounds 1 h after 4 mg kg(-1) administration, MAO-A activity was not affected. 4. These novel molecules should provide a better understanding of the active site of monoamine oxidase and could be the starting point for the design of further selective, non-amphetamine-like MAO-B inhibitors with therapeutic potential for the treatment of neurological disorders.  相似文献   

6.
A series of indolylmethylamine derivatives were assayed toward MAO-A and MAO-B inhibition. The K(i) values of these compounds are in the range from 0.8 to >10(6) nM for MAO-A or from 0.75 to 476000 nM for MAO-B. The most selective MAO-A or MAO-B inhibitors elicit a ratio of K(i) in the order of 1500 or 1000, respectively. Comparison of MAO-A and MAO-B CoMFA models showed that both the steric and electrostatic properties at the 5 position of the indole ring are determinant for MAO selectivity. Computational simulations of the complex between this part of the ligand and Phe-208 of MAO-A or Ile-199 of MAO-B, experimentally identified as responsible for substrate selectivity, allowed us to further characterize the nature of these enzyme-inhibitor interactions.  相似文献   

7.
The novel reversible and selective inhibitor of monoamine oxidase-A (MAO-A) Ro 41-1049 [N-(2-aminoethyl)-5-(m-fluorophenyl)-4-thiazole carboxamide HCl] shows inhibition characteristics similar to those of the structurally related reversible MAO-B inhibitors Ro 16-6491 and Ro 19-6327. In the present study, tritiated Ro 41-1049 was used as a high affinity ligand to study the binding characteristics of this inhibitor to MAO-A and its interactions with the enzyme. An homogeneous population of high affinity binding sites for [3H]Ro 41-1049 was found in membrane preparations from human frontal cortex and placenta (Kd = 16.5 +/- 1.4 and 64.4 +/- 19.2 nM, respectively). In frontal cortex the Bmax value for [3H]Ro 41-1049 (2.6 +/- 0.4 pmol/mg of protein) was about one third of the Bmax calculated for the MAO-B-selective ligand [3H]Ro 16-6491. The density of [3H]Ro 41-1049 binding sites in human placenta varied greatly in the different tissue samples investigated, showing an average Bmax of 101.7 +/- 36.5 pmol/mg of protein. Apparent binding equilibrium was reached after 1 hr of incubation at 37 degrees. At this temperature the binding was reversible, with a dissociation t 1/2 of about 35 min. At lower temperatures the radioactivity dissociation was much slower. Among the various drugs tested, only inhibitors of MAO-A were able to effectively prevent [3H]Ro 41-1049 specific binding. As previously reported for the MAO-B ligands [3H]Ro 16-6491 and [3H]Ro 19-6327, the analysis of the membrane-bound radioactivity showed that [3H]Ro 41-1049 was entirely recovered in the form of its aldehyde derivative, indicating that Ro 41-1049 was deaminated by MAO-A. The existence of a Ro 41-1049 adduct reversibly bound to the enzyme active site might explain the inhibition mechanism of this compound. The exposure of the radioligand-enzyme complex to NaBH3CN at pH 4.5 caused the irreversible covalent incorporation of about 70% of the specifically bound radioactivity into a 60-kDa polypeptide. This incorporation was dependent on the pH and on the amount of NaBH3CN added. The presence of MAO-A- but not MAO-B-selective inhibitors prevented the covalent incorporation of [3H]Ro 41-1049. The present results indicate that [3H]Ro 41-1049 is incorporated into a subunit of MAO-A, in the presence of NaBH3CN, and modifies a protein domain that is essential for the enzyme activity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Shape complementarity is a fundamental principle of inhibitor design. Here we show that an enzyme for which the crystal structure has been determined (phenylethanolamine N-methyltransferase, PNMT) conceals a cryptic binding site. This site is revealed upon binding of inhibitors that are double the size of the physiological substrate. These large inhibitors are not predicted to bind in that they protrude through the accessible surface calculated from a PNMT/7-aminosulfonyl-1,2,3,4-tetrahydroisoquinoline (SK&F 29661) crystal structure, yet they are potent inhibitors of PNMT. We determined structures of the enzyme complexed with large inhibitors and found that the volume of the active site increases by 140 A3 upon binding. Changes in active site size and shape are brought about by unfavorable side chain conformations and rigid body helix motions. The energetic cost is modest, estimated at 2-3 kcal/mol from mutational analyses. Our findings further underline the importance of protein flexibility in structure-based inhibitor design studies.  相似文献   

