首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New molybdenum disulfide (MoS2)-based core–shell nanocomposite materials were successfully prepared through the self-assembly of mussel-inspired chemistry. Characterization by Fourier transform infrared, thermogravimetric analysis, scanning electron microscope and transmission electron microscopy revealed that the surface of the flaked MoS2 was homogeneously coated with a thin layer of polydopamine (PDA). Dye adsorption performances of the synthesized MoS2–PDA nanocomposites were investigated at different pH values and reaction times. Compared with pure MoS2 nanosheets, the obtained core–shell nanocomposites showed elevated adsorption performances and high stability, indicating their potential applications in wastewater treatment and composite materials.

New core–shell MoS2–PDA nanocomposites are prepared via mussel-inspired chemistry and a simple interfacial self-assembly process, demonstrating potential applications in wastewater treatment and self-assembled core–shell composite materials.  相似文献   

2.
As a typical transition metal dichalcogenide (TMD), molybdenum disulphide (MoS2) has become one of the most promising anode materials for lithium-ion batteries (LIBs) due to its desirable electrochemical properties. But the development of commercial MoS2 is limited by the problem of agglomeration. Thus, the production of MoS2 nanosheets with few (<10) layers is highly desired but remains a great challenge. In this work, a facile and scalable approach is developed to prepare large-flake, few-layer (4–8) MoS2 nanosheets with the assistance of ultrasonics. Simultaneously, the as-prepared MoS2 nanosheets and commercial bulk MoS2 were analysed under multiple spectroscopic techniques and a series of electrochemical tests to understand the dependence of electrochemical performance on structural properties. When used as anode materials for LIBs, the obtained MoS2 nanosheets provide a reversible capacity of 716 mA h g−1 at 100 mA g−1 after 285 cycles, and demonstrated an excellent capacity retention rate of up to 80%. Compared with that of commercial MoS2 (14.8%), the capacity retention rate of our MoS2 nanosheets has a significant improvement. This work explored the ability of few-layered MoS2 nanosheets in the field of LIBs while suggesting the commercialization of the MoS2 by an ultrasonicated ball milling exfoliation technique.

A facile and scalable approach is developed to prepare large-flake, few-layer (4–8) MoS2 nanosheets with the assistance of ultrasonics.  相似文献   

3.
Edge-rich active sites of ultrathin layered molybdenum disulphide (MoS2) nanosheets were synthesized by a hydrothermal method. The effect of pH on the formation of MoS2 nanosheets and their photocatalytic response have been investigated. Structural and elemental analysis confirm the presence of S–Mo–S in the composition. Morphological analysis confirms the presence of ultrathin layered nanosheets with a sheet thickness of 10–28 nm at pH 1. The interplanar spacing of MoS2 layers is in good agreement with the X-ray diffraction and high-resolution transmission electron microscopy results. A comparative study of the photocatalytic performance for the degradation of methylene blue (MB) and rhodamine B (RhB) by ultrathin layered MoS2 under visible light irradiation was performed. The photocatalytic activity of the edge-rich ultrathin layered nanosheets showed a fast response time of 36 min with the degradation rate of 95.3% of MB and 41.1% of RhB. The photocatalytic degradation of MB was superior to that of RhB because of the excellent adsorption of MB than that of RhB. Photogenerated superoxide radicals were the key active species for the decomposition of organic compounds present in water, as evidenced by scavenger studies.

Edge-rich active sites of ultrathin layered molybdenum disulphide (MoS2) nanosheets were synthesized by a hydrothermal method.  相似文献   

4.
Molybdenum disulfide (MoS2) nanosheets, due to having a highly active nature, being low cost and having unique physical and chemical properties, have shown their efficacy in the catalytic reduction of nitroarenes. Doping of transition metal ions in molybdenum disulfide (MoS2) nanosheets is a well-known strategy to enhance their catalytic efficiency for the reduction of nitroarenes, however, finding the optimum dopant amount is still a subject of ongoing research. Herein, we have synthesized few-layered cobalt (Co) doped MoS2 nanosheets with different cobalt content (2%, 4%, 6% and 8%) through the solvothermal approach, taking sodium molybdate dihydrate (Na2MoO4·2H2O), thiourea (CH4N2S) and cobalt acetate tetrahydrate [Co(CH3COO)2·4H2O] as precursors and their catalytic performance has been affirmed by monitoring the reduction of p-nitrophenol by NaBH4 in real time using UV-visible absorption spectroscopy. The 6% Co doped MoS2 nanosheets have exhibited superior catalytic activity with a pseudo-first order rate constant of 3.03 × 10−3 s−1 attributed to the abundant defects in the active edge sites having a dominant metallic 1T phase with Co ion activated defective basal planes, sulphur (S) edges, synergistic structural and electronic modulation between MoS2 and Co ions and enhanced electron transfer assisted through redox cycling in the active sites. An attempt has also been made to study the manipulation of structural and optical properties with cobalt doping in MoS2 nanosheets to establish a correlation between the catalytic efficiency and dopant content. This study demonstrates that proper tuning of Co doping in MoS2 nanosheets paves the way in searching for a potential alternative of a noble metal catalyst for the catalytic reduction of nitroarenes.

