首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The localization of vacuolar-type H+-ATPase and carbonic anhydrase II (CA II) in rat incisor enamel organs at maturation was examined by light and electron microscopy. The immunoreactivity for both vacuolar-type H+-ATPase and CA II was intense on the ruffled border of ruffle-ended ameloblasts (RA), but moderate at the distal end of smooth-ended ameloblasts (SA). Immuno-gold particles indicated that CA II was not confined to the ruffled border of RA alone, but also distributed in the cytoplasm of RA and SA. These findings suggest that RA may secrete protons produced by CA II via the ruffled border into enamel by active transport of vacuolar-type H+-ATPase. Secreted protons may activate hydrolytic enzymes to degrade the organic components of enamel matrix. Vacuolar-type H+-ATPase on vesicles of SA suggests that a specific configuration of ruffled borders in RA may be formed by the fusion of vesicle membranes in the distal end of cytoplasm of SA.  相似文献   

2.
The aim of the present study was to characterize cells involved in resorption during endochondral bone formation. We investigated whether the cells involved in cartilage breakdown at the epiphyseal/metaphyseal border, i.e., chondroclasts, share the characteristics of bone/cartilage-resorbing osteoclasts at the metaphyseal/diaphyseal border regarding ultrastructural features and functional activity. Morphometric evaluation showed that chondroclasts do not form ruffled borders and clear zones, i.e., well-known resorption characteristics, to the same extent as osteoclasts, present at the lower metaphysis. Instead, chondroclasts tend to express an undifferentiated surface adjacent to the matrix, not structurally different from the basolateral plasma membrane. Tartrate-resistant acid phosphatase (TRAP) was used as a marker for functional activity. Immunohistochemical staining by light microscopy was strong in both chondroclasts and in osteoclasts. Furthermore, in situ hybridization revealed large amounts of TRAP mRNA in chondroclasts as well as in osteoclasts. Ultrastructural immunohistochemistry suggests extensive secretion of the TRAP enzyme in the ruffled border area of both chondroclasts and osteoclasts. Intracellular accumulation was seen particularly in chondroclasts, possibly as a consequence of a relative disinclination to develop a ruffled border. Thus, semiquantitative estimation of TRAP distribution showed an inverse relationship between extracellular and intracellular TRAP in chondroclasts and osteoclasts. These results indicate that chondroclasts and osteoclasts differ, not only with respect to location but possibly also by mode of action. The observed differences may reflect the maturation sequence of these multinucleated cells when associated with different metaphyseal trabecular surfaces. Received: 22 January 1998 / Accepted 8 April 1998  相似文献   

3.
Focusing on resorption processes, we have extended our previous studies on chondroclasts and osteoclasts in normally developing tissues, using a model of nutritionally induced vitamin D-deficiency rickets. To analyze the resorption process, we investigated the matrix-resorbing cells in this modified and poorly mineralized tissue regarding morphological features and expression of tartrate-resistant acid phosphatase (TRAP) at the subcellular level. Our goal was to test the hypotheses that initiation of resorption is impaired with unmineralized matrix, and that such alterations involve changes in the subcellullar distribution of TRAP, implicating a role for this enzyme in the resorption process. Our results reveal distinctly different morphological appearances of clast-like cells in rickets compared with normal osteoclasts and chondroclasts. Ordinary resorption structures of osteoclasts and chondroclasts at the cell-matrix border, i.e., ruffled borders and clear zones, are profoundly altered in favor of a less well-defined intermediate zone. TRAP distribution at the subcellullar level is also clearly different from that in osteoclasts and chondroclasts from normal rodents, with impaired secretion; consequently, the enzyme is unable to function in the matrix outside the ruffled border. Our ultrastructural observations demonstrate that in rickets, the clasts are incapable of degrading the poorly mineralized cartilage and bone efficiently. Rachitic clasts seem to be recruited to the matrix surface and interaction between cell and matrix is also initiated, but definitive resorption structures at the cell-matrix border are not normally developed. Whether resorption is inhibited by the mere lack of mineral or mineral-associated proteins, or by other mechanisms remains to be settled. Received: 5 January 2000 / Accepted: 12 May 2000 / Online publication: 2 November 2000  相似文献   

