首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
乳化分散法制备聚乳酸微球的研究进展   总被引:6,自引:0,他引:6  
介绍人工合成高分子材料聚乳酸和乙交酯丙交酯共聚物(PLA/PLGA)及PLA/PLGA微球乳化分散制备技术,包括有机溶剂的选择、难溶药物的制备技术、复乳制备技术以及微球表面的乳化剂(PVA)含量的测定方法等.  相似文献   

2.
Fluconazole-loaded PLGA microspheres were prepared by the spray-drying process. The influence of some process parameters on the physical characteristics of the microspheres was evaluated. Neither type nor polymer concentration influenced significantly the mean diameter of the microspheres, their size distribution and encapsulation efficiency of the drug. However, the drug loading greatly affected their size and the physical state in which fluconazole can exist in the matrix of the carriers, and, thus, affected the release rate of the drug. Results obtained by differential thermal analysis and X-ray powder diffraction revealed that at low nominal drug loading, fluconazole was incorporated in an amorphous state or in a molecular dispersion in the matrix of the microspheres and at high nominal drug loading part of the drug was in a crystalline form. Release profiles of fluconazole from the microspheres displayed a biphasic shape. The duration and extent of each phase were affected mainly by polymer nature, drug loading and physical state in which fluconazole existed in the polymeric matrix.  相似文献   

3.
The aim of this work was to examine the immunogenicity of microencapsulated inactivated duck parvovirus in Muscovy duck (Cairina moschata) and goose. Inactivated duck parvovirus suspension was microencapsulated into 14-17 kDa poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA50:50H) by coacervation. The in vitro antigen release from individual and mixed PLA and PLGA50:50H microspheres (MS) was biphasic with an initial lag-phase of approx. 10 days followed by a relatively constant release over additional 12 days. By varying the composition of PLA+PLGA50:50H MS mixtures from 3+1 to 1+3, the release kinetics could be altered and controlled efficiently. The antigen-loaded MS were injected subcutaneously into ducks. The immune response, expressed as virus neutralisation (VN) titres, after single administration of MS was modest, i.e. below 200 over the 6 weeks tested, unless the animals were pre-immunised 3 weeks before injecting the MS. The weak immune response was attributed to the low dose injected and inappropriate antigen release kinetics. With pre-immunised animals, however, the results were encouraging and showed that the encapsulated parvovirus was immunogenic.  相似文献   

4.
Biodegradation and biocompatibility of PLA and PLGA microspheres   总被引:1,自引:0,他引:1  
A fundamental understanding of the in vivo biodegradation phenomenon as well as an appreciation of cellular and tissue responses which determine the biocompatibility of biodegradable PLA and PLGA microspheres are important components in the design and development of biodegradable microspheres containing bioactive agents for therapeutic application. This chapter is a critical review of biodegradation, biocompatibility and tissue/material interactions, and selected examples of PLA and PLGA microsphere controlled release systems. Emphasis is placed on polymer and microsphere characteristics which modulate the degradation behaviour and the foreign body reaction to the microspheres. Selected examples presented in the chapter include microspheres incorporating bone morphogenetic protein (BMP) and leuprorelin acetate as well as applications or interactions with the eye, central nervous system, and lymphoid tissue and their relevance to vaccine development. A subsection on nanoparticles and nanospheres is also included. The chapter emphasizes biodegradation and biocompatibility; bioactive agent release characteristics of various systems have not been included except where significant biodegradation and biocompatibility information have been provided.  相似文献   

5.
A fundamental understanding of the in vivo biodegradation phenomenon as well as an appreciation of cellular and tissue responses which determine the biocompatibility of biodegradable PLA and PLGA microspheres are important components in the design and development of biodegradable microspheres containing bioactive agents for therapeutic application. This chapter is a critical review of biodegradation, biocompatibility and tissue/material interactions, and selected examples of PLA and PLGA microsphere controlled release systems. Emphasis is placed on polymer and microsphere characteristics which modulate the degradation behaviour and the foreign body reaction to the microspheres. Selected examples presented in the chapter include microspheres incorporating bone morphogenetic protein (BMP) and leuprorelin acetate as well as applications or interactions with the eye, central nervous system, and lymphoid tissue and their relevance to vaccine development. A subsection on nanoparticles and nanospheres is also included. The chapter emphasizes biodegradation and biocompatibility; bioactive agent release characteristics of various systems have not been included except where significant biodegradation and biocompatibility information have been provided.  相似文献   

