首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irinotecan-induced severe neutropenia is associated with homozygosity for the UGT1A1*28 or UGT1A1*6 alleles. In this study, we determined the maximum-tolerated dose (MTD) of irinotecan in patients with UGT1A1 polymorphisms. Patients who had received chemotherapy other than irinotecan for metastatic gastrointestinal cancer were enrolled. Patients were divided into three groups according to UGT1A1 genotypes: wild-type (*1/*1); heterozygous (*28/*1, *6/*1); or homozygous (*28/*28, *6/*6, *28/*6). Irinotecan was given every 2 weeks for two cycles. The wild-type group received a fixed dose of irinotecan (150 mg/m(2)) to serve as a reference. The MTD was guided from 75 to 150 mg/m(2) by the continual reassessment method in the heterozygous and homozygous groups. Dose-limiting toxicity (DLT) and pharmacokinetics were evaluated during cycle 1. Of 82 patients enrolled, DLT was assessable in 79 patients (wild-type, 40; heterozygous, 20; and homozygous, 19). Dose-limiting toxicity occurred in one patient in the wild-type group, none in the heterozygous group, and six patients (grade 4 neutropenia) in the homozygous group. In the homozygous group, the MTD was 150 mg/m(2) and the probability of DLT was 37.4%. The second cycle was delayed because of neutropenia in 56.3% of the patients given the MTD. The AUC(0-24 h) of SN-38 was significantly greater (P < 0.001) and more widely distributed in the homozygous group. Patients homozygous for the UGT1A1*28 or UGT1A1*6 allele can receive irinotecan in a starting dose of 150 mg/m(2), but many required dose reductions or delayed treatment in subsequent cycles. UMIN Clinical Trial Registration number: UMIN000000618.  相似文献   

2.

Background

It was recently reported that genetic polymorphisms of UDP glucuronyltransferase-1 polypeptide A1 (UGT1A1), a glucuronidation enzyme, were associated with irinotecan (CPT-11) metabolism. The active metabolite of CPT-11, 7-ethyl-10-hydroxycamptothecin (SN-38) was glucuronidated (SN-38G) by UGT1A1. Genetic polymorphisms of UGT1A1 were associated with potentially serious adverse events, including neutropenia. Several studies have suggested that the dose of CPT-11 should be decreased in patients homozygous for UGT1A1*6 or UGT1A1*28, or double heterozygotes (*6/*28). However, the reference dose for patients with these genetic polymorphisms is unclear.

Methods

We investigated the relationship between the SN-38G/SN-38 concentration ratio and the dose of CPT-11 in 70 patients with colorectal cancer who received FOLFIRI-based regimens, by measuring the plasma concentrations of CPT-11, SN-38, and SN-38G.

Results

The SN-38G/SN-38 concentration ratio was lower in patients who were homozygous for UGT1A1*6, heterozygous for UGT1A1*6 or UGT1A1*28, or were double heterozygotes compared with patients with wild-type genes. The relative decreases in the SN-38G/SN-38 concentration ratio in patients homozygous for UGT1A1*6 and in double heterozygotes were greater than in patients heterozygous for UGT1A1*6 or UGT1A1*28. Interestingly, decreases in the SN-38G/SN-38 concentration ratio were associated with decreases in the neutrophil count and the final infusion dose of CPT-11.

Conclusion

Our results suggest that the SN-38G/SN-38 concentration ratio is an important factor for guiding dose adjustments, even in patients with wild-type genes. Therefore, the SN-38G/SN-38 concentration ratio, as an index of the patient’s metabolic capacity, is useful for assessing dose adjustments of CPT-11.  相似文献   