4.
We compared the distribution of a cysteine proteinase inhibitor, cystatin C, with that of cathepsin K in osteoclasts of the mouse tibia by immunolight and immunoelectron microscopy. Light microscopically, strong immunoreactivity for cystatin C was found extracellularly along the resorption lacuna and intracellularly in the organelles of osteoclasts. In serial sections, various patterns of cystatin C and cathepsin K localization were seen, specifically: (1) some resorption lacuna were positive for both cystatin C and cathepsin K; (2) others were positive for either cystatin C or cathepsin K, but not both; and (3) some lacuna were negative for both. In osteoclasts, the localization of cystatin C was similar to that of cathepsin K. Furthermore, cystatin C immunoreactivity was detected in preosteoclasts and osteoblasts, whereas cathepsin K was seen only in preosteoclasts. Electron microscopically, cystatin C immunoreactive products were found in the rough endoplasmic reticulum (ER), Golgi apparatus, vesicles, granules, and vacuoles of osteoclasts. These cystatin C-positive vesicles had fused or were in the process of fusion with the ampullar vacuoles (extracellular spaces) containing cystatin C-positive, fragmented, fibril-like structures. The extracellular cystatin C was deposited on and between the cytoplasmic processes of ruffled borders, and on and between type I collagen fibrils. In the basolateral region of osteoclasts, cystatin C-positive vesicles and granules also fused with vacuoles that contained cystatin C-positive or negative fibril-like structures. These results indicate that osteoclasts not only synthesize and secrete cathepsin K from the ruffled border into the bone resorption lacunae, but also a cysteine proteinase inhibitor, cystatin C. Therefore, it is suggested that cystatin C regulates the degradation of bone matrix by cathepsin K, both extracellularly and intracellularly.  相似文献   

5.
Bone homeostasis requires stringent regulation of osteoclasts, which secrete proteolytic enzymes to degrade the bone matrix. Despite recent progress in understanding how bone resorption occurs, the mechanisms regulating osteoclast secretion, and in particular the trafficking route of cathepsin K vesicles, remain elusive. Using a genetic approach, we describe the requirement for protein kinase C–delta (PKCδ) in regulating bone resorption by affecting cathepsin K exocytosis. Importantly, PKCδ deficiency does not perturb formation of the ruffled border or trafficking of lysosomal vesicles containing the vacuolar‐ATPase (v‐ATPase). Mechanistically, we find that cathepsin K exocytosis is controlled by PKCδ through modulation of the actin bundling protein myristoylated alanine‐rich C‐kinase substrate (MARCKS). The relevance of our finding is emphasized in vivo because PKCδ?/? mice exhibit increased bone mass and are protected from pathological bone loss in a model of experimental postmenopausal osteoporosis. Collectively, our data provide novel mechanistic insights into the pathways that selectively promote secretion of cathepsin K lysosomes independently of ruffled border formation, providing evidence of the presence of multiple mechanisms that regulate lysosomal exocytosis in osteoclasts. © 2012 American Society for Bone and Mineral Research.  相似文献   