6.
Biodegradable nanoparticles formulated from poly(D,L-lactide-co-glycolide) (PLGA) and polylactide (PLA) polymers are being extensively investigated for various drug delivery applications. In this study, we hypothesize that the solid-state solubility of hydrophobic drugs in polymers could influence their encapsulation and release from nanoparticles. Dexamethasone and flutamide were used as model hydrophobic drugs. A simple, semiquantitative method based on drug-polymer phase separation was developed to determine the solid-state drug-polymer solubility. Nanoparticles using PLGA/PLA polymers were formulated using an emulsion-solvent evaporation technique, and were characterized for size, drug loading, and in vitro release. X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) were used to determine the physical state of the encapsulated drug. Results demonstrated that the solid-state drug-polymer solubility depends on the polymer composition, molecular weight, and end-functional groups (ester or carboxyl) in polymer chains. Higher solid-state drug-polymer solubility resulted in higher drug encapsulation in nanoparticles, but followed an inverse correlation with the percent cumulative drug released. The XRD and DSC analyses demonstrated that the drug encapsulated in nanoparticles was present in the form of a molecular dispersion (dissolved state) in the polymer, whereas in microparticles, the drug was present in both molecular dispersion and crystalline forms. In conclusion, the solid-state drug-polymer solubility affects the nanoparticle characteristics, and thus could be used as an important preformulation parameter.  相似文献   

7.
Interferon-alpha (IFN) was pegylated and encapsulated in biodegradable microspheres to achieve a long-acting formulation. IFN was pegylated with methoxy-polyethylene glycol (mPEG, MW 2000 or 5000). The conjugation procedures were optimized in terms of concentration of the reactants and the pH condition of the medium. The conjugates (IFN-mPEG(2000) and IFN-mPEG(5000)) were characterized using SDS-PAGE, size-exclusion-HPLC (SE-HPLC) and matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectroscopy. The optimized IFN-mPEG conjugates consisted of mono- and multi-pegylated derivatives along with a small amount of native IFN (相似文献   

8.
杨阳  高永良 《中国新药杂志》2007,16(18):1458-1463
聚酯材料因其原料易得、容易加工、生物相容性好、具有可生物降解性等优点,已经成为当今药物载体材料中的一大研究热点。现综合国内外的有关报道对可生物降解聚酯材料作为药物载体制备微球制剂的研究进展进行了综述。针对目前限制聚酯材料微球制剂临床应用存在的问题,从聚合物、药物、制备工艺、附加剂、辐射灭菌5个方面对影响聚乳酸(PLA)和聚乳酸乙醇酸共聚物(PLGA)缓释微球中药物释放的因素进行了重点介绍,为研究聚酯微球中药物的释放提供思路。  相似文献   

9.
缓释微粒给药系统是蛋白质/多肽药物传输系统的一个重要研究方向,聚乳酸和乳酸-羟基乙酸共聚物是制备缓释微球最常用的载体材料。蛋白质/多肽药物聚乳酸/乳酸-羟基乙酸共聚物微球常用的制备方法包括溶剂萃取/挥发法(复乳法)、相分离法和喷雾干燥法。本文总结了微球制备中面临的难点如蛋白质/多肽药物稳定性、包封率、药物突释和药物吸附等问题,并综述了保持药物结构稳定性和生物活性、提高包封率、改善药物释放曲线等微球制备方法和进展。  相似文献   

10.
Poly(lactide) and poly(lactide-co-glycolide) microspheres have been studied for controlled antigen delivery and immune response enhancement for more than a decade. Early developments of such vaccines were basically technology-driven, stemming from the well-established biocompatibility of these polymers in concert with their innate properties to tailor rates of bioerosion and release. More recently, other features have become equally or even more appealing, such as the adjuvancy of such microspheres and their ability to elicit cellular effector responses, so-called cytotoxic T-cell responses, in addition to antibody responses observed already in the very early studies. In this review, we intended to revisit microsphere-based vaccines designed for the parenteral route and attempted to outline major developmental issues, as well as to analyze immunological fundamentals and data associated with antigen delivery by microspheres.  相似文献   