3.
4.
Irinotecan unexpectedly causes severe toxicity of leukopenia or diarrhea. Irinotecan is metabolized to form active SN-38, which is further conjugated and detoxified by UDP-glucuronosyltransferase (UGT) 1A1 enzyme. Genetic polymorphisms of the UGT1A1 would affect an interindividual variation of the toxicity by irinotecan via the alternation of bioavailability of SN-38. In this case-control study, retrospective review of clinical records and determination of UGT1A1 polymorphisms were performed to investigate whether a patient with the variant UGT1A1 genotypes would be at higher risk for severe toxicity by irinotecan. All patients previously received irinotecan against cancer in university hospitals, cancer centers, or large urban hospitals in Japan. We identified 26 patients who experienced severe toxicity and 92 patients who did not. The relationship was studied between the multiple variant genotypes (UGT1A1*28 in the promoter and UGT1A1*6, UGT1A1*27, UGT1A1*29, and UGT1A1*7 in the coding region) and the severe toxicity of grade 4 leukopenia (< or =0.9 x 10(9)/liter) and/or grade 3 (watery for 5 days or more) or grade 4 (hemorrhagic or dehydration) diarrhea. Of the 26 patients with the severe toxicity, the genotypes of UGT1A1*28 were homozygous in 4 (15%) and heterozygous in 8 (31%), whereas 3 (3%) homozygous and 10 (11%) heterozygous were found among the 92 patients without the severe toxicity. Multivariate analysis suggested that the genotype either heterozygous or homozygous for UGT1A1*28 would be a significant risk factor for severe toxicity by irinotecan (P < 0.001; odds ratio, 7.23; 95% confidence interval, 2.52-22.3). All 3 patients heterozygous for UGT1A1*27 encountered severe toxicity. No statistical association of UGT1A1*6 with the occurrence of severe toxicity was observed. None had UGT1A1*29 or UGT1A1*7. We suggest that determination of the UGT1A1 genotypes might be clinically useful for predicting severe toxicity by irinotecan in cancer patients. This research warrants a prospective trial to corroborate the usefulness of gene diagnosis of UGT1A1 polymorphisms prior tb irinotecan chemotherapy.  相似文献   

5.
目的:研究 UGT1A1基因多态性与伊立替康治疗结直肠癌患者的不良反应及疗效之间的关系。方法:自外周血中抽提基因组 DNA,进行 PCR 扩增,应用直接测序法分析2012年3月至2013年3月,于我院行基因检测的65例结直肠癌患者 UGT1A1*28和 UGT1A1*6基因多态性的分布情况。并对这65例应用含伊立替康方案化疗的患者出现的不良反应及化疗疗效,进行观察记录,比较不同基因型间的差异。结果:65例患者中,UGT1A1*28野生型 TA6/6有49例(75.4%),杂合突变型 TA6/7有14例(21.5%),纯合突变型TA7/7有2例(3.1%)。UGT1A1*6野生型 G/G 有47例(72.3%),杂合突变型 G/A 有15例(23.1%),纯合突变型 A /A 有3例(4.6%)。在以上65例结直肠癌患者中,UGT1A1基因启动子区28位点,TA6/6、TA6/7和TA7/7型,发生3级以上腹泻者分别为8.2%、37.5%;发生3级以上中性粒细胞减少者分别为28.6%、62.5%。UGT1A1基因启动子区6位点,G/G、G/A 和 A /A 型,发生3级以上腹泻者分别为12.8%、44.4%;发生3级以上中性粒细胞减少者分别为14.9%、22.2%。各组之间疗效无统计学差异。结论:患者 UGT1A1*28和UGT1A1*6多态性分布基本一致,UGT1A1*28突变型可以使应用含伊立替康化疗患者发生3级以上腹泻和中性粒细胞减少的风险增加。UGT1A1*6突变型可增加3级以上腹泻的发生风险。因此,UGT1A1基因型的检测对伊立替康相关的不良反应有一定的预测作用,可提高用药安全性,在临床用药中起到了指导作用。  相似文献   

6.
Irinotecan is widely used in the treatment of colorectal, gastric, and lung cancers. However, adverse drug reactions such as severe diarrhea and neutropenia limit the dose of this drug. Irinotecan is metabolized by carboxylesterase to form an active metabolite, 7-ethyl-10-hydroxycamptothecin(SN-38), which in turn is subsequently conjugated by UGT-glucuronosyltransferase 1A1(UGT1A1)to yield an inactive form, SN-38 glucuronide(SN-38 G). The UGT1A1 gene polymorphisms contribute to the individual variation in adverse events among patients administered irinotecan. However, the distribution of polymorphisms shows large interethnic differences. The distribution of UGT1A1*28 greatly differs between Caucasians and Japanese; the frequency of UGT1A1*28 is high in Caucasians, whereas it is low in Asians including Japanese. Recently, it has been demonstrated that genetic variants of UGT1A1*6 in addition to UGT1A1*28 are associated with the occurrence of adverse events in irinotecan chemotherapy in Asians. This review summarizes recent studies to outline the role of UGT1A1*28 and UGT1A1*6 for irinotecan-induced adverse drug reaction in Japanese cancer patients.  相似文献   