6.
Maturation stage ameloblasts of rodents express vacuolar type-H-ATPase in the ruffled border of their plasma membrane in contact with forming dental enamel, similar to osteoclasts that resorb bone. It has been proposed that in ameloblasts this v-H-ATPase acts as proton pump to acidify the enamel space, required to complete enamel mineralization. To examine whether this v-H-ATPase in mouse ameloblasts is a proton pump, we determined whether these cells express the lysosomal, T-cell, immune regulator 1 (Tcirg1, v-H-Atp6v(0)a(3)), which is an essential part of the plasma membrane proton pump that is present in osteoclasts. Mutation of this subunit in Tcirg1 null (or oc/oc) mice leads to severe osteopetrosis. No immunohistochemically detectable Tcirg1 was seen in mouse maturation stage ameloblasts. Strong positive staining in secretory and maturation stage ameloblasts however was found for another subunit of v-H-ATPase, subunit b, brain isoform (v-H-Atp6v(1)b(2)). Mouse osteoclasts and renal tubular epithelium stained strongly for both Tcirg1 and v-H-Atp6v(1)b(2). In Tcirg1 null mice osteoclasts and renal epithelium were negative for Tcirg1 but remained positive for v-H-Atp6v(1)b(2). The bone in these mutant mice was osteopetrotic, tooth eruption was inhibited or delayed, and teeth were often morphologically disfigured. However, enamel formation in these mutant mice was normal, ameloblasts structurally unaffected and the mineral content of enamel similar to that of wild type mice. We concluded that Tcirg1, which is essential for osteoclasts to pump protons into the bone, is not appreciably expressed in maturation stage mouse ameloblasts. Our data suggest that the reported v-H-ATPase in maturation stage ameloblasts is not the typical osteoclast-type plasma membrane associated proton pump which acidifies the extracellular space, but rather a v-H-ATPase potentially involved in intracellular acidification.  相似文献   

7.
The localization of cathepsin K protein in mouse osteoclasts was examined by immunolight and immunoelectron microscopy using the avidin-biotin-peroxidase complex method with anti-cathepsin K (mouse) antibody. With light microscopy, a strong immunoreaction for cathepsin K was found extracellularly along the bone and cartilage resorption lacunae and detected intracellularly in vesicles, granules, and vacuoles throughout the cytoplasm of multinuclear osteoclasts and chondroclasts attached to the surface of the bone or cartilage. Mononuclear cells, probably preosteoclasts, some distance from the bone also contained a few cathepsin K-positive vesicles and granules. Cathepsin K was sometimes found in the cisternal spaces of the rough endoplasmic reticulum and vesicles of the Golgi apparatus with electron microscopy of the basolateral region of the osteoclasts. Cathepsin K-positive vesicles and granules as lysosomal compartments were present in various stages of fusion with vacuoles as endosomal compartments that contained fragmented cathepsin K-negative fibril-like structures. Some of the vacuoles (endolysosomes), which seemed to be formed by this process of fusion, contained cathepsin K-positive vesicles and fibril-like structures that did not show the regular cross striation of type I collagen fibrils. In the apical region of the osteoclasts, cathepsin K-positive vesicles and pits had already fused with or were in the process of fusing with the ampullar extracellular spaces. There were large deposits of cathepsin K on fragmented fibril-like structures without regular cross striation in the extracellular spaces, as well as on and between the cytoplasmic processes of the ruffled border. There were also extensive deposits of cathepsin K on the type I collagen fibrils with cross striation in the bone resorption lacunae. Osteoblasts and osteocytes were negative for cathepsin K. In the immunocytochemical controls, no immunoreaction was found in the osteoclasts or preosteoclasts, or on the collagen fibrils in the resorption lacunae. The results indicate that cathepsin K is produced in mature osteoclasts attached to the bone and secreted into the bone resorption lacunae. The findings suggest that cathepsin K participates in the extracellular degradation of collagen fibrils in the resorption lacunae and in the subsequent degradation of the fragmented fibrils in the endolysosomes. It is also suggested that cathepsin K degrades the organic cartilage matrix.  相似文献   

8.
Summary Rat incisor maturation ameloblasts were studied to determine the effect of injected cobalt on the distribution and intensity of Ca2+−Mg2+ ATPase. The dosage of cobalt utilized temporarily inhibits enamel mineralization and alters amelo-blast-associated calcium. A modified Wachstein-Meisel medium containing cerium as the capturing ion was used to localize Ca2+−Mg2+ ATPase cytochemically. The distribution and intensity of the reaction product in normal maturation ameloblasts was, as previously reported, primarily in association with the plasma membranes. The lateral cell membranes of both smooth-ended and ruffle-ended ameloblasts were reactive. The ruffled border region contained the heaviest concentration of reaction product. Although cobalt did not alter the general pattern of distribution of the reaction product in either cell type, in all regions of activity the intensity was noticeably increased. Cells modulating from smooth-ended to ruffle-ended, ameloblasts and under the influence of cobalt exhibited an irregular dense layer along the enamel surface, and large focal accumulations of electron-dense material in the various extracellular compartments. This may indicate interference with a putative resorptive activity of these cells.  相似文献   