11.
The potential of cyclodextrins to stabilize alpha-chymotrypsin upon encapsulation in Poly(lactic-co-glycolic) acid (PLGA) microspheres using a solid-in-oil-in-water (s/o/w) technique was investigated. Two cyclodextrins, hydroxyl-propyl-beta-cyclodextrin (HPbetaCD) and methyl-beta-cyclodextrin (MbetaCD), one insoluble and the other soluble in methylene chloride, were used. The results demonstrate that HPbetaCD failed to stabilize alpha-chymotrypsin upon encapsulation. Specifically, 19% of the protein was aggregated and the specific activity of the enzyme was reduced to ca. 50% of that prior to encapsulation. In contrast, MbetaCD significantly decreased the formation of aggregates to 3% and the retained specific activity of the enzyme was approximately 90%. The co-lyophilization of alpha-chymotrypsin with MbetaCD prior to encapsulation was a requisite to preserve the protein stability in microspheres. Furthermore, MbetaCD prevented the loss of protein during the preparation of microspheres and the encapsulation efficiency was improved to 90%. Release experiments showed the use of MbetaCD modified the release profile: the burst release decreased from 54% (in the absence of the excipient) to 36%. The results suggest that MbetaCD might be a suitable excipient to improve protein stability in s/o/w encapsulation procedures.  相似文献   

12.
Proteins were precipitated to ensure their stability upon subsequent encapsulation within PLGA microspheres. Spherical, nanosized protein particles were formed by the addition of a salt (sodium chloride) and a water-miscible organic solvent (glycofurol) to protein solutions. Various process parameters were modified to optimize the precipitation efficiency of four model proteins: lysozyme, alpha-chymotrypsin, peroxidase and beta-galactosidase. As monitored by enzymatic activity measurement of the rehydrated particles, conditions to obtain more than 95% of reversible precipitates were defined for each protein. The study of the structure of the rehydrated particles by absorbance spectroscopy, fluorescence spectroscopy and circular dichroism showed an absence of structural-perturbation after precipitation. Protein particles were then microencapsulated within PLGA microspheres using s/o/w technique. The average encapsulation yield was around 80% and no loss of protein activity occurred after the encapsulation step. Additionally, a lysozyme in vitro release study showed that all of the released lysozyme was biologically active. This method of protein precipitation is appropriate for the encapsulation in PLGA microspheres of various proteins without inactivation.  相似文献   

13.
聚乳酸微球生物降解机制和生物相容性研究进展   总被引:9,自引:2,他引:9  
介绍了人工合成高分子材料聚乳酸(PLA)的性质,综述了PLA和乳酸/羟基乙酸共聚物(PLGA)微球的生物降解性和生物相容性。其生物降解为均匀降解,材料相对分子质量及其分布对降解行为有很大影响。注射微球的组织反应分为3个阶段,做组织相容性考察时应注意药物或生物活性物质的细胞毒性、抗原性和愈合作用对组织反应的影响。  相似文献   

14.
目的考察微球载体材料聚乳酸-羟基乙酸共聚物(poly-lactic-co-glycolic acid,PLGA)和聚乳酸(poly(D,L-lactide acid),PLA)的不同封端基团对于包载醋酸曲普瑞林(triptorelin acetate,TA)微球的形态、粒径、包封率、体外释放行为以及体内药效学的影响。方法使用复乳化-溶剂挥发法制备包载TA的PLGA和PLA微球;用扫描电镜观察微球的形态,用激光粒度测定仪测定微球的粒径;建立高效液相色谱法(HPLC)用于TA包封率及体外释放度的测定;采用酶联-免疫吸附法考察了微球经肌肉注射后对正常雄性Sprague Dawley大鼠血浆睾酮浓度的影响。结果制备得到的微球形态为球形或类球形,平均粒径约为30μm。PLGA和PLA,尤其是PLGA,其分子末端基团对TA的包封率和体外释放速率均有影响。酯封端的PLGA微球的包封率显著高于酸封端的微球,而酯封端的释放速度要慢于酸封端。体内药效学实验结果显示,大鼠体内睾酮水平在注射微球后两个小时达到峰值,之后逐渐下降,不同微球之间无显著性差异。结论不同封端结尾的PLGA和PLA对微球形态、包封率和体外释药速率有显著影响,但对正常大鼠体内睾酮水平的影响没有显著性差异。  相似文献   

