首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: To compare black-blood multicontrast carotid imaging at 3T and 1.5T and assess compatibility between morphological measurements of carotid arteries at 1.5T and 3T. MATERIALS AND METHODS: Five healthy subjects and two atherosclerosis patients were scanned in 1.5T and 3T scanners with a similar protocol providing transverse T1-, T2-, and proton density (PD)-weighted black-blood images using a fast spin-echo sequence with single- (T1-weighted) or multislice (PD-/T2-weighted) double inversion recovery (DIR) preparation. Wall and lumen signal-to-noise ratio (SNR) and wall/lumen contrast-to-noise ratio (CNR) were compared in 44 artery cross-sections by paired t-test. Interscanner variability of the lumen area (LA), wall area (WA), and mean wall thickness (MWT) was assessed using Bland-Altman analysis. RESULTS: Wall SNR and lumen/wall CNR significantly increased (P < 0.0001) at 3T with a 1.5-fold gain for T1-weighted images and a 1.7/1.8-fold gain for PD-/T2-weighted images. Lumen SNR did not differ for single-slice DIR T1-weighted images (P = 0.2), but was larger at 3T for multislice DIR PD-/T2-weighted images (P = 0.01/0.03). The LA, WA, and MWT demonstrated good agreement with no significant bias (P 0.5), a coefficient of variation (CV) of < 10%, and intraclass correlation coefficient (ICC) of > 0.95. CONCLUSION: This study demonstrated significant improvement in SNR, CNR, and image quality for high- resolution black-blood imaging of carotid arteries at 3T. Morphologic measurements are compatible between 1.5T and 3T.  相似文献   

2.
PURPOSE: To assess a swallowing-compensated, three-dimensional (3D) diffusion-prepared segmented steady-state free precession (3D Nav-D-SSFP) technique for carotid wall MRI with 0.6-mm isotropic spatial resolution, and its utility for semiautomated carotid wall morphometry. MATERIALS AND METHODS: The carotid arteries of seven healthy volunteers (N=14) were imaged with 3D Nav-D-SSFP and black-blood T2-weighted (T2w) two-dimensional (2D) fast spin-echo (FSE). Carotid wall-lumen contrast-to-noise ratio (CNR) was measured with both sequences. Measurement of carotid wall area (WA) and lumen area (LA) made in a semiautomated manner off of the 3D Nav-D-SSFP images were compared to those made manually. RESULTS: Adjusted for voxel volume and number of slices, a near six-fold improvement in CNR per unit time was achieved with 3D Nav-D-SSFP relative to 2D T2w FSE (P<0.001). Manual and semiautomated measurements of carotid WA and LA on the 3D Nav-D-SSFP images were highly correlated (intraclass correlation coefficient (ICC)=0.961 and 0.996, respectively; P<0.001). CONCLUSION: 3D Nav-D-SSFP is a time-efficient, swallowing-compensated, black-blood technique that lends itself for semiautomated measurements of carotid WA and LA that are in good agreement with manual measurements.  相似文献   

3.
In this study, a turbo spin-echo (TSE) based motion-sensitized driven-equilibrium (MSDE) sequence was used as an alternative black-blood (BB) carotid MRI imaging scheme. The MSDE sequence was first optimized for more efficient residual blood signal suppression in the carotid bulb of healthy volunteers. Effective contrast-to-noise ratio (CNReff) and residual signal-to-noise ratio (SNR) in the lumen measured from MSDE images were then compared to those measured from inflow saturation (IS) and double inversion-recovery (DIR) images. Statistically significant higher CNReff and lower lumen SNR were obtained from MSDE images. To assess MSDE sequence in a clinical carotid protocol, 42 locations from six subjects with 50% to 79% carotid stenosis by duplex ultrasound were scanned with both MSDE and multislice DIR. The comparison showed that MSDE images present significantly higher CNR and lower lumen SNR compared to corresponding multislice DIR images. The vessel wall area and mean wall thickness measurements in MSDE images were slightly but significantly lower than those obtained with other blood suppression techniques. In conclusion, in vivo comparisons demonstrated that MSDE sequence can achieve better blood suppression and provide a more accurate depiction of the lumen boundaries by eliminating plaque mimicking artifacts in carotid artery (CA) imaging. Magn Reson Med 58:973–981, 2007. © 2007 Wiley-Liss, Inc.  相似文献   