9.
Lysosomal trafficking and protease exocytosis in osteoclasts are essential for ruffled border formation and bone resorption. Yet the mechanism underlying lysosomal trafficking and the related process of exocytosis remains largely unknown. We found ATP6ap1 (Ac45), an accessory subunit of vacuolar-type H(+)-ATPases (V-ATPases), to be highly induced by receptor activator for nuclear factor kappa B ligand (RANKL) in osteoclast differentiation. Ac45 knockdown osteoclasts formed normal actin rings, but had severely impaired extracellular acidification and bone resorption. Ac45 knockdown significantly reduced osteoclast formation. The decrease in the number of osteoclasts does not result from abnormal apoptosis; rather, it results from decreased osteoclast precursor cell proliferation and fusion, which may be partially due to the downregulation of extracellular signal-regulated kinase (ERK) phosphorylation and FBJ osteosarcoma oncogene (c-fos), nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), and "transmembrane 7 superfamily member 4" (Tm7sf4) expression. Notably, Ac45 knockdown osteoclasts exhibited impaired lysosomal trafficking and exocytosis, as indicated by the absence of lysosomal trafficking to the ruffled border and a lack of cathepsin K exocytosis into the resorption lacuna. Our data revealed that the impaired exocytosis is specifically due to Ac45 deficiency, and not the general consequence of a defective V-ATPase. Together, our results demonstrate the essential role of Ac45 in osteoclast-mediated extracellular acidification and protease exocytosis, as well as the ability of Ac45 to guide lysosomal intracellular trafficking to the ruffled border, potentially through its interaction with the small guanosine-5'-triphosphatase (GTPase) Rab7. Our work indicates that Ac45 may be a novel therapeutic target for osteolytic disease.  相似文献   

10.
Summary The distribution of45Ca,32PO4,22Na, and calcein in the freeze-dried sections of rat lower incisor was examined. Also, the ratio of45Ca to32PO4 transported into the enamel at various developmental stages was studied after the simultaneous injection of45Ca and32PO4. The distribution of calcein fluorescence indicated the presence of an extracellular route from capillary to enamel in the areas of both the secretory and smooth-ended ameloblasts. Autoradiograms showed that the45Ca incorporation into the enamel in the smooth-ended ameloblast region was higher than that into the secretory enamel, and a remarkably high incorporation was observed in the enamel of the apical two-thirds of the ruffle-ended ameloblast region. Although the32P incorporation into the enamel of the smooth- and ruffle-ended ameloblast region was higher than in the secretory enamel, the differences between these two regions were not so evident as that observed in the case of45Ca. The high labeling of45Ca and22Na was observed in the apical two-thirds of the ruffle-ended ameloblasts. The45Ca/32PO4 ratio in the secretory enamel was significantly lower than that in the blood, but in the enamel of the smooth-ended ameloblast region the ratio was not significantly lower. Contrarily, the ratio in the enamel of the ruffle-ended ameloblast region was much higher than that in blood. These results indicate that the mode of transport of these ions into enamel is altered in relation to the morphological changes of the ameloblasts.  相似文献   

11.
Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast‐mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real‐time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP‐2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP‐2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP‐2 mediated, clathrin‐dependent endocytosis, thus implying the likelihood of specific membrane‐bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis‐related gene products is also upregulated during maturation including: lysosomal‐associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H+ transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H+ transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage‐sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63‐null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63‐null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast‐like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP‐2 and clathrin subunits, further supporting the existence of a membrane‐bound receptor‐regulated pathway for the endocytosis of enamel matrix proteins. These data together define an endocytotic pathway likely used by ameloblasts to remove the enamel matrix during enamel maturation. © 2013 American Society for Bone and Mineral Research.  相似文献   