15.
Critical Determinants in PLGA/PLA Nanoparticle-Mediated Gene Expression   总被引:4,自引:0,他引:4  
PURPOSE: The aim of the study was to determine the critical determinants in nanoparticle-mediated gene transfection. It was hypothesized that different formulation parameters could affect the nanoparticle characteristics and hence its gene transfection. METHODS: Nanoparticles encapsulating plasmid DNA encoding for firefly luciferase were formulated using polylactide (PLA) and poly (D,L-lactide-co-glycolide) (PLGA) polymers of different compositions and molecular weights. A multiple-emulsion solvent-evaporation method with polyvinyl alcohol (PVA) as an emulsifier was used to formulate DNA-loaded nanoparticles. Gene expression of nanoparticles was determined in breast cancer (MCF-7) and prostate cancer (PC-3) cell lines. RESULTS: Nanoparticles formulated using PLGA polymer demonstrated greater gene transfection than those formulated using PLA polymer, and this was attributed to the higher DNA release from PLGA nanoparticles. Higher-molecular-weight PLGA resulted in the formation of nanoparticles with higher DNA loading, which demonstrated higher gene expression than those formulated with lower-molecular-weight PLGA. In addition, the nanoparticles with lower amount of surface-associated PVA demonstrated higher gene transfection in both the cell lines. Higher gene transfection with these nanoparticles was attributed to their higher intracellular uptake and cytoplasmic levels. Further study demonstrated that the molecular weight and the degree of hydrolyzation of PVA used as an emulsifier also affect the gene expression of nanoparticles. CONCLUSIONS: Results thus demonstrate that the DNA loading in nanoparticles and its release, and the surface-associated PVA influencing the intracellular uptake and endolysosomal escape of nanoparticles, are some of the critical determinants in nanoparticle-mediated gene transfection.  相似文献   

16.
To develop a long-acting injectable thienorphine biodegradable poly (d, l-lactide-co-glycolide) (PLGA) microsphere for the therapy of opioid addiction, the effects of formulation parameters on encapsulation efficiency and release behavior were studied. The thienorphine loaded PLGA microspheres were prepared by o/w solvent evaporation method and characterized by HPLC, SEM, laser particle size analysis, residual solvent content and sterility testing. The microspheres were sterilized by gamma irradiation (2.5 kGy). The results indicated that the morphology of the thienorphine PLGA microspheres presented a spherical shape with smooth surface, the particle size was distributed from 30.19?±?1.17 to 59.15?±?0.67μm and the drug encapsulation efficiency was influenced by drug/polymer ratio, homogeneous rotation speed, PVA concentration in the water phase and the polymer concentration in the oil phase. These changes were also reflected in drug release. The plasma drug concentration vs. time profiles were relatively smooth for about 25 days after injection of the thienorphine loaded PLGA microspheres to beagle dogs. In vitro and in vivo correlation was established.  相似文献   

17.
Injectable biodegradable and biocompatible copolymers of lactic and glycolic acid (PLGA) are an important advanced delivery system for week-to-month controlled release of hydrophobic drugs (e.g., from biopharmaceutical classification system class IV), which often display poor oral bioavailability. The basic principles and considerations to develop such microparticle formulations is reviewed here based on a comprehensive study of papers and patents from the beginnings of hydrophobic drug encapsulation in polylactic acid and PLGA up through the very recent literature. Challenges with the diversity of drug properties, microencapsulation methods, and organic solvents are evaluated in light of the precedence of commercialized formulations and with a focus on decreasing the time to lab-scale encapsulation of water-insoluble drug candidates in the early stage of drug development. The influence of key formulation variables on final microparticle characteristics, and how best to avoid undesired microparticle properties, is analyzed mechanistically. Finally, concepts are developed to manage the common issues of maintaining sink conditions for in vitro drug release assays of hydrophobic compounds. Overall, against the backdrop of an increasing number of new, poorly orally available drug entities entering development, microparticle delivery systems may be a viable strategy to rescue an otherwise undeliverable substance.  相似文献   