4.
PURPOSE: To compare two multislice turbo spin-echo (TSE) carotid artery wall imaging techniques at 1.5 T and 3.0 T, and to investigate the feasibility of higher spatial resolution carotid artery wall imaging at 3.0 T. MATERIALS AND METHODS: Multislice proton density-weighted (PDW), T2-weighted (T2W), and T1-weighted (T1W) inflow/outflow saturation band (IOSB) and rapid extended coverage double inversion-recovery (REX-DIR) TSE carotid artery wall imaging was performed on six healthy volunteers at 1.5 T and 3.0 T using time-, coverage-, and spatial resolution-matched (0.47 x 0.47 x 3 mm3) imaging protocols. To investigate whether improved signal-to-noise ratio (SNR) at 3.0 T could allow for improved spatial resolution, higher spatial resolution imaging (0.31 x 0.31 x 3 mm3) was performed at 3.0 T. Carotid artery wall SNR, carotid lumen SNR, and wall-lumen contrast-to-noise ratio (CNR) were measured. RESULTS: Signal gain at 3.0 T relative to 1.5 T was observed for carotid artery wall SNR (223%) and wall-lumen CNR (255%) in all acquisitions (P < 0.025). IOSB and REX-DIR images were found to have different levels of SNR and CNR (P < 0.05) with IOSB values observed to be larger. Normalized to a common imaging time, the higher spatial resolution imaging at 3.0 T and the lower spatial resolution imaging at 1.5 T provided similar levels of wall-lumen CNR (P = NS). CONCLUSION: Multislice carotid wall imaging at 3.0 T with IOSB and REX-DIR benefits from improved SNR and CNR relative to 1.5 T, and allows for higher spatial resolution carotid artery wall imaging.  相似文献   

5.
A novel approach for imaging large sections of the carotid artery wall at isotropic spatial resolution is presented. Local excitation by means of 2D excitation pulses was combined with a diffusion-prepared segmented steady-state black-blood gradient echo technique enabling the assessment of the carotid arterial wall over a range of up to 15 cm. The carotid arteries of five healthy volunteers were imaged with the proposed technique. Signal-to-noise ratio (SNR), wall-lumen contrast-to-noise ratio (CNR), and vessel dimensions were assessed and compared to conventional excitation techniques. In all experiments black-blood contrast could be realized over the covered carotid arteries with similar SNR and CNR as the conventional technique covering the region of the bulbus only. The proposed technique enables the time-efficient coverage of the carotid arteries without compromising wall-lumen CNR and geometrical accuracy. Furthermore, the proposed technique appears to be less sensitive to motion and swallowing artifacts due to the local character of the excitation.  相似文献   

6.
This HIPAA-compliant study had institutional review board approval. Informed consent was obtained. The purpose was to prospectively evaluate a segmented three-dimensional (3D) double inversion recovery (DIR)-prepared steady-state free precession (SSFP) magnetic resonance (MR) imaging sequence for fast high-spatial-resolution black-blood carotid arterial wall imaging. Carotid wall-lumen contrast-to-noise ratio (CNR) obtained with this sequence was compared with those obtained with two-dimensional (2D) single- and multisection black-blood fast spin-echo (SE) sequences. MR imaging of both carotid artery bifurcations over 3 cm of transverse coverage was performed in eight volunteers (seven men, one woman; age range, 26-56 years) with no known history of carotid artery disease. Adjusted for section thickness and imaging time per section, higher effective mean CNR was achieved with segmented 3D DIR-prepared SSFP than with single-section 2D DIR-prepared fast SE or multisection 2D saturation-band fast SE (P < .05). Segmented 3D DIR-prepared SSFP enables black-blood carotid arterial wall MR imaging with contiguous thin-section coverage and greater imaging speed and effective CNR than conventional 2D fast SE techniques.  相似文献   