7.
This study aims at establishing relationships between genetic and non-genetic factors of variation of the pharmacokinetics of irinotecan and its metabolites; and also at establishing relationships between the pharmacokinetic or metabolic parameters and the efficacy and toxicity of irinotecan. We included 49 patients treated for metastatic colorectal cancer with a combination of 5-fluorouracil and irinotecan; a polymorphism in the UGT1A1 gene (TA repeat in the TATA box) and one in the CES2 gene promoter (830C>G) were studied as potential markers for SN-38 glucuronidation and irinotecan activation, respectively; and the potential activity of CYP3A4 was estimated from cortisol biotransformation into 6beta-hydroxycortisol. No pharmacokinetic parameter was directly predictive of clinical outcome or toxicity. The AUCs of three important metabolites of irinotecan, SN-38, SN-38 glucuronide and APC, were tentatively correlated with patients' pretreatment biological parameters related to drug metabolism (plasma creatinine, bilirubin and liver enzymes, and blood leukocytes). SN-38 AUC was significantly correlated with blood leukocytes number and SN-38G AUC was significantly correlated with plasma creatinine, whereas APC AUC was significantly correlated with plasma liver enzymes. The relative extent of irinotecan activation was inversely correlated with SN-38 glucuronidation. The TATA box polymorphism of UGT1A1 was significantly associated with plasma bilirubin levels and behaved as a significant predictor for neutropoenia. The level of cortisol 6beta-hydroxylation predicted for the occurrence of diarrhoea. All these observations may improve the routine use of irinotecan in colorectal cancer patients. UGT1A1 genotyping plus cortisol 6beta-hydroxylation determination could help to determine the optimal dose of irinotecan.  相似文献   

8.
Deeken JF  Slack R  Marshall JL 《Cancer》2008,113(7):1502-1510
Pharmacogenetic research indicates a relationship between a polymorphism in the gene encoding uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) and irinotecan inactivation, in that degradation of SN-38, the active metabolite of irinotecan, correlates inversely with the number of TA repeats in the TATA element of the UGT1A1 promoter region. Individuals who are homozygous for the UGT1A1*28 allele (7 repeats) may exhibit reduced degradation of SN-38 and increased probability of severe toxicities. Clinical study results, as reported in the literature, have not been uniform, however, in showing a relation between genotype and the development of toxicities. Even when correlations are statistically significant, confidence intervals are wide, rendering assessment of individual risk difficult at best. Irinotecan labeling recommends testing for the UGT1A1*28 allele and reducing irinotecan dosing in patients who are positive to reduce the likelihood of dose-limiting neutropenia only, but not diarrhea. Importantly, both dose-limiting neutropenia and diarrhea are dependent on numerous known and unknown factors, such as the specific regimen used, duration of therapy, doses, cycle of treatment, and complexities of irinotecan pharmacodynamics and pharmacokinetics, including other key enzymes and drug transporters. Guidance on how to modify irinotecan dosing or how to incorporate the impact of multiple variables into clinical decision-making does not exist. Furthermore, pharmacogenomic test results at this time can only provide an estimate of risk for subsets of populations rather than a risk-benefit estimate for an individual. Consequently, these test results are supplementary to clinical judgment, which requires assessing multiple variables that contribute to phenotype to arrive at individual dosing decisions.  相似文献   

9.
To define an integrated pharmacogenetic model for predicting irinotecan pharmacokinetic (PK) and severe toxicity, we evaluated multivariate analysis using 15 polymorphisms within seven genes with putative influence on metabolism and transport of irinotecan. A total of 107 NSCLC patients treated with irinotecan were evaluated for PK and genotyped for the UGT1A1*6, UGT1A1*28, UGT1A9*22, ABCB11236C>T, 2677G>T/A, 3435C>T, ABCC2-24C>T, 1249G>A, 3972C>T, ABCG234G>A, 421C>A, and SLCO1B1 -11187G>A, 388A>G, and 521T>C, and CYP3A5*3 polymorphisms. Multivariate linear and logistic regression analyses including genotypes and clinicopathologic factors were performed. SN-38 AUC was significantly correlated with ANCs (r=-0.3, p=0.009) and grade 4 neutropenia (p=0.01). The UGT1A1*6/*6, UGT1A9*1/*1 or *1/*22, and SLCO1B1 521TC or CC genotypes, and female-gender were predictive for higher AUC(SN-38) in multivariate analysis. Among them, SLCO1B1 521TC or CC and UGT1A1*6/*6 genotypes were independently predictive for grade 4 neutropenia in multivariate analysis (OR=3.8 and 7.4, respectively). Although no significant association was observed between PK parameters and grade 3 diarrhea, UGT1A9*1/*1, ABCC23972CC, and ABCG234GA or AA genotypes were independently predictive for grade 3 diarrhea in multivariate analysis (OR=6.3, 5.6, and 5.1, respectively). Patient selection based on integrated pharmacogenetic model would be helpful for predicting irinotecan-PK and severe toxicities in NSCLC patients.  相似文献   