18.
This study investigates the potentiality of nanosphere colloidal suspensions as sustained release systems for intravenous administration of docetaxel (DTX). Nanospheres were prepared by solvent displacement method using polylactic acids (PLA) at different molecular weight and polylactic-co-glycolic (PLGA) as biodegradable matrices. The systems were characterized by light scattering analysis for their mean size, size distribution and zeta potential and by scanning electron microscopy (SEM) for surface morphology. The average diameters of the nanoparticles ranged from 100 to 200 nm. Negative zeta potential values were observed for all systems, particularly the nanospheres produced with the lowest molecular weight PLA showed a zeta potential value of -28mV. Differential scanning calorimetry analysis (DSC) suggested that DTX was molecularly dispersed in the polymeric matrices. A biphasic release of DTX was observed for all colloidal suspensions, after a burst effect in which about 50% (w/w) of the loaded drug was released a sustained release profile for about 10 days was observed. To evaluate the influence of the polymeric carrier on the interaction of DTX with biological membranes, we performed an in vitro study using lipid vesicles made of dipalmitoylphosphatidylcholine (DPPC) as a biomembrane model. DSC was used as a simple and not invasive technique of analysis. DTX produced a depression of DPPC pretransition peak, no variation of the main phase transition temperature and a significative increase of DeltaH value, showing a superficial penetration of the drug into DPPC bilayer. Kinetic experiments demonstrated that the release process of DTX form nanospheres is affected by the molecular weight of the employed polymers.  相似文献   

19.
The objective of this study was to investigate formulation and process parameters affecting protein encapsulation into PLGA microspheres during an ethyl acetate-based double emulsion microencapsulation process. Lysozyme was used as a model protein throughout this study. An aqueous lysozyme solution was emulsified in ethyl acetate containing 0.6 approximately 1.2 g PLGA75 : 25. The primary emulsion was then transferred quickly to an aqueous phase to make a water-in-oil-in-water emulsion. Ethyl acetate quenching was performed on the double emulsion stirred for 5, 15, 30 or 45 min. The resultant microspheres were further hardened, collected and dried overnight under vacuum. The bicinchoninic acid assay was carried out to determine the quantity of lysozyme present in the aqueous continuous phase and inside the microspheres. While the primary emulsion was stirred without quenching, lysozyme in the inner water phase continued diffusing across the ethyl acetate phase into the aqueous continuous phase. Emulsion droplets were also broken into smaller ones with ongoing stirring; this event also contributed to lysozyme leaking out of the inner water phase. The amount of lysozyme leaching to the aqueous continuous phase ranged from 4.79 +/- 2.1 to 51.9 +/- 5.3% under the experimental condition. Ethyl acetate quenching stopped the primary emulsion droplets from being fragmented into smaller ones and caused PLA75 : 25 precipitation to form microspheres. As a result, the rate of ethyl acetate removal influenced lysozyme encapsulation efficiency, as well as microsphere size. Depending on the timing of ethyl acetate quenching, lysozyme encapsulation efficiencies were found to be 9.89 +/- 4.53 approximately 75.82 +/- 6.55%. Optimization of the onset of ethyl acetate quenching and formulations could permit attainment of a desirable protein encapsulation efficiency.  相似文献   

20.
The purpose of this study was to investigate the effect of three zinc salts (i.e., zinc oxide, zinc carbonate, and zinc acetate) on insulin encapsulation efficiency (EE), stability, and in vitro release kinetics from poly(lactic-co-glycolic acid) (PLGA) microspheres. Microspheres were prepared by water-in-oil-in-water (w/o/w) double emulsion solvent evaporation technique and characterized. Integrity of the encapsulated insulin and stability of the released insulin was assessed using a wide range of comprehensive analytical techniques. The EE of the formulation prepared without the addition of a zinc salt was 69%, the secondary structure of the encapsulated insulin in this formulation was found to be altered. Further, desamido insulin and aggregates were observed during in vitro release. When insulin was encapsulated with a zinc salt, EE increased significantly, secondary structure was unaltered, and no degradation or aggregation products were found. Initial burst release and release kinetics were markedly changed with the addition of zinc salts. More than 87% of the encapsulated insulin was released over a 2-week period with the addition of a zinc salt. In conclusion, zinc salts can be useful to increase the EE and stability of insulin in PLGA microspheres prepared by w/o/w technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号