7.
PURPOSE: To reduce long examination times of black-blood vessel wall imaging by acquiring multiple slices simultaneously and by using parallel acquisition techniques. MATERIALS AND METHODS: DIR-rapid acquisition with relaxation enhancement (RARE) techniques imaging up to 10 simultaneous slices per acquisition with single and multiple 180 degrees -reinversion pulses were developed. A slab-selective reinversion multislice DIR-RARE sequence incorporating generalized autocalibrating partially parallel acquisitions (GRAPPA) imaging was implemented. Four-channel and eight-channel carotid coils were built to test these sequences. A total of 11 subjects were studied. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) efficiency factor (SEF, SNR/unit time/slice) were measured from aortic images of three healthy subjects to determine optimal MR parameters. The DIR-RARE-GRAPPA sequence was run on aortas and carotid arteries of the five remaining healthy subjects and three atherosclerotic patients with optimal parameters (acquisition times 12-21 seconds). RESULTS: SEFs of slab-selective protocols were significantly higher than those of slice-selective protocols, and SEFs of DIR-RARE-GRAPPA protocols were significantly higher than corresponding non-GRAPPA protocols (P < 0.05). CNR was not significantly different for all imaging protocols. The DIR-RARE-GRAPPA multislice sequence showed 8.35-fold time improvement vs. single-slice DIR-2RARE sequence. CONCLUSION: Future MRI atherosclerotic plaque studies can be performed in substantially shorter times using these methods.  相似文献   

8.

Purpose:

To develop a 3D flow‐independent peripheral vessel wall imaging method using T2‐prepared phase‐sensitive inversion‐recovery (T2PSIR) steady‐state free precession (SSFP).

Materials and Methods:

A 3D T2‐prepared and nonselective inversion‐recovery SSFP sequence was designed to achieve flow‐independent blood suppression for vessel wall imaging based on T1 and T2 properties of the vessel wall and blood. To maximize image contrast and reduce its dependence on the inversion time (TI), phase‐sensitive reconstruction was used to restore the true signal difference between vessel wall and blood. The feasibility of this technique for peripheral artery wall imaging was tested in 13 healthy subjects. Image signal‐to‐noise ratio (SNR), wall/lumen contrast‐to‐noise ratio (CNR), and scan efficiency were compared between this technique and conventional 2D double inversion recovery – turbo spin echo (DIR‐TSE) in eight subjects.

Results:

3D T2PSIR SSFP provided more efficient data acquisition (32 slices and 64 mm in 4 minutes, 7.5 seconds per slice) than 2D DIR‐TSE (2–3 minutes per slice). SNR of the vessel wall and CNR between vessel wall and lumen were significantly increased as compared to those of DIR‐TSE (P < 0.001). Vessel wall and lumen areas of the two techniques are strongly correlated (intraclass correlation coefficients: 0.975 and 0.937, respectively; P < 0.001 for both). The lumen area of T2PSIR SSFP is slightly larger than that of DIR‐TSE (P = 0.008). The difference in vessel wall area between the two techniques is not statistically significant.

Conclusion:

T2PSIR SSFP is a promising technique for peripheral vessel wall imaging. It provides excellent blood signal suppression and vessel wall/lumen contrast. It can cover a 3D volume efficiently and is flow‐ and TI‐independent. J. Magn. Reson. Imaging 2010;32:399–408. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
RATIONALE AND OBJECTIVES: A clinical case report is presented on a 76-year-old man who volunteered for a 3.0 T magnetic resonance (MR) carotid protocol. The subject was referred for carotid endarterectomy and histology was performed on the ex vivo specimen and compared with the in vivo images. METHODS: The 3.0 and 1.5 T (obtained for comparison) MR protocol consisted of 2-dimensional (2D) and 3-dimensional (3D) multicontrast bright and black blood imaging for detecting the lumen and vessel wall. RESULTS: The combination of multicontrast black blood transverse images and the 3D time of flight transverse images provided visualization of a narrowed internal carotid artery lumen 4 mm above of the bifurcation and the presence of a complex atherosclerotic plaque containing a large lipid pool, calcification, and intact fibrous cap. Quantitative comparisons including vessel lumen and plaque area, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were obtained for 1.5 and 3.0 T image data. Plaque composition was verified with histology. Macrophages were also detected in the shoulders of the plaque as demonstrated by CD68 staining and corresponded with a small hyperintense area in the T2W images at 3.0 T, but not observed in comparable 1.5 T images. CONCLUSIONS: High field 3.0 T multicontrast MRI of atherosclerotic plaque has been validated with histology comparison and provides improved detection of complex atherosclerotic plaque with increased SNR and CNR compared with 1.5 T. Further studies validating contrast mechanisms of plaque at 3.0 T are required, but atherosclerotic plaque imaging has clear benefit from application at the higher magnetic field strength.  相似文献   