9.
AIM: To develop high-throughput screening (HTS) assays for monoamine oxidase (MAO)-A and MAO-B inhibitors. METHODS: A fluorescence probe based method measuring MAO-A and MAO-B activity was established and optimized, with its sensitivity, stability and specificity evaluated. Reaction conditions including enzyme sources, substrate concentrations, incubation volume and reaction time in 384-well format were optimized to achieve sensitive and low consumptive goal. RESULTS: In optimized conditions, dynamic parameters of MAO-A and MAO-B were obtained. The K(m) value of serotonin to MAO-A was 1.66 micromol/L, while that of benzylamine to MAO-B was 0.80 micromol/L. The IC(50) value of clorgyline to MAO-A was 2.99 nmol/L, and that of deprenyl to MAO-B was 7.04 nmol/L, matching those obtained from traditional spectrometric assays. Among tested samples, one compound exerted an inhibitory effect on MAO-A activity with IC(50) as 0.36 micromol/L, and three compounds had an inhibitory effect on MAO-B activity with IC(50) as 0.13, 0.19, and 0.13 micromol/L. The Z' factor was 0.71+/-0.03 and 0.75+/-0.03 in MAO-A-inhibitor and MAO-B-inhibitor HTS system, respectively. CONCLUSION: The established assays can be well applied to MAO-A and MAO-B inhibitor screening with high quality, precision and reproducibility.  相似文献   

10.
The substrate selectivity of monoamine oxidase A (MAO-A), monoamine oxidase B (MAO-B), diamine oxidase (DAO), and semicarbazide-sensitive amine oxidase (SSAO) was investigated in the absence of chemical inhibitors using the COS-1 cells expressed with respective amine oxidase. Serotonin (5-hydroxytryptamine), 1-methylhistamine, and histamine were preferentially oxidized by MAO-A, SSAO, and DAO, respectively, at a low substrate concentration. In contrast, benzylamine, tyramine, and beta-phenylethylamine served as substrates for all of MAO-A, MAO-B, and SSAO. Each amine oxidase showed broad substrate selectivity at a high substrate concentration. The cross-inhibition was remarkable in MAO-A and MAO-B, especially in MAO-A, but not in SSAO and DAO. A study of the substrate selectivity of amine oxidases should include consideration of the effects of substrate concentration and specific chemical inhibitors.  相似文献   

11.
Protein phosphatase 2C (PP2C) is an archetype of the PPM Ser/Thr phosphatases, characterized by dependence on divalent magnesium or manganese cofactors, absence of known regulatory proteins, and resistance to all known Ser/Thr phosphatase inhibitors. We have used virtual ligand screening with the AutoDock method and the National Cancer Institute Diversity Set to identify small-molecule inhibitors of PP2Calpha activity at a protein substrate. These inhibitors are active in the micromolar range and represent the first non-phosphate-based molecules found to inhibit a type 2C phosphatase. The compounds docked to three recurrent binding sites near the PP2Calpha active site and displayed novel Ser/Thr phosphatase selectivity profiles. Common chemical features of these compounds may form the basis for development of a PP2C inhibitor pharmacophore and may facilitate investigation of PP2C control and cellular function.  相似文献   

12.
The deamination of dopamine by human brain monoamine oxidase   总被引:6,自引:0,他引:6  
The deamination of dopamine has been studied in seven regions of human brain. Both A and B forms of the enzyme were found to be active towards this substrate. The ratio of activities of MAO-A: MAO-B was found to vary considerably from brain region to brain region, from about 1:1 for the cerebral and cerebellar cortex to about 1:2 for the pons and medulla oblongata. Enzyme titration studies and comparisons of the substrate specificities of MAO-A and MAO-B across the brain indicated that dopamine was metabolised by the same MAO active centres as other monoamines. In the cerebral cortex, the Km values of MAO-A and -B towards dopamine were found to be 210 and 230 microM, respectively, indicating that the relative contributions of these two forms towards the oxidation of this substrate will not be significantly affected by changes in its concentration.  相似文献   

