首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
背景:羟基磷灰石具有良好的生物相容性和生物活性,被广泛应用于骨组织的修复与替代技术,但脆性大限制了其在承载部位骨替换中的应用。 目的:对纳米羟基磷灰石复合支架材料的研究现状与进展进行综述。 方法:分别以英文检索词“nano-hydroxyapatite(nano-HA),composites”;中文检索词“纳米羟基磷灰石,复合材料”,应用计算机检索中国期刊网全文检索库(CNKI)及PubMed数据库1995-01/2010-10 有关文章,纳入纳米羟基磷灰石复合材料的文献。排除与研究目的无关和内容重复者。保留33篇文献做进一步分析。 结果与结论:随着纳米技术的发展,纳米羟基磷灰石复合支架材料中复合成分得以不断优化,能比较好的模仿天然骨和细胞外基质的结构特点,证明了其优越性,但仍需要进一步优化制备方法,增强纳米羟基磷灰石和生物高分子界面的结合,使复合材料的力学、加工性能和生物性能达到最佳契合点,从而达到临床使用的要求。  相似文献   

2.
目的:综述骨组织工程常用支架材料的种类及其性能,同时,简介一种新型的,可降解的,具有三维空间网络结构的纳米支架材料——细菌纤维素/羟基磷灰石复合材料,并探讨纳米生物材料的安全性评价。 资料来源:检索人为第一作者,检索文献时限为1979-01/2009-06,检索数据库为PubMed数据库(http://www.ncbi. nlm.nih.gov/PubMed)及CNKI数据库(www.cnki.net/index.htm)。中文检索词“骨组织工程, 细菌纤维素, 安全性评价”;英文检索词为“bone tissue engineering, Bacterial cellulose, safety evaluation”。 资料选择:①文章所述内容与骨组织工程密切相关。②有关于纳米材料安全性评价的文章。 结局评价指标:骨组织工程材料的种类及性能,纳米材料的安全性。 结果:常用的3种支架材料有天然生物材料,人工合成高分子生物材料及陶瓷材料。单一材料难以满足组织工程所需的机械强度和生物相容性,而生理状态的磷灰石是纳米级,纳米级复合材料更符合仿生的原则。细菌纤维素与具有极好生物活性、骨传导作用和骨结合能力的纳米羟基磷灰石复合制成纤维状复合支架材料,不仅具有足够的强度,还具有骨传导功能,以满足骨细胞在支架上的黏附和繁殖,成为一种很有前途的骨组织工程纳米支架材料。对生物材料生物相容性的研究与评价,不仅要从整体水平去观察材料对人体各系统的影响,从细胞水平去观察材料对细胞的数量、形态及分化的影响,还要深入到分子水平去观察材料对细胞DNA、mRNA以及蛋白表达水平的影响。 结论:由于细菌纤维素/羟基磷灰石复合支架材料结合细菌纤维素和羟基磷灰石两种材料的优点,其复合产物的性能将优于传统的骨组织工程产品。对其完成一系列生物相容性评价后,新一代骨组织工程三维纳米纤维仿生支架材料便可安全的投入到临床应用。 关键词:骨组织工程;支架材料;纳米;安全性评价  相似文献   

3.
背景:羟基磷灰石/生物高分子复合材料克服了单一的生物陶瓷作为骨替代材料使用的脆性及加工困难的缺陷而成引起广泛的重视。 目的:基于当前已发展的制备羟基磷灰石/生物高分子材料的方法有共混法、原位复合法、纤维复合法、仿生矿化法、电化学沉积法等,现对这些制备方法的优势与不足做一综述。 方法:分别以英文检索词“ hydroxyapatite(HA) ,composites, preparation”;中文检索词“羟基磷灰石,复合材料,制备”,应用计算机检索中国期刊网全文检索库(CNKI)及Elsevier数据库1996-01/2009-12有关文章,纳入羟基磷灰石/生物高分子复合材料的文献。排除与研究目的无关和内容重复者。保留31篇文献做进一步分析。 结果与结论:目前,羟基磷灰石/生物高分子复合材料仍不完全能满足骨组织工程对材料的要求,需要进一步优化制备方法,增强羟基磷灰石和生物高分子界面的结合,提高复合材料的力学及加工性能;同时,精确控制其复合材料的微观结构与骨材料结构相近,使从而使材料同时具有优良的机械性能和生物学性能,达到临床使用的要求。 关键词:羟基磷灰石;生物高分子;制备方法;复合材料;综述文献 doi:10.3969/j.issn.1673-8225.2010.25.039  相似文献   