10.
Black‐blood MRI is a promising tool for carotid atherosclerotic plaque burden assessment and compositional analysis. However, current sequences are limited by large slice thickness. Accuracy of measurement can be improved by moving to isotropic imaging but can be challenging for patient compliance due to long scan times. We present a fast isotropic high spatial resolution (0.7 × 0.7 × 0.7 mm3) three‐dimensional black‐blood sequence (3D‐MERGE) covering the entire cervical carotid arteries within 2 min thus ensuring patient compliance and diagnostic image quality. The sequence is optimized for vessel wall imaging of the carotid bifurcation based on its signal properties. The optimized sequence is validated on patients with significant carotid plaque. Quantitative plaque morphology measurements and signal‐to‐noise ratio measures show that 3D‐MERGE provides good blood suppression and comparable plaque burden measurements to existing MRI protocols. 3D‐MERGE is a promising new tool for fast and accurate plaque burden assessment in patients with atherosclerotic plaque. Magn Reson Med, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Zhang S  Cai J  Luo Y  Han C  Polissar NL  Hatsukami TS  Yuan C 《Radiology》2003,228(1):200-205
PURPOSE: To investigate whether postcontrast three-dimensional (3D) magnetic resonance (MR) imaging would yield more accurate measurement of carotid artery wall volume and maximum wall area, which are both measures of plaque burden, than precontrast 3D MR imaging. MATERIALS AND METHODS: Eleven consecutive patients scheduled to undergo carotid endarterectomy were recruited for the study. A 3D fast gradient-recalled-echo sequence was applied to acquire both precontrast and postcontrast images of the carotid artery wall. The same sequence was used to image the ex vivo excised plaque as a reference for measurement of carotid wall volume and maximum wall area. RESULTS: The mean difference in maximum wall area between the precontrast in vivo measurements and the ex vivo measurements (mean +/- SD, 18.22 mm2 +/- 15.61) was significantly larger than that between the postcontrast in vivo measurements and the ex vivo measurements (12.33 mm2 +/- 14.49) (P =.02). The difference in wall volume between the precontrast in vivo measurements and the ex vivo measurements (41.81 mm3 +/- 36.51) was larger than that between the postcontrast in vivo measurements and the ex vivo measurements (32.73 mm3 +/- 35.00) (P =.004). Postcontrast images yielded better correlation with ex vivo images than did precontrast images, in both carotid luminal area (R = 0.88 for postcontrast images, R = 0.80 for precontrast images) and outer wall boundary area (R = 0.79 for postcontrast images, R = 0.71 for precontrast images) measurements. CONCLUSION: Postcontrast 3D MR imaging may be useful in the measurement of carotid artery plaque burden.  相似文献   

12.

Purpose

To compare a multislab three‐dimensional volume‐selective fast spin‐echo (FSE) magnetic resonance (MR) sequence with a routine two‐dimensional FSE sequence for quantification of carotid wall volume.

Materials and Methods

One hundred normal subjects (50 men, mean age 44.6 years) underwent carotid vessel wall MR using 2D and 3D techniques. Carotid artery total vessel volume, lumen volume, wall volume, and wall/outer wall (W/OW) ratio were measured over 20 contiguous slices. Two‐ (2D) and three‐dimensional (3D) results were compared.

Results

The mean difference between 2D and 3D datasets (as a percentage of the mean absolute value) was 1.7% for vessel volume, 4.9% for lumen volume, 4.7% for wall volume, and 5.8% for W/OW ratio. There was good correlation between 2D and 3D models for total vessel volume (R2 = 0.93, P < 0.001), lumen area (R2 = 0.92, P < 0.001), and wall volume (R2 = 0.77, P < 0.001). The correlation for the W/OW ratio was weaker (R2 = 0.30; P < 0.001). The signal‐to‐noise ratio (SNR) for the 3D technique was 2.1‐fold greater than for the 2D technique (P < 0.001). When using the 3D sequence, scan time was reduced by 63%.