12.
Summary The enamel organ of the growing rat incisor was fixed with a mixture of formaldehyde and glutaraldehyde and processed for ultracytochemical demonstration of Ca- and Mg-activated membrane ATPase by a one-step lead technique at alkaline pH. To inhibit nonspecific alkaline phosphatase, 5 mM levamisole was added to the incubation media. Intense Ca- and Mg-ATPase activity was demonstrated in the cell surfaces of the secretory ameloblasts, except at the proximal and distal junctional complexes and the gap junctions in the lateral and basal cell surfaces. Deep plasma membrane invaginations at the proximal and distal parts of Tomes processes facing interrod- and rod-enamel growth regions exhibited the strongest enzymatic reaction. Mg-ATPase activity was also shown to be present in the plasma membranes of secretory ameloblasts but it was less intense than Ca-ATPase. Except for a slight reaction in the Golgi membranes, all other cell organelles of the secretory ameloblasts and the adjacent enamel matrix were free of enzymatic reaction. However, when the tissues were incubated in media lacking levamisole, a prominent enzymatic reaction was observed in the newly secreted enamel matrix of the rod and interrod growth regions as well as on the plasma membranes of the cells. In maturation ameloblasts of both ruffleended and smooth-ended types, a weak reaction for Ca- and Mg-ATPase was restricted to basal cell surfaces facing the papillary cell layer. In tissues incubated in media lacking levamisole, a variable deposition of reaction products was observed in the Golgi membranes, mitochondrial membranes, tubular elements of smooth endoplasmic reticulum in the ruffled border zone, and along the plasma membranes of the ruffled border. Throughout the secretory and maturation stages, a moderate and/or weak enzymatic reaction for both Ca- and Mg-ATPase was seen in the plasma membranes of the cells of the stratum intermedium and the papillary layer when incubated in media with levamisole. Omission of substrate ATP and/or the enzyme activator CaCl2 from the incubation media for Ca-ATPase produced a negative reaction in the tissues examined. When the calmodulin blocker trifluoperazine was administered to the rats intravenously, Ca-ATPase activity was almost completely abolished from the plasma membranes of secretory ameloblasts, but not of other cell types.  相似文献   

13.
14.
Summary Acid phosphatase was localized in rat incisor ameloblasts without prior decalcification. Whenβ-glycerophosphate was used as the substrate, an intense reaction was observed in the supranuclear region of the secretory ameloblasts. But the reaction was dramatically reduced at the transitional stage and was very weak in the maturation ameloblasts. Whenp-nitrophenylphosphate was the substrate, the reaction product was consistently seen in the Golgi cisternae and the vesicular components of the ameloblasts at all stages of enamel development. These observations suggest that there are two acid phosphatases in ameloblasts. One is in the secretory ameloblasts and the other in the transition and maturation ameloblasts. X-ray micro-analyses for Fe and Pb showed that Fe and acid phosphatase were in the ferritin-containing vesicles at the later stage of enamel maturation. This evidence suggests that ferritin is digested in these vesicles for the release of the Fe pigment to the enamel. An increase in the number of intercellular bridges between ameloblasts was correlated with the dramatic decrease in height of ameloblasts at the pigment release stage. The ameloblast membranes were acid phosphatase positive at the intercellular bridges whenp-nitrophenylphosphate was the substrate. This activity may be involved in the reduction in the surface area of the ameloblast membranes.  相似文献   

15.
Cathepsin K is a member of the papain superfamily of cysteine proteases and has been proposed to play a pivotal role in osteoclast-mediated bone resorption. We have developed a sensitive cytochemical assay to localize and quantify osteoclast cathepsin K activity in sections of osteoclastoma and human bone. In tissue sections, osteoclasts that are distant from bone express high levels of cathepsin K messenger RNA (mRNA) and protein. However, the majority of the cathepsin K in these cells is in an inactive zymogen form, as assessed using both the cytochemical assay and specific immunostaining. In contrast, osteoclasts that are closer to bone contain high levels of immunoreactive mature cathepsin K that codistributes with enzyme activity in a polarized fashion toward the bone surface. Polarization of active enzyme was clearly evident in osteoclasts in the vicinity of bone. The osteoclasts apposed to the bone surface were almost exclusively expressing the mature form of cathepsin K. These cells showed intense enzyme activity, which was polarized at the ruffled border. These results suggest that the in vivo activation of cathepsin K occurs intracellularly, before secretion into the resorption lacunae and the onset of bone resorption. The processing of procathepsin K to mature cathepsin K occurs as the osteoclast approaches bone, suggesting that local factors may regulate this process.  相似文献   