10.
目的:观察结直肠癌患者UGT1A1*28基因多态性的分布频率,了解UGT1A1*28基因多态性与结直肠癌患者应用伊立替康联合5-氟尿嘧啶化疗毒副反应的相关性。方法:从384例接受伊立替康联合氟尿嘧啶一线化疗的晚期结直肠癌病例中采外周血提取DNA。采用PCR 法扩增目的基因片段,直接测序法分析UGT1A1*28基因多态性。临床观察并评价患者化疗毒副反应分级,统计分析UGT1A1*28基因表型与化疗毒副反应相关性。结果:全部 384例患者 UGT1A1*28基因多态性分布情况:TA6/6野生基因型287例(74.7%),TA6/7杂合基因型73例(19.0%),TA7/7纯合基因型24例(6.3%)。化疗毒副反应和UGT1A1*28基因多态性进行临床单因素分析显示UGT1A1*28基因纯合型TA7/7、杂合型TA6/7与3-4度白细胞减少、中性粒细胞减少、腹泻、胆红素升高具有明显相关性(P<0.01),UGT1A1*28基因纯合型TA7/7及杂合型TA6/7患者发生中性粒细胞减少的风险较UGT1A1*28基因野生型TA6/6患者高5.625倍(OR=5.625)。UGT1A1*28基因纯合型TA7/7和UGT1A1*28基因杂合型TA6/7患者发生腹泻的风险较UGT1A1*28基因野生型TA6/6患者高6.778倍(OR=6.778)。结论:UGT1A1*28基因纯合型TA7/7及杂合型TA6/7患者应用伊立替康化疗后发生重度中性粒细胞减少、重度腹泻的风险高于UGT1A1*28基因野生型TA6/6,为临床伊立替康用药选择、剂量调整、毒副反应的提前干预提供理论依据。  相似文献   

11.
Jada SR  Lim R  Wong CI  Shu X  Lee SC  Zhou Q  Goh BC  Chowbay B 《Cancer science》2007,98(9):1461-1467
The objectives of the present study were (i) to study the pharmacogenetics of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A in three distinct healthy Asian populations (Chinese, Malays and Indians), and (ii) to investigate the polygenic influence of these polymorphic variants in irinotecan-induced neutropenia in Asian cancer patients. Pharmacokinetic and pharmacogenetic analyses were done after administration of irinotecan as a 90-min intravenous infusion of 375 mg/m(2) once every 3 weeks (n = 45). Genotypic-phenotypic correlates showed a non-significant influence of UGT1A1*28 and ABCG2 c.421C>A polymorphisms on the pharmacokinetics of SN-38 (P > 0.05), as well as severity of neutropenia (P > 0.05). Significantly higher exposure levels to SN-38 (P = 0.018), lower relative extent of glucuronidation (REG; P = 0.006) and higher biliary index (BI; P = 0.003) were found in cancer patients homozygous for the UGT1A1*6 allele compared with patients harboring the reference genotype. The mean absolute neutrophil count (ANC) was 85% lower and the prevalence of grade 4 neutropenia (ANC < or = 500/microL) was 27% in patients homozygous for UGT1A1*6 compared with the reference group. Furthermore, the presence of the UGT1A1*6 allele was associated with an approximately 3-fold increased risk of developing severe grade 4 neutropenia compared with patients harboring the reference genotype. These exploratory findings suggest that homozygosity for UGT1A1*6 allele may be associated with altered SN-38 disposition and may increase the risk of severe neutropenia in Asian cancer patients, particularly in the Chinese cancer patients who comprised 80% (n = 36) of the patient population in the present study.  相似文献   