4.
纳米复合羟基磷灰石在口腔治疗中的应用   总被引:1,自引:0,他引:1  
学术背景:纳米羟基磷灰石的应用研究是口腔医学领域中的一个非常重要的课题,已有将纳米复合羟基磷灰石应用于根管治疗的报道。 目的:介绍羟基磷灰石在口腔领域尤其在口腔颌面外科和口腔内科中的应用进展,综合分析纳米羟基磷灰石在根管充填研究动态,展望其在口腔材料领域的潜在发展。 检索策略:由第一、二作者应用计算机检索EBSCOhost数据库和NCBI数据库1992/2007相关文献,检索词为“Hydroxyapatite,Nanometer”,限定语言种类为“English”;同时检索CNKI全文数据库、维普全文数据库、万方数字化期刊1995/2007相关文献,检索词为“羟基磷灰石,纳米”,限定语言种类为中文。纳入标准:内容与羟基磷灰石的结构、改性研究、生物学特性以及在口腔医学领域有关。排除标准:较陈旧和重复研究。 文献评价:共收集到276篇相关文献,纳入30篇完全符合要求的文献,其中9篇介绍纳米羟基磷灰石在口腔颌面外科及口腔内科的临床应用;21篇关于纳米羟基磷灰石的基础研究,包括细胞毒性、生物相容性、骨诱导性、复合材料的制备和抗菌性及其在组织工程领域中的应用。 资料综合:纳米复合羟基磷灰石由于与天然骨无机结构相似生物相容性极好,有骨诱导性,对骨缺损的修复起到了关键作用,纳米特性减少了根管充填后的微渗漏,纳米羟基磷灰石和一些抑菌/抗菌制剂复合的新型纳米复合羟基磷灰石有良好的抑菌/抗菌性,对牙髓病和根尖周病的治疗起到了良好效果。 结论:新型纳米复合羟基磷灰石符合生物材料细胞毒性要求,按毒性剂量分级属无毒级,无致热原性、对皮肤无刺激作用,具有良好的生物相容性、骨诱导性、细胞黏附性和抑菌/抗菌性,有望在口腔基础研究和临床应用中发挥更大的作用。  相似文献   

5.
背景:在生物材料特别是生物涂层领域的研究中,寻找一种既具有优良生物性能又具有良好力学性能的基体材料并以适当的方法制备出表面均匀致密、结合力较高的涂层是限制人工假体能否真正应用于临床的一个关键因素。 目的:对生物涂层材料的研究进展做一综述。 方法:应用计算机检索CNKI、中国标准全文数据库和Science Direct数据库中1998-01/2009-10关于生物材料的文章,在标题和摘要中以“生物涂层,羟基磷灰石,钛合金,碳/碳复合材料”或“Biocoatings;HAp;Titanium; Carbon/carbon composites”为检索词进行检索。选择文章内容与生物涂层材料有关者,同一领域文献则选择近期发表或发表在权威杂志文章。初检得到216篇文献,根据纳入标准选择关于生物涂层材料的31篇文章进行综述。 结果与结论:通过对钛合金与碳/碳复合材料两种基体材料以及各种涂层制备工艺的对比发现,碳/碳复合材料作为基体材料,不但具有很好的生物相容性,而且与天然骨的力学强度匹配,利用水热电泳沉积技术,结合羟基磷灰石、壳聚糖、有机玻璃等涂层材料的生物性能,制备以碳/碳为基体的复合涂层,有望为提高涂层与基体的结合强度提供新的思路和方法。 关键词:生物涂层;羟基磷灰石;钛合金;碳/碳复合材料;水热电泳沉积 doi:10.3969/j.issn.1673-8225.2010.03.030  相似文献   