13.
The enantiomers of amphetamine, N-methylamphetamine and deprenyl were studied, using a solubilised rat liver mitochondrial monoamine oxidase (MAO) preparation, as competitive inhibitors of MAO-A and MAO-B (5-hydroxytryptamine and beta-phenylethylamine as substrate respectively). Only in the case of deprenyl enantiomers inhibiting MAO-B was a preference shown towards the [R]-configuration enantiomer justifying the use of [R]-(-)-deprenyl (as compared to the racemate) for the specific inhibition of MAO-B. Recalculation of the observed Ki values in terms of the base form of the inhibitor indicated that the activity of all enantiomers fell within a narrow, approximately 25-fold range when inhibiting MAO-B. The selectivity of inhibition of MAO-B by [R]-(-)-deprenyl cannot therefore be attributed to any specific structural features of the MAO-B isoenzyme form but rather to a lack of affinity of this enantiomer towards MAO-A.  相似文献   

14.
1. The molecular nature and functions of the I(2) subtype of imidazoline binding sites are unknown but evidence suggests an association with monoamine oxidase (MAO). Rats can distinguish the selective imidazoline I(2)-site ligand 2-BFI from vehicle in drug discrimination, indicating functional consequences of occupation of these sites. We have used drug discrimination to investigate the nature of the discriminable stimulus, especially in relation to MAO inhibition. 2. Following training to distinguish 2-BFI 7 mg kg(-1) i.p. from saline vehicle in two-lever operant-chambers, male Hooded Lister rats underwent sessions where test substances were given instead and the proportion of lever presses on the 2-BFI-associated lever (substitution) recorded. 3. 2-BFI; its cogeners BU216, BU224, BU226 and LSL60101; the reversible MAO-A inhibitors moclobemide and RO41-1049; the beta-carbolines harmane, norharmane and harmaline which also reversibly inhibit MAO-A, and the anti-addictive substance ibogaine exhibited potent, dose-dependent substitution for 2-BFI. 4. Agmatine, and LSL60125 substituted at one dose only. The reversible MAO-B inhibitors lazabemide and RO16-1649; the sigma(2)-site ligand SKF10,047 and the I(2A)-site ligand, amiloride, failed to substitute. The irreversible inhibitor of MAO, deprenyl, substituted for 2-BFI while clorgyline did not. 5. These results suggest imidazoline I(2) site ligands produce a common discriminable stimulus that appears associated with reversible inhibition of MAO-A rather than MAO-B, possibly through increases in extracellular concentration of one or more monoamines. Ibogaine exhibits a commonality in its subjective effects with those of I(2)-site ligands.  相似文献   

15.
The ability of MAO-A and MAO-B to metabolize benzylamine in vitro has been investigated in mitochondrial preparations from rat liver and heart. Although under normal circumstances benzylamine appeared to be metabolized exclusively by MAO-B in the rat liver, a contribution by both MAO-A and a clorgyline-resistant enzyme component was revealed when the MAO-B activity was much reduced by pretreatment of the mitochondria with appropriate concentrations of deprenyl. These three enzyme activities also contributed to benzylamine deamination in rat heart mitochondria. However, binding studies with [3H]pargyline, which provided an estimate of the respective concentrations of MAO-A and MAO-B active centres in heart mitochondria, indicated a ratio between MAO-A and MAO-B, markedly different from that shown by plots of inhibition of benzylamine metabolism by various concentrations of clorgyline. The interpretation of these clorgyline plots is discussed in terms of the kinetic constants of both MAO-A and MAO-B, and the relative amounts of each enzyme. It is proposed that although the turnover rate constant for benzylamine metabolism by MAO-A is much smaller than that shown by MAO-B, in those tissues containing a large ratio of MAO-A:MAO-B content, the metabolism of benzylamine by MAO-A can be detected.  相似文献   

16.
Classical enzymology has been used for generations to understand the interactions of inhibitors with their enzyme targets. Enzymology tools enabled prediction of the biological impact of inhibitors as well as the development of novel, more potent, ones. Experiments designed to examine the competition between the tested inhibitor and the enzyme substrate(s) are the tool of choice to identify inhibitors that bind in the active site. Competition between an inhibitor and a substrate is considered a strong evidence for binding of the inhibitor in the active site, while the lack of competition suggests binding to an alternative site. Nevertheless, exceptions to this notion do exist. Active site–binding inhibitors can display non-competitive inhibition patterns. This unusual behavior has been observed with enzymes utilizing an exosite for substrate binding, isomechanism enzymes, enzymes with multiple substrates and/or products and two-step binding inhibitors. In many of these cases, the mechanisms underlying the lack of competition between the substrate and the inhibitor are well understood. Tools like alternative substrates, testing the enzyme reaction in the reverse direction and monitoring inhibition time dependence can be applied to enable distinction between ‘badly behaving’ active site binders and true exosite inhibitors.  相似文献   