16.
Fracture repair provides an interesting model for chondrogenesis and osteogenesis as it recapitulates in an adult organism the same steps encountered during embryonic skeletal development and growth. The fracture callus is not only a site of rapid production of cartilage and bone, but also a site of extensive degradation of their extracellular matrices. The present study was initiated to increase our understanding of the roles of different proteolytic enzymes, cysteine cathepsins B, H, K, L, and S, and matrix metalloproteinases (MMPs) 9 and 13, during fracture repair, as this aspect of bone repair has previously received little attention. Northern analysis revealed marked upregulation of cathepsin K, MMP-9, and MMP-13 mRNAs during the first and second weeks of healing. The expression profiles of these mRNAs were similar with that of osteoclastic marker enzyme tartrate-resistant alkaline phosphatate (TRAP). The changes in the mRNA levels of cathepsins B, H, L, and S were smaller when compared with those of the other enzymes studied. Immunohistochemistry and in situ hybridization confirmed the predominant localization of cathepsin K and MMP-9 and their mRNA in osteoclasts and chondroclasts at the osteochondral junction. MMP-13 was present in osteoblasts and individual hypertrophic chondrocytes near the cartilage-bone interphase. In cartilaginous callus, the expression of cathepsins B, H, L, and S was mainly related to chondrocyte hypertrophy. During bone remodeling both osteoblasts and osteoclasts contained these cathepsins. The present data demonstrate that degradation and remodeling of extracellular matrices during fracture healing involves activation of MMP-13 production in hypertrophic chondrocytes and osteoblasts, and cathepsin K and MMP-9 production in osteoclasts and chondroclasts. Received: 2 February 2000 / Accepted: 25 May 2000 / Online publication: 2 November 2000  相似文献   

17.
A basement membrane-like structure associated with the maturation stage ameloblasts of the monkey (Macaca fuscata) tooth germ was examined with high resolution electron microscopy. The tissue was prepared either with or without demineralization. This structure was composed of a lamina lucida-like (lamina lucida) and lamina densa-like (lamina densa) structure. The latter was made up of a fine ``cord' network, the major constituent of the basement membrane. It was closely associated with the third layer of a 200 nm wide looser cord network. In specimens without demineralization the third layer and a part of the lamina densa were calcified, and it formed the edge of the enamel. This particular area had a higher electron density, and the size, shape, and arrangement of mineral crystals were different from those of the rest of the enamel. Also, mineralization appeared to be proceeding along the cords. These observations indicate that this dense layer is a highly specialized basement membrane which mediates the firm association of maturation stage ameloblasts with the enamel by means of the mineralization of a part of this basement membrane itself which becomes integrated as a part of the enamel. Also, this highly specialized manner of association is favorable with the reported control of the loss of organic substances in the maturing enamel by maturation stage ameloblasts. Received: 15 December 1998 / Accepted: 30 September 1999  相似文献   

18.
Nakamura H  Sato G  Hirata A  Yamamoto T 《BONE》2004,34(1):48-56
Matrix metalloproteinase (MMP)-13 (an interstitial collagenase also called collagenase 3) is involved in degradation of extracellular matrix in various tissues. Using immunohistochemistry and Western blotting, we investigated localization of MMP-13 in rat tibia, to clarify the role of MMP-13 in bone resorption. MMP-13 reactivity was mainly seen on bone surfaces under osteoclasts, and in some osteocytes and their lacunae near osteoclasts. However, immunoreactivity was not seen in chondrocytes or osteoclasts. MMP-13 was also localized on cement lines in the epiphysis. In the growth plate erosion zone, perivascular cells showed MMP-13 reactivity. Immunoelectron microscopy revealed that MMP-13 was localized on the bone surfaces, under the ruffled borders and some clear zones of osteoclasts. Gold-labeled MMP-13 was closely associated with collagen fibrils. Gold labeling was also detected in Golgi apparatus of osteocytes adjacent to osteoclasts and bone lining cells. Western blotting showed that MMP-13 was mainly associated with mineralized bone matrix. These findings suggest that MMP-13 synthesized and secreted by osteoblast-lineage cells is localized under the ruffled borders of osteoclasts. MMP-13 may play an important role in degradation of type I collagen in bone matrix, acting in concert with cathepsin K and MMP-9 produced by osteoclasts. MMP-13 in perivascular cells may be involved in removal of cartilage matrix proteins such as type II collagen and aggrecan.  相似文献   