Conclusion

Multislab volume selective 3D FSE carotid arterial wall imaging performs similarly to a conventional 2D technique, but with over twice the SNR and substantially reduced scan time. J. Magn. Reson. Imaging 2008;28:1476–1482. © 2008 Wiley‐Liss, Inc.  相似文献   

13.

Purpose:

To determine if 2D single‐shot interleaved multislice inner volume diffusion‐weighted echo planar imaging (ss‐IMIV‐DWEPI) can be used to obtain quantitative diffusion measurements that can assist in the identification of plaque components in the cervical carotid artery.

Materials and Methods:

The 2D ss‐DWEPI sequence was combined with interleaved multislice inner volume region localization to obtain diffusion weighted images with 1 mm in‐plane resolution and 2 mm slice thickness. Eleven subjects, six of whom have carotid plaque, were studied with this technique. The apparent diffusion coefficient (ADC) images were calculated using DW images with b = 10 s/mm2 and b = 300 s/mm2.

Results:

The mean ADC measurement in normal vessel wall of the 11 subjects was 1.28 ± 0.09 × 10?3 mm2/s. Six of the 11 subjects had carotid plaque and ADC measurements in plaque ranged from 0.29 to 0.87 × 10?3 mm2/s. Of the 11 common carotid artery walls studied (33 images), at least partial visualization of the wall was obtained in all ADC images, more than 50% visualization in 82% (27/33 images), and full visualization in 18% (6/33 images).

Conclusion:

2D ss‐IMIV‐DWEPI can perform diffusion‐weighted carotid magnetic resonance imaging (MRI) in vivo with reasonably high spatial resolution (1 × 1 × 2 mm3). ADC values of the carotid wall and plaque are consistent with similar values obtained from ex vivo endarterectomy specimens. The spread in ADC values obtained from plaque indicate that this technique could form a basis for plaque component identification in conjunction with other MRI/MRA techniques. J. Magn. Reson. Imaging 2009;30:1068–1077. © 2009 Wiley‐Liss, Inc.
  相似文献   

14.
PURPOSE: The aim of this study was to evaluate our preliminary experience at 3.0 T with imaging of the carotid bifurcation in healthy and atherosclerotic subjects. Application at 3.0 T is motivated by the signal-to-noise gain for improving spatial resolution and reducing signal averaging requirements. MATERIALS AND METHODS: We utilized a dual phased array coil and applied 2D, 3D time of flight (TOF) and turbo spin echo (TSE) sequences with comparison of two lumen signal suppression methods for black blood (BB) TSE imaging including double inversion preparation (DIR) and spatial presaturation pulses. The signal-to-noise ratios (SNR) of healthy carotid vessel walls were compared in 2D and 3D BB TSE acquisitions. The bright and black blood multi-contrast exam was demonstrated for a complex carotid plaque. RESULTS: Contrast-to-noise (CNR) greater than 150 was achieved between the lumen and suppressed background for 3D TOF. For BB, both methods provided sufficient lumen signal suppression but slight residual flow artifacts remained at the bifurcation level. As expected 3D TSE images had higher SNR compared to 2D, but increased motion sensitivity is a significant issue for 3D at high field. For multi-contrast imaging of atherosclerotic plaque, fibrous, calcified and lipid components were resolved. The CNR ratio of fibrous (bright on PDW, T2W) and calcified (dark in T1W, T2W, PDW) plaque components was maximal in the T2W images. The 3D TOF angiogram indicating a 40% stenosis was complemented by 3D multi-planar reformat of BB images that displayed plaque extent. Detection of intimal thickening, the earliest change associated with atherosclerotic progression was observed in BB PDW images at 3.0 T. CONCLUSIONS: High SNR and CNR images have been demonstrated for the healthy and diseased carotid. Improvements in RF coils along with pulse sequence optimization, and evaluation of endogenous and exogenous contrast mechanisms will further enhance carotid imaging at 3.0T.  相似文献   

15.

Purpose:

To measure carotid plaque components using MRI and estimate reliability in the population‐based Atherosclerosis Risk in Communities (ARIC) study.