12.
SN-38 is the active metabolite of irinotecan and it is metabolised through conjugation by uridine diphosphate glucuronosyl transferase (UGT1A1). The major toxicity of irinotecan therapy is diarrhoea, which has been related to the enzymatic activity of UGT1A1. We examined the influence of the UGT1A1 gene promoter polymorphism in the toxicity profile, in the response rate and in the overall survival (OS) in 95 patients with metastatic colorectal cancer treated with an irinotecan-containing chemotherapy. Genotypes were determined by analysing the sequence of TATA box of UGT1A1 of genomic DNA from the patients. Clinical parameters and genotypes were compared by univariate and multivariate statistical methods. The more frequent adverse effects were asthenia (34 patients), diarrhoea (29 patients) and neutropenia (20 patients). Severe diarrhoea was observed in 7/10 homozygous (70%) and 15/45 heterozygous (33%) in comparison to 7/40 (17%) wild-type patients (P=0.005). These results maintained the statistical significance in logistic regression analysis (P=0.01) after adjustment for other clinical relevant variables. The presence of severe haematological toxicity increased from wild-type patients to UGT1A1(*)28 homozygotes, but without achieving statistical significance. No relationship was found between the UGT1A1(*)28 genotypes and infection, nausea or mucositis. In univariate studies, patients with the UGT1A1(*)28 polymorphism showed a trend to a poorer OS (P=0.09). In the multivariate analysis, the genotype was not related to clinical response or to OS. The role of the UGT1A1 genotype as a predictor of toxicity in cancer patients receiving irinotecan demands the performance of a randomized trial to ascertain whether genotype-adjusted dosages of the drug can help to establish safe and effective doses not only for patients with the UGT1A1(*)28 homozygous genotype but also for those with the most common UGT1A1 6/6 or 6/7 genotype.  相似文献   

13.
  目的  观察57例应用伊立替康治疗进展期消化道肿瘤患者的安全性和有效性。  方法  采用全血基因组DNA提取、PCR法扩增目的基因片段, 直接测序法分析UGT1A1基因多态性, 检测2011年8月至2012年6月在河北医科大学第四医院肿瘤内科住院治疗的57例进展期消化道肿瘤患者应用伊立替康的情况, 观察并记录化疗中出现的不良反应以及疗效。  结果  57例进展期消化道肿瘤患者中, UGT1A1基因启动子区28位点, TA序列6次重复的纯合野生型TA6/6有43例(75.4%); 基因型为TA序列6次和7次重复的杂合型TA6/7有13例(22.8%); 基因型为TA序列7次重复的纯合突变型TA7/7有1例(1.8%)。UGT1A1基因启动子区6位点野生型G/G有48例(84.2%), 杂合突变型G/A有7例(12.3%), 纯合突变型A/A有2例(3.5%)。在57例采用含伊立替康方案化疗的进展期消化道肿瘤患者中, UGT1A1基因启动子区28位点, TA6/6、TA6/7和TA7/7野生型和突变型发生3级以上中性粒细胞减少者分别为7.0%、14.3%, 发生3级以上腹泻者分别为9.3%、14.3%, 其中纯合突变型仅1例患者, 100%的发生率。UGT1A1基因启动子区6位点, G/G、G/A和A/A野生型和突变型发生3级以上中性粒细胞减少者分别为4.2%、55.6%, 发生3级以上腹泻者分别为12.5%、44.4%, 具有统计学差异。各组之间疗效无统计学差异。  结论  患者UGT1A1*28和UGT1A1*6多态性分布基本一致, UGT1A1*6突变型患者应用伊立替康化疗发生3级以上中性粒细胞减少和腹泻的风险增加, 而UGT1A1*28突变型与以上不良反应并无绝对相关性, UGT1A1各基因型之间疗效无明显差异。能否通过对UGT1A1的筛查, 选择合适患者安全有效的应用伊立替康, 值得临床进一步扩大样本量深入研究。   相似文献   