6.
目的:总结锶元素在骨组织工程中的研究现状,分析存在的问题和进一步的应用前景。 资料来源:以strontium,bone为检索词,检索ScienceDirect数据库(1990-01/2009-03);以锶,骨为检索词,检索CNKI数据库(1990-01/2009-03),文献检索语种分别限制为英文和中文。 资料选择:纳入与锶和骨组织工程有关的试验研究和综述。排除关于放射性锶研究的相关文献和内容重复的文献。 结局评价指标:①破骨细胞的活性。②成骨细胞的增殖。③骨诱导能力。 结果:计算机初检得到216篇文献,根据纳入排除标准,对符合条件的41篇文献进行汇总分析。锶是人体内的一种微量元素,绝大多数锶都存于骨组织中。它可以调节骨组织的结构,改善骨的强度,促进骨细胞的生理活性。试验研究证实锶盐具有抗骨吸收和增加骨形成的作用,锶盐可以抑制破骨细胞的活性,促进成骨细胞的活性,促进骨盐的沉积;其与羟基磷灰石和磷酸三钙等复合后,其机械强度、溶解性及诱导成骨能力等特性明显得到改善;锶盐口服有治疗骨质疏松症的作用。 结论:锶对于骨细胞生长分化和骨基质吸收沉积都有不可替代的生理作用,应在骨组织工程的研发中给予必要的重视。 关键词:锶;骨组织工程;羟基磷灰石;磷酸三钙;雷诺酸锶  相似文献   

7.
背景:可注射性纳米羟基磷灰石/壳聚糖复合材料是清华大学利用仿生学原理制备的一种较理想的组织工程新型材料,经过前期体外实验证明其具有良好的生物相容性和骨传导性。 目的:观察骨髓间充质干细胞复合可注射性纳米羟基磷灰石/壳聚糖材料在促进骨缺损修复中的作用。 方法:用梯度离心和贴壁培养法收集兔骨髓间充质干细胞,分离、培养至第3代,然后与纳米羟基磷灰石/壳聚糖复合。24只新西兰大白兔双侧股骨外侧髁钻孔,制备骨缺损模型。所有兔右侧股骨外侧髁缺损以骨髓间充质干细胞-纳米羟基磷灰石/壳聚糖局部植入作为实验组,其中20只兔左侧股骨外侧髁缺损以单纯纳米羟基磷灰石植入治疗作为对照组,4只兔左侧股骨外侧髁缺损旷置为空白组,于第12周末,分别行大体、影像学观察、组织形态学、观察该复合材料对兔骨缺损的修复效果。 结果与结论:术后12周实验组植入体已与骨缺损处骨性愈合,明显见新生骨生成,骨缺损能够完全修复,对照组骨缺损处部分修复,部分骨皮质不连续。空白组缺损区尚未见修复,纤维结缔组织填充。术后12周,实验组见骨形成细胞较多,材料内见新生骨小梁相互连接成片;对照组少量骨细胞形成,骨量少,部分纤维组织填充。空白组未见骨形成细胞,纤维组织较多。结果表明,骨髓间充质干细胞-纳米羟基磷灰石/壳聚糖复合材料具有骨缺损修复能力,其疗效优于单纯纳米羟基磷灰石材料。 关键词:纳米羟基磷灰石/壳聚糖;骨髓间充质干细胞;骨缺损;兔;可注射 doi:10.3969/j.issn.1673-8225.2010.34.003  相似文献   