Materials and Methods:

Contrast‐enhanced high‐resolution (0.51 × 0.58 × 2 mm3) MRI images were acquired through internal (ICA) and common carotid arteries (CCA) of 2066 ARIC participants at four sites. Sixty‐one exams were repeated and 164 pairs had repeated interpretations. Plaque component thicknesses, areas and volumes over eight slices (1.6‐cm segment) were measured. Intraplaque hemorrhage was recorded. Reliability was evaluated by intraclass correlations and κ statistics.

Results:

There were 1769 successful MRI exams (mean age 71 years; 57% females; 81% white; 19% African‐Americans). Repeat scan reliability was highest for CCA lumen area (0.94) and maximum wall thickness (0.89), ICA lumen area (0.89) and maximum wall thickness (0.77) and total wall volume (0.79), and lowest for small structures—core volume (0.30) and mean cap thickness (0.38). Overall reliability was primarily related to reader variability rather than scan acquisition. K's for presence of core, calcification and hemorrhage were fair to good. White men had the thickest plaques (average maximum ICA wall thickness = 2.3 mm) and the most cores (34%).

Conclusion:

The most important limiting factor for MRI measurements of plaque components is reader variability. Measurement error depends largely on the analyzed structure's size. J. Magn. Reson. Imaging 2010; 31: 406–415. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
目的 采用高分辨磁共振成像(HR-MRI)技术分析富脂坏死核心(LRNC)与颈动脉斑块负荷的相关性,并探讨影响LRNC的相关临床因素。 方法 回顾性收集短暂性脑缺血发作或前循环缺血性卒中病人323例,男235例,女88例,平均年龄(61.75±10.64)岁。所有病人在出现症状2周内完成颈动脉HR-MRI检查,并记录病人临床资料。基于HR-MRI影像测量并计算颈动脉斑块负荷指标,包括平均管腔面积(LA)、平均管壁面积(WA)、管壁体积(WV)、平均标准化管壁指数(NWI)、平均及最大管壁厚度(WT)、管腔狭窄程度,识别LRNC、钙化、斑块内出血(IPH),鉴定高危斑块。根据症状侧颈动脉有无LRNC将全部病人分为LRNC(+)组(178例)和LRNC(-)组(145例)。对2组病人颈动脉斑块特征及临床因素进行比较,2组间计量资料比较采用独立样本t检验或Mann-Whitney U检验,2组间计数资料比较采用卡方检验。采用多因素Logistic回归评估影响LRNC的颈动脉斑块负荷指标及相关临床因素。 结果 相比LRNC(-)组,LRNC(+)组男性更多,吸烟、高血压、糖尿病者更多,年龄更大、总胆固醇水平更高(均P<0.05);LRNC(+)组平均LA更小,平均WA、WV、平均NWI更大,最大WT、平均 WT更厚,管腔更狭窄(均P<0.05);IPH、钙化、高危斑块发生率更高(均P<0.05)。多因素Logistic回归分析显示,最大WT是LRNC的独立预测因素(P<0.05);总胆固醇是LRNC的危险因素(β=0.408,P=0.024),高密度脂蛋白胆固醇是LRNC的保护因素(β= -3.145,P=0.045)。 结论 最大WT与LRNC密切关联,总胆固醇、高密度脂蛋白胆固醇对LRNC有重要影响。  相似文献   

17.
A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at the human carotid bifurcation is presented. Three-dimensional (3D) models of the lumen and wall boundaries, from which wall thickness can be measured, were reconstructed from black-blood magnetic resonance imaging (MRI). Along with time-varying inlet/outlet flow rates measured via phase contrast (PC) MRI, the lumen boundary was used as input for computational fluid dynamic (CFD) simulation of the subject-specific flow patterns and wall shear stresses (WSSs). Results from a 59-year-old subject with early, asymptomatic carotid artery disease show good agreement between simulated and measured velocities, and demonstrate a correspondence between wall thickening and low and oscillating shear at the carotid bulb. High shear at the distal internal carotid artery (ICA) was also colocalized with higher WSS; however, a quantitative general relationship between WSS and wall thickness was not found. Similar results were obtained from a 23-year-old normal subject. These findings represent the first direct comparison of hemodynamic variables and wall thickness at the carotid bifurcation of human subjects. The noninvasive nature of this image-based modeling approach makes it ideal for carrying out future prospective studies of hemodynamics and plaque development or progression in otherwise healthy subjects.  相似文献   