14.
背景与目的:尿苷二磷酸葡萄糖醛酸转移酶1A1(uridine diphosphoglucu-ronosyltransferase 1A1,UGTlA1)是伊立替康代谢关键酶,其活性受基因多态性影响显著。本研究探讨结直肠癌患者中,UGT1A1*28和UGT1A1*6基因多态性与伊立替康治疗相关不良反应之间的关系。方法:入组2013年4月—2013年12月于复旦大学附属中山医院肿瘤内科接受治疗的消化道恶性肿瘤患者160例。抽提外周血中基因组DNA,分别采用STR方法和Sanger测序法,检测UGT1A1*28和UGT1A1*6基因型,分析UGT1A1基因多态性分布情况。对其中82例化疗方案中含伊立替康的结直肠癌患者进行随访,记录不良反应发生情况和严重程度,比较不同基因型患者之间的差异。结果:160例消化道肿瘤患者中,UTG1A1*28(启动子TATA盒区域TA重复次数)野生型TA6/6124例(77.5%);杂合子TA6/7 33例(20.5%);纯合子TA7/7 3例(2.0%)。UGT1A1*6位点(211G>A)野生型GG 105例(65.6%),杂合子GA 48例(30.0%);纯合子AA 7例(4.4%)。82例化疗方案中含伊立替康的结直肠癌患者中,*28基因型(TA6/7和TA7/7)显著增加发生3级以上中性粒细胞减少的风险(58.3% vs 0.0%,P<0.001),并增加整体不良反应发生率(76.0% vs 45.6%,P<0.001);*6基因型(GA和AA)、年龄、性别、化疗方案和伊立替康相关不良反应发生无显著相关性。结论:接受伊立替康化疗的结直肠癌患者,UGT1A1*28位点多态性显著增加中性粒细胞减少发生的风险,可预测伊立替康引起的骨髓抑制性不良反应,辅助临床选择合适的化疗方案。  相似文献   

15.
OBJECTIVE: Delayed-type diarrhea is a common side effect of irinotecan and is associated with a bacterial-mediated formation of the active irinotecan metabolite SN-38 from its glucuronide conjugate in the intestine. Based on a pilot study, we hypothesized that concomitant administration of the antibiotic neomycin would diminish exposure of the gut to SN-38 and ameliorate the incidence and severity of diarrhea. PATIENTS AND METHODS: Patients were treated with irinotecan in a multicenter, double-blind, randomized, placebo-controlled trial. Eligible patients received irinotecan (350 mg/m(2) once every 3 weeks) combined with neomycin (660 mg three times daily for three consecutive days, starting 2 days before chemotherapy) or combined with placebo. Blood samples were obtained for additional pharmacokinetic and pharmacogenetic analyses. RESULTS: Sixty-two patients were evaluable for the toxicity analysis. Baseline patient characteristics, systemic SN-38 exposure, and UGT1A1*28 genotype status (i.e., an additional TA repeat in the promoter region of uridine diphosphate-glucuronosyltransferase isoform 1A1) were similar in both arms. Although distribution, severity, and duration of delayed-type diarrhea did not differ significantly between arms, grade 3 diarrhea tended to be less frequent in the neomycin arm. The presence of at least one UGT1A1*28 allele was strongly related to the incidence of grade 2-3 diarrhea. In the neomycin arm, grade 2 nausea was significantly more common. CONCLUSION: Our results do not suggest a major role for neomycin as prophylaxis for irinotecan-induced delayed-type diarrhea. It is suggested that the UGT1A1*28 genotype status could be used as a screening tool for a priori prevention of irinotecan-induced delayed-type diarrhea.  相似文献   

16.
The Food and Drug Administration and Pfizer changed the package insert for irinotecan to include a patient's UGT1A1*28 genotype as a risk factor for severe neutropenia on the basis of the findings of four pharmacogenetic studies, which found that irinotecan-treated patients who were homozygous for the UGT1A1*28 allele had a greater risk of hematologic toxic effects than patients who had one or two copies of the wild-type allele (UGT1A1*1). Findings of subsequent irinotecan pharmacogenetic studies have been inconsistent. In a meta-analysis, we reviewed data presented in nine studies that included a total of 10 sets of patients (for a total of 821 patients) and assessed the association of irinotecan dose with the risk of irinotecan-related hematologic toxicities (grade III-IV) for patients with a UGT1A1*28/*28 genotype. The risk of toxicity was higher among patients with a UGT1A1*28/*28 genotype than among those with a UGT1A1*1/*1 or UGT1A1*1/*28 genotype at both medium (odds ratio [OR] = 3.22, 95% confidence interval [CI] = 1.52 to 6.81; P = .008) and high (OR = 27.8, 95% CI = 4.0 to 195; P = .005) doses of irinotecan. However, risk was similar at lower doses (OR = 1.80, 95% CI = 0.37 to 8.84; P = .41). Low doses of irinotecan (100-125 mg/m2) are in the commonly used therapeutic range. The risk of experiencing irinotecan-induced hematologic toxicity for patients with a UGT1A1*28/*28 genotype thus appears to be a function of the dose of irinotecan administered.  相似文献   