8.
背景:骨组织工程骨构建中如何使生长因子持续高效发挥作用是影响成骨速度和质量的关键,现多以各种材料的微球或支架作为缓释载体,但缓释作用有待提高。 目的:实验拟制备壳聚糖微球,然后复合到纳米羟基磷灰石/聚乳酸-羟基乙酸支架上,形成双重缓释作用,并测量对牛血清白蛋白的释放效果。 方法:以牛血清白蛋白为模型药物,采用乳化交联法制备壳聚糖微球。将微球与纳米羟基磷灰石、聚乳酸-羟基乙酸按一定比例混合,以冰粒子为致孔剂,采用冷冻干燥法制备壳聚糖微球/纳米羟基磷灰石/聚乳酸-羟基乙酸复合支架。利用扫描电镜、激光粒度分析仪、压泵仪和力学性能测试仪检测复合支架的形态性能,考察药物在缓释支架上的体外释放规律。 结果与结论:所制备的壳聚糖微球形态良好,呈规则圆球形,粒径集中分布在20~40 μm,微球药物包封率为86.5%,载药量为0.8%,随牛血清白蛋白初始用量的增加,载药量可升高至2.6%,但包封率下降至74.1%。壳聚糖微球能均匀分布在聚乳酸-羟基乙酸支架上,形成壳聚糖微球/纳米羟基磷灰石/聚乳酸-羟基乙酸复合支架,孔径为100~400 μm,孔隙率> 80%,压缩强度为1.1~2.3 MPa,10周降解率为26.5%。单纯纳米羟基磷灰石/聚乳酸-羟基乙酸支架其牛血清白蛋白在36 h累积释放量达85%以上,壳聚糖微球其牛血清白蛋白10 d累积释放量为33.6%,复合支架其牛血清白蛋白40 d累积释放量为81.5%。结果证实包埋壳聚糖微球的纳米羟基磷灰石/聚乳酸-羟基乙酸支架其压缩强度和降解速率合适,对蛋白类药物具有良好的缓释作用,有望作为组织工程的支架材料和生长因子的缓释载体。 关键词:聚乳酸-羟基乙酸;支架;壳聚糖;缓释载体;骨修复材料,组织工程;生物材料 doi:10.3969/j.issn.1673-8225.2010.03.017  相似文献   

9.
背景:采用基于纳米羟基磷灰石溶胶新方法制备纳米羟基磷灰石/聚酰胺66复合材料,该材料提高了纳米羟基磷灰石在聚酰胺66基体中的均匀分布和二者的有效键合,进而有利于改善材料的生物性能,有望成为新型骨修复材料。 目的:评价纳米羟基磷灰石/聚酰胺66复合材料体内外生物相容性。 方法:①将原代培养的成骨细胞与纳米羟基磷灰石/聚酰胺66及聚酰胺66材料复合培养,使用倒置相差显微镜和场发射扫描电子显微镜观察材料周围及表面的细胞形态。②将纳米羟基磷灰石/聚酰胺66复合材料植入兔右侧胫骨,将聚酰胺66作为对照组材料植入兔左侧胫骨。在术后2,8周,取材料周围骨组织进行病理组织切片观察。 结果与结论:①纳米羟基磷灰石/聚酰胺66和聚酰胺66未表现出明显的细胞毒性,纳米羟基磷灰石/聚酰胺66材料周围细胞形态好于聚酰胺66,且纳米羟基磷灰石/聚酰胺66表面细胞数量多于聚酰胺66,在复合培养的第3天差异尤其显著(P < 0.01)。②在植入早期,与纳米羟基磷灰石/聚酰胺66相接的骨组织成骨细胞活跃且该组材料周围的骨形成过程较对照组更快。结果说明纳米羟基磷灰石/聚酰胺66复合材料较聚酰胺66有更好的生物相容性。 关键词:纳米羟基磷灰石/聚酰胺66;聚酰胺66;生物相容性;细胞培养;骨修复材料 doi:10.3969/j.issn.1673-8225.2010.08.044  相似文献   

10.
摘要:检索Pubmed数据库和中国期刊全文数据库文献,总结各种类型和性质的纳米骨修复材料的研究现状及最新进展。纳米仿生骨常用多孔陶瓷为支架,在体外培养细胞,扩增形成骨组织再植入体内。常见的原料有纳米磷酸钙/胶原材料、多孔仿珊瑚人工骨、纳米羟晶磷灰石/胶原仿生骨、纳米羟基磷灰石/胶原材料、脱钙骨基质/胶原材料等。羟基磷灰石、氧化铝陶瓷、磷酸三钙是用于制备纳米陶瓷的材料。纳米陶瓷是最常用的组织工程材料。纳米复合陶瓷材料有良好的生物相容性。以钙为主要成分,采用最新的生物纳米技术合成的可吸收注射型纳米骨浆具有自塑能力,植入后重塑良好。这些结果证实,纳米骨修复材料的主要用途是作为细胞外支架和骨折的固定材料,已在组织工程和生物材料研究中显示出优异的生物学性能及广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号