18.
目的通过高分辨MRI,探讨患者颈动脉粥样硬化斑块与体质指数的相关性。方法选择行颈动脉磁共振检查的患者64例,将体质指数BMI<24.0kg/m 2患者分为非肥胖组(31例),BMI≥24.0kg/m 2分为肥胖组(33例),比较两组患者颈动脉斑块成分及负荷的差异。结果肥胖组缺血性脑卒中〔21(63.60)vs 11(35.50),P=0.024〕及高血脂〔16(48.50)vs 7(22.60),P=0.031〕患者较非肥胖组多。肥胖组斑块内钙化体积〔(13.32±21.08)mm 3 vs(3.00±11.0)mm 3,P=0.017〕及脂质核体积〔(75.45±123.62)mm 3 vs(18.80±62.75)mm 3,P=0.026〕明显大于非肥胖组。肥胖组与非肥胖组的易损斑块(P=0.021)、斑块最大管壁厚度(P=0.025)、管壁标准化指数(P=0.010)比较,差异有统计学意义。结论高分辨MRI可评估不同体质指数患者颈动脉斑块的稳定性,为肥胖患者病情预测及临床干预提供可靠参考依据。  相似文献   

19.

Purpose:

To examine the feasibility of flow‐independent T2‐prepared inversion recovery (T2IR) black‐blood (BB) magnetization preparation for three‐dimensional (3D) balanced steady‐state free precession (SSFP) vessel wall MRI of the popliteal artery, and to evaluate its performance relative to flow‐dependent double inversion recovery (DIR), spatial presaturation (SPSAT), and motion‐sensitizing magnetization preparation (MSPREP) BB techniques in healthy volunteers.

Materials and Methods:

Eleven subjects underwent 3D MRI at 1.5 Tesla with four techniques performed in a randomized order. Wall and lumen signal‐to‐noise ratio (SNR), wall‐to‐lumen contrast‐to‐noise ratio (CNR), vessel wall area, and lumen area were measured at proximal, middle, and distal locations of the imaged popliteal artery. Image quality scores based on wall visualization and degree of intraluminal artifacts were also obtained.

Results:

In the proximal region, DIR and SPSAT had higher wall SNR and wall‐to‐lumen CNR than both MSPREP and T2IR. In the middle and distal regions, DIR and SPSAT failed to provide effective blood suppression, whereas MSPREP and T2IR provided adequate black blood contrast with comparable wall‐to‐lumen CNR and image quality.

Conclusion:

The feasibility of 3D SSFP imaging of the popliteal vessel wall using flow‐independent T2IR was demonstrated with effective blood suppression and good vessel wall visualization. Although DIR and SPSAT are effective for thin slab imaging, MSPREP and T2IR are better suited for 3D thick slab imaging. J. Magn. Reson. Imaging 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
PURPOSE: To investigate the performance of high-resolution T1-weighted (T1w) turbo field echo (TFE) magnetic resonance imaging (MRI) for the identification of the high-risk component intraplaque hemorrhage, which is described in the literature as a troublesome component to detect. MATERIALS AND METHODS: An MRI scan was performed preoperatively on 11 patients who underwent carotid endarterectomy because of symptomatic carotid disease with a stenosis larger than 70%. A commonly used double inversion recovery (DIR) T1w turbo spin echo (TSE) served as the T1w control for the T1w TFE pulse sequence. The MR images were matched slice by slice with histology, and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of the MR images were calculated. Additionally, two readers, who were blinded for the histological results, independently assessed the MR slices concerning the presence of intraplaque hemorrhage. RESULTS: More than 80% of the histological proven intraplaque hemorrhage could be detected using the TFE sequence with a high interobserver agreement (Kappa = 0.73). The TFE sequence proved to be superior to the TSE sequence concerning SNR and CNR, but also in the qualitative detection of intraplaque hemorrhage. The false positive TFE results contained fibrous tissue and were all located outside the main plaque area. CONCLUSION: The present study shows that in vivo high-resolution T1w TFE MRI can identify the high-risk component intraplaque hemorrhage with a high detection rate in patients with symptomatic carotid disease. Larger clinical trials are warranted to investigate whether this technique can identify patients at risk for an ischemic attack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号