17.
The present study has investigated the effect of panipenem, a widely used antibiotic, on the pharmacokinetics of an active metabolite of irinotecan (CPT-11), 7-ethyl-10-hydroxy-camptothecin (SN-38) and SN-38 glucuronide (SN-38G) produced by uridine-diphosphate glucuronosyltransferase (UGT) 1A isoform-mediated glucuronidation in rats. Rats received a 1 h infusion with panipenem at a loading dose of 10 mg/kg and a maintenance dose of 15 mg/min/kg once a day for 5 days. When the effect of pretreatment with panipenem on glucuronidation activities of substrates for hepatic UGT1A isoforms was investigated using substrates 4-methylumbelliferone (4MU), estradiol and SN-38, the rate of 4MU glucuronide formation was significantly increased, but that of estradiol glucuronide formation was unchanged. However, the rate of SN-38G formation showed a tendency to increase. One hour after the final infusion of panipenem or saline, SN-38 (2 mg/kg) was administered intravenously in rats with or without bile duct cannulation. Pretreatment with panipenem had no effect on the plasma concentration-time curves and biliary excretion of SN-38 and SN-38G in rats with and without bile duct cannulation. There were also no significant differences in the relative extent of glucuronidation of SN-38 to SN-38G (AUC(2 h, SN-38G)/AUC(2 h, SN-38)) between panipenem-treated and untreated rats. These findings suggest that pretreatment with panipenem does not alter the pharmacokinetics of SN-38 and SN-38G, suggesting the possibility that panipenem can be used safely for cancer patients undergoing irinotecan chemotherapy.  相似文献   

18.
Background: Severe toxicity is commonly observed in cancer patients receiving irinotecan (CPT-11)UDPglucuronosyltransferase1A1 (UGT1A1) catalyzes the glucuronidation of the active metabolite SN-38 but therelationship between UGT1A1 and severe toxicity remains unclear. Our study aimed to assess this point to guideclinical use of CPT-11. Materials and Methods: 89 cancer patients with advanced disease received CPT-11-basedchemotherapy for at least two cycles. Toxicity, including GI and hematologic toxicity was recorded in detail andUGT1A1 variants were genotyped. Regression analysis was used to analyse relationships between these variablesand tumor response. Results: The prevalence of grade III-IV diarrhea was 10.1%, this being more common inpatients with the TA 6/7 genotype (5 of 22 patients, 22.7%) (p<0.05). The prevalence of grade III-IV neutropeniawas 13.4%and also highest in patients with the TA 6/7 genotype (4 of 22 patients; 18.2%) but without significance(p>0.05). The retreatment total bilirubin levels were significantly higher in TA6/7 patients (mean, 12.75μmol/L)with compared to TA6/6 (mean, 9.92 μmol/L) with p<0.05. Conclusions: Our study support the conclusion thatpatients with a UGT1A1*28 allele (s) will suffer an increased risk of severe irinotecan-induced diarrhea, whetherwith mid-or low-dosage. However, the UGT1A1*28 allele (s) did not increase severe neutropenia. Higher serumtotal bilirubin is an indication that patients UGT1A1 genotype is not wild-type, with significance for clinic usageof CPT-11.  相似文献   

19.
20.
To investigate whether the OATP1B1 polymorphisms affect irinotecan-pharmacokinetics and subsequent toxicity and tumor response of patients with advanced NSCLC. A total of 81 Korean NSCLC patients enrolled in a phase II study of irinotecan and cisplatin chemotherapy were genotyped for OATP1B1 -11187G>A, 388A>G and 521T>C variants. The 521TC or CC and -11187AA genotypes were associated with higher AUC(SN-38) (p=0.016 and 0.030, respectively). When haplotypes were assigned, patients with *15 haplotype showed significantly higher AUC(SN-38) than *1a or *1b haplotypes (p=0.006). Grade 4 neutropenia was associated with the 521TC or CC genotypes, whereas, grade 3 diarrhea was associated with 388GG genotype (p=0.046). Of the 81 patients enrolled, 77 were assessable for response and 36 (47%) patients achieved partial responses (PR). However, no statistical significance was observed between genotype and response. These findings suggest that OATP1B1 variants are involved in SN-38 disposition and highly predictive for severe toxicity of NSCLC patients treated with irinotecan-based chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号