17.
The ability of MAO-A and MAO-B to metabolize benzylamine in vitro has been investigated in mitochondrial preparations from rat liver and heart. Although under normal circumstances benzylamine appeared to be metabolized exclusively by MAO-B in the rat liver, a contribution by both MAO-A and a clorgyline-resistant enzyme component was revealed when the MAO-B activity was much reduced by pretreatment of the mitochondria with appropriate concentrations of deprenyl. These three enzyme activities also contributed to benzylamine deamination in rat heart mitochondria. However, binding studies with [3 H]pargyline, which provided an estimate of the respective concentrations of MAO-A and MAO-B active centres in heart mitochondria, indicated a ratio between MAO-A and MAO-B, markedly different from that shown by plots of inhibition of benzylamine metabolism by various concentrations of clorgyline. The interpretation of these clorgyline plots is discussed in terms of the kinetic constants of both MAO-A and MAO-B, and the relative amounts of each enzyme. It is proposed that although the turnover rate constant for benzylamine metabolism by MAO-A is much smaller than that shown by MAO-B, in those tissues containing a large ratio of MAO-A:MAO-B content, the metabolism of benzylamine by MAO-A can be detected.  相似文献   

18.
A large series of coumarin derivatives (71 compounds) were tested for their monoamine oxidase A and B (MAO-A and MAO-B) inhibitory activity. Most of the compounds acted preferentially on MAO-B with IC(50) values in the micromolar to low-nanomolar range; high inhibitory activities toward MAO-A were also measured for sulfonic acid esters. The most active compound was 7-[(3, 4-difluorobenzyl)oxy]-3,4-dimethylcoumarin, with an IC(50) value toward MAO-B of 1.14 nM. A QSAR study of 7-X-benzyloxy meta-substituted 3,4-dimethylcoumarin derivatives acting on MAO-B yielded good statistical results (q(2)() = 0.72, r(2)() = 0.86), revealing the importance of lipophilic interactions in modulating the inhibition and excluding any dependence on electronic properties. CoMFA was performed on two data sets of MAO-A and MAO-B inhibitors. The GOLPE procedure, with variable selection criteria, was applied to improve the predictivity of the models and to facilitate the graphical interpretation of results.  相似文献   

19.
Several studies have revealed that phthalides are suitable scaffolds for the design of high potency monoamine oxidase (MAO) inhibitors, in which C6-substituted phthalides have been shown high binding affinities to the MAO-A and MAO-B isoenzyme without delineating the underlying mechanism. By means of molecular modeling, we proposed a structural basis of such activity, in which these compounds could successfully dock into the active pocket of human MAO isoforms with predicted affinities in comparison to phthalide. Our study indicated that the interaction of hydrogen bond was more important factor for C6-substituted phthalides binding to MAO-A, and the orientations of inhibitors and the bound residues had the major impact on the binding to MAO-B. These results, therefore, suggested that C6-substituted phthalides served as promising leads for the development of drug treatments to neurodegenerative disorders such as Parkinson’s disease.  相似文献   

20.
The relationship between changes in IV tyramine pressor sensitivity accompanying selective monoamine oxidase (MAO) inhibitor treatment and estimates of MAO-A and MAO-B inhibition in vivo were studied. Reductions in platelet MAO activity provided an index of MAO-B inhibition, while changes in plasma 3-methoxy-4-hydroxyphenethylene glycol (MHPG) were used as an hypothesized reflection of MAO-A inhibition. Chronic treatment with the MAO-A inhibitor clorgyline and the MAO-B inhibitor pargyline showed significant inhibition of the alternate MAO enzyme as well, although this crossover effect was greater for pargyline than clorgyline. The MAO-B inhibitor deprenyl appeared to maintain the greatest degree of MAO inhibition selectivity in vivo. Tyramine pressor sensitivity changes accompanying administration of the MAO inhibitors were highly correlated with decreases in plasma MHPG (r=0.92), supporting our previous data indicating the rank order of clorgyline > pargyline > deprenyl for enhancement of tyramine pressor sensitivity and, thus, suggesting that tyramin potentiation is primarily a function of MAO-A rather than MAO-B inhibition. Changes in plasma MHPG are suggested to provide a potentially useful clinical index of in vivo MAO-A inhibition.Presently with the Biological Psychiatry Branch, NIMH  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号