首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Expression profiling of post-mortem human brain tissue has been widely used to study molecular changes associated with neuropsychiatric diseases as well as normal processes such as aging. Changes in expression associated with factors such as age, gender or postmortem interval are often more pronounced than changes associated with disease. Therefore in addition to being of interest in their own right, careful consideration of these effects are important in the interpretation of disease studies. We performed a large meta-analysis of genome-wide expression studies of normal human cortex to more fully catalogue the effects of age, gender, postmortem interval and brain pH, yielding a “meta-signature” of gene expression changes for each factor. We validated our results by showing a significant overlap with independent gene lists extracted from the literature. Importantly, meta-analysis identifies genes which are not significant in any individual study. Finally, we show that many schizophrenia candidate genes appear in the meta-signatures, reinforcing the idea that studies must be carefully controlled for interactions between these factors and disease. In addition to the inherent value of the meta-signatures, our results provide critical information for future studies of disease effects in the human brain.  相似文献   

3.
4.
5.
6.
7.
8.
Combining large-scale gene expression approaches and bioinformatics may provide insights into the molecular variability of biological processes underlying neurodegeneration. To identify novel candidate genes and mechanisms, we conducted a multiregional gene expression analysis in postmortem brain. Gene arrays were performed utilizing Affymetrix HG U133 Plus 2.0 gene chips. Brain specimens from 21 different brain regions were taken from Parkinson's disease (PD) (n = 22) and normal aged (n = 23) brain donors. The rationale for conducting a multiregional survey of gene expression changes was based on the assumption that if a gene is changed in more than one brain region, it may be a higher probability candidate gene compared to genes that are changed in a single region. Although no gene was significantly changed in all of the 21 brain regions surveyed, we identified 11 candidate genes whose pattern of expression was regulated in at least 18 out of 21 regions. The expression of a gene encoding the mitochondria ribosomal protein S6 (MRPS6) had the highest combined mean fold change and topped the list of regulated genes. The analysis revealed other genes related to apoptosis, cell signaling, and cell cycle that may be of importance to disease pathophysiology. High throughput gene expression is an emerging technology for molecular target discovery in neurological and psychiatric disorders. The top gene reported here is the nuclear encoded MRPS6, a building block of the human mitoribosome of the oxidative phosphorylation system (OXPHOS). Impairments in mitochondrial OXPHOS have been linked to the pathogenesis of PD.  相似文献   

9.
10.
This is a critical review of the literature related to the neurodevelopmental hypothesis of schizophrenia which posits that the illness is related to abnormal brain development. The review focuses on data deriving from clinical studies, and it is organized according to the life phase from which the data were collected: conception and birth, infancy and childhood up to the onset of the illness, after illness onset, and postmortem. The neurodevelopmental hypothesis is supported by several pieces of evidence, including increased frequency of obstetric complications in patients with schizophrenia: the presence of minor physical anomalies; the presence of neurological, cognitive, and behavioral dysfunction long before illness onset; a course and outcome of the illness itself that is incompatible in most cases with a degenerative illness; the stability of brain structural measures over time; and the absence of postmortem evidence of neurodegeneration. A historical perspective on how this research accumulated and a section addressing important areas of future investigation are also provided. We conclude that schizophrenia is certainly not a degenerative brain disorder, and that it is likely that a brain insult in utero or at birth plays a role in its expression. Current evidence cannot completely exclude the role of environmental variables after birth. In addition, it is possible that other psychiatric disorders may also have a neurodevelopmental component.  相似文献   

11.
It is well established that the risk to develop neurodegenerative disorders increases with chronological aging. Accumulating studies contributed to characterize the age-dependent changes either at gene and protein expression level which, taken together, show that aging of the human brain results from the combination of the normal decline of multiple biological functions with environmental factors that contribute to defining disease risk of late-life brain disorders. Finding the “way out” of the labyrinth of such complex molecular interactions may help to fill the gap between “normal” brain aging and development of age-dependent diseases. To this purpose, proteomics studies are a powerful tool to better understand where to set the boundary line of healthy aging and age-related disease by analyzing the variation of protein expression levels and the major post translational modifications that determine “protein” physio/pathological fate. Increasing attention has been focused on oxidative modifications due to the crucial role of oxidative stress in aging, in addition to the fact that this type of modification is irreversible and may alter protein function. Redox proteomics studies contributed to decipher the complexity of brain aging by identifying the proteins that were increasingly oxidized and eventually dysfunctional as a function of age.The purpose of this review is to summarize the most important findings obtained by applying proteomics approaches to murine models of aging with also a brief overview of some human studies, in particular those related to dementia.  相似文献   

12.
Studies were undertaken to assess the extent to which messenger RNA prepared from the postmortem Alzheimer's disease (AD) brain can be used for the successful preparation of a recombinant cDNA library. Initial experiments focused on the glial-specific marker glial fibrillary acidic protein (GFAP) since GFAP expression appeared to be a model for further studies on mRNAs that may continue to be expressed at high levels in the vicinity of lesioned sites in the AD brain. An AD cDNA library, prepared in the lambda gt11 expression vector system contained GFAP-specific recombinants. One of these was sequenced and the insert was shown to exhibit 88% homology with the similar sequence from mouse GFAP. As established by Northern blots, the size of the GFAP mRNA prepared from the routinely acquired postmortem AD cortex, approximately 2.7 kb, was the same as from a neurologically normal control brain. These results agree with earlier studies on GFAP mRNA from fresh mouse brain. The results demonstrate that in the postmortem AD brain, astroglial-specific mRNA remains sufficiently stable for molecular genetic analysis and may serve as a useful model for examining the genetic expression of mRNAs that may be related to the molecular pathogenesis and the etiology of AD.  相似文献   