19.
Osteoclastic bone degradation involves the activity of cathepsin K. We found that in addition to this enzyme other, yet unknown, cysteine proteinases participate in digestion. The results support the notion that osteoclasts from different bone sites use different enzymes to degrade the collagenous bone matrix. INTRODUCTION: The osteoclast resorbs bone by lowering the pH in the resorption lacuna, which is followed by secretion of proteolytic enzymes. One of the enzymes taken to be essential in resorption is the cysteine proteinase, cathepsin K. Some immunolabeling and enzyme inhibitor data, however, suggest that other cysteine proteinases and/or proteolytic enzymes belonging to the group of matrix metalloproteinases (MMPs) may participate in the degradation. In this study, we investigated whether, in addition to cathepsin K, other enzymes participate in osteoclastic bone degradation. MATERIALS AND METHODS: In bones obtained from mice deficient for cathepsin K, B, or L or a combination of K and L, the bone-resorbing activity of osteoclasts was analyzed at the electron microscopic level. In addition, bone explants were cultured in the presence of different selective cysteine proteinase inhibitors and an MMP inhibitor, and the effect on resorption was assessed. Because previous studies showed differences in resorption by calvarial osteoclasts compared with those present in long bones, in all experiments, the two types of bone were compared. Finally, bone extracts were analyzed for the level of activity of cysteine proteinases and the effect of inhibitors hereupon. RESULTS: The analyses of the cathepsin-deficient bone explants showed that, in addition to cathepsin K, calvarial osteoclasts use other cysteine proteinases to degrade bone matrix. It was also shown that, in the absence of cathepsin K, long bone osteoclasts use MMPs for resorption. Cathepsin L proved to be involved in the MMP-mediated resorption of bone by calvarial osteoclasts; in the absence of this cathepsin, calvarial osteoclasts do not use MMPs for resorption. Selective inhibitors of cathepsin K and other cysteine proteinases showed a stronger effect on calvarial resorption than on long bone resorption. CONCLUSIONS: Our findings suggest that (1) cathepsin K-deficient long bone osteoclasts compensate the lack of this enzyme by using MMPs in the resorption of bone matrix; (2) cathepsin L is involved in MMP-mediated resorption by calvarial osteoclasts; (3) in addition to cathepsin K, other, yet unknown, cysteine proteinases are likely to participate in skull bone degradation; and finally, (4) the data provide strong additional support for the existence of functionally different bone-site specific osteoclasts.  相似文献   

20.
The relationship between changes in medium phosphate concentration and three indices of cell-mediated resorption in fetal rat bone cultures—calcium release, the activity of the lysosomal enzyme β-glucuronidase in the medium, and the morphology of osteoclasts—has been investigated. Bones treated with either 1 mM or 4 mM phosphate, with or without parathyroid hormone, were examined. After 2 h of culture we found the predominant effect of changes in medium phosphate to be on non-cell-mediated resorption. However, after 24 h changes in medium phosphate affected both cell-mediated and non-cell-mediated resorptive mechanisms. The 24 h effects of phosphate were not associated with either a change in the activity of β-glucuronidase in the medium or in the area of the ruffled border of osteoclasts, but 4 mM phosphate did prevent parathyroid hormone from increasing the area of the clear zone of osteoclasts. These results imply that changes in medium phosphate alter cell-mediated resorption by affecting mechanisms that are independent of increases in β-glucuronidase activity or changes in the ruffled border of osteoclasts but that may involve effects on the clear zone of osteoclasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号