13.
Several lines of evidence support a mitochondrial dysfunction in major psychiatric disorders. The objective of this study was to determine whether mitochondrial DNA (mtDNA) expression or content are implicated in the mitochondrial dysfunction observed in schizophrenia (SCH), bipolar disorder (BD), and major depressive disorder (MDD). MtDNA gene expression and mtDNA content (including the MT‐ND4 deletion) were measured by RT‐qPCR and qPCR, respectively. Post‐mortem brain tissue from 60 subjects, divided evenly into four diagnostic groups (SCH, BD, MDD, and control (C)), was analyzed. MT‐ND1 gene expression was significantly increased in the BD group compared with the C group. MDD and SCH patients showed a similar pattern of mtDNA expression, which was different from that in BD patients. Similarly, a larger number of MDD and SCH patients tended to have the MT‐ND4 gene deleted compared with BD and C subjects. However, no other significant differences were observed in mtDNA gene expression and mtDNA content. Notably, high variability was observed in the mtDNA gene expression and content in each diagnostic group. Previous studies and the present work provide evidence for a role of mtDNA in SCH, BD and MDD. However, further studies with larger patient and control groups as well as by analyzing distinct brain regions are needed to elucidate the role of mtDNA in major psychiatric disorders. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
To help account for the variable quality and quantity of RNA in human brain, we have studied the effect of premortem (agonal state) and postmortem factors on the detection of poly(A)+mRNA and eight mRNAs. For comparison, the influence of the same factors upon gene products encoded by the mRNAs was studied immunocytochemically or by receptor autoradiography. Brain pH declined with increasing age at death and was related to agonal state severity, but was independent of postmortem interval and the histological presence of hypoxic changes. By linear regression, pH was significantly associated with the abundance of several of the RNAs, but not with poly(A)+mRNA, immunoreactivities, or binding site densities. Postmortem interval had a limited influence upon mRNA and protein products. Freezer storage time showed no effect. Parallel rat brain studies showed no relationship between postmortem interval (0–48 h) and amounts of total RNA, poly(A)+RNA, or two individual mRNAs; however, RNA content was reduced by 40% at 96 h after death. pH is superior to clinical assessments of agonal state or mode of death in predicting mRNA preservation. It provides a simple means to improve human brain gene expression studies. pH is stable after death and during freezer storage and can be measured either in cerebrospinal fluid or in homogenised tissue.  相似文献   

15.
16.
A growing body of evidence from human postmortem and animal studies suggests that deficits in glial cell (particularly astrocytes) density and function, in limbic regions of the brain contribute to the etiology of depressive disorders. Despite the widespread use of Wistar-Kyoto (WKY) rat strain as a model of depression and stress susceptibility, there is a paucity of data examining whether alterations in brain astrocytic population are present in the model. In the present study, we investigated the expression of the astrocytic markers glial fibrillary acidic protein (GFAP) in various brain regions in WKY rats in comparison to Sprague–Dawley rats. A significant deficit in GFAP-immunoreactive cells was found in the prefrontal cortex region (infralimbic, prelimbic and anterior cingulate cortex), in the basolateral amygdala as well as in the hippocampus (CA3 and dentate gyrus) in WKY rat brain. No statistical difference was found in the other brain regions analyzed (insular cortex, somatosensory cortex, CA1 and callosal white matter). No difference was found in the total density of astrocytes (assessed by s-100β immunoreactivity), neurons (determined by NeuN expression) or in the total number of cells in the regions of interest. A slight increase in the intensity of s-100β immunoreactivity was observed. The lower expression of GFAP in WKY rats was further confirmed by Western-blot analysis. These results suggest that specific astrocytic deficits in GFAP expression in corticolimbic circuits may be a general correlate of depressive-like behavior in animal models in addition to human major depression. Moreover, they suggest that glial physiology may become a therapeutic target in depression and other stress-related conditions.  相似文献   

17.
18.
Researchers have conducted numerous pre-clinical and clinical gene transfer studies using recombinant viral vectors derived from a wide range of pathogenic viruses such as adenovirus, adeno-associated virus, and lentivirus. As viral vectors are derived from pathogenic viruses, they have an inherent ability to induce a vector specific immune response when used in vivo. The role of the immune response against the viral vector has been implicated in the inconsistent and unpredictable translation of pre-clinical success into therapeutic efficacy in human clinical trials using gene therapy to treat neurological disorders. Herein we thoroughly examine the effects of the innate and adaptive immune responses on therapeutic gene expression mediated by adenoviral, AAV, and lentiviral vectors systems in both pre-clinical and clinical experiments. Furthermore, the immune responses against gene therapy vectors and the resulting loss of therapeutic gene expression are examined in the context of the architecture and neuroanatomy of the brain immune system. The chapter closes with a discussion of the relationship between the elimination of transgene expression and the in vivo immunological synapses between immune cells and target virally infected brain cells. Importantly, although systemic immune responses against viral vectors injected systemically has thought to be deleterious in a number of trials, results from brain gene therapy clinical trials do not support this general conclusion suggesting brain gene therapy may be safer from an immunological standpoint.  相似文献   

19.
20.
Sher L 《Medical hypotheses》2002,58(2):164-166
Cultural inheritance, a genetic-based inheritance system transmitted by the brain, has previously been proposed to underlie normal behaviour and mental disorders. In cultural inheritance epigenetic mechanisms are involved in gene expression. This paper proposes that since there are marked epigenetic mechanisms involved in the expression of genes underlying primary (idiopathic) mental disorders, epimutations, rather than genetic mutations, underlie these disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号