The optimal cobalt (6% Co) doped MoS2 catalyst has shown the highest catalytic activity due to the presence of abundant defects in the active edge sites, having dominant metallic 1T phase with Co ion activated defective basal planes.  相似文献   

5.
MoS2 and MoS2/carbon allotrope (MoS2/C) composites for use as anodes in supercapacitors were prepared via a facile hydrothermal method. In this study, we report the effects of various carbon-based materials (2D graphene nanosheet (GNS), 1D carbon nanotube (CNT), and 0D nano carbon (NC)) on the electrochemical performances. Among all nanocomposites studied, MoS2/CNT exhibited the best electrochemical performance. Specifically, the MoS2/CNT composite exhibits remarkable performances with a high specific capacitance of 402 F g−1 at a current density of 1 A g−1 and an outstanding cycling stability with 81.9% capacitance retention after 10 000 continuous charge–discharge cycles at a high current density of 1 A g−1, making it adaptive for high-performance supercapacitors. The superiority of MoS2/CNT was investigated by field emission scanning electron microscopy and transmission electron microscopy, which showed that MoS2 nanosheets were uniformly loaded into the three-dimensional interconnected network of nanotubes, providing an excellent three dimensional charge transfer network and electrolyte diffusion channels while effectively buffering the collapse and aggregation of active materials during charge–discharge processes. Overall, the MoS2/CNT nanocomposite synthesized by a simple hydrothermal process presents a new and promising candidate for high-performance anodes for supercapacitors.

The effect of carbon supports on the electrochemical performance of MoS2 nanosheets for supercapacitor applications was investigated.  相似文献   

6.
A novel colorimetric platform based on nano-composites of two-dimensional (2D) molybdenum disulfide nanosheets (MoS2 NSs) and one-dimensional (1D) carbon nanotubes (CNTs), called 2D–1D MoS2-CNT nanozyme, was fabricated for the selective and sensitive determination of hydrogen peroxide (H2O2) in soda water. The MoS2-CNT nanozyme was synthesized through a one-step solvothermal reduction method. The introduced CNTs could effectively prevent the stacking of MoS2 nanosheets (NSs) and not only expanded the interlayer distance of MoS2 NSs from 0.620 nm to 0.710 nm but also improved their specific surface. Under acidic conditions, the as-prepared 2D–1D MoS2-CNT nanozymes could oxidize the colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to blue-oxidized TMB (oxTMB) in the presence of H2O2, resulting in enhanced peroxidase-like (POD-like) activity. The kinetic study showed that MoS2-CNT nanozyme had stronger catalytic activity than natural horseradish peroxidase (HRP). The linear range for H2O2 colorimetric determination was 5.00–500 μmol L−1 with a limit of detection (LOD) of 1.40 μmol L−1. Furthermore, the established determination method was applied to actual samples and the recoveries of H2O2 spiked in soda water were in the range of 92.3–107%, showing feasibility for the analysis of food.

A novel colorimetric platform based on 2D–1D MoS2-CNT nanozymes, was fabricated for the selective and sensitive determination of hydrogen peroxide (H2O2) in soda water.  相似文献   

7.
In this work, an MoSx/g-C3N4 composite photocatalyst was successfully fabricated by a sonochemical approach, where amorphous MoSx was synthesized using a hydrothermal method with Na2MoO4·H2O, H4SiO4(W3O9)4 and CH3CSNH2 as precursors, and g-C3N4 nanosheets were produced using a two-step thermal polycondensation method. The hydrogen-evolution performance of the MoSx/g-C3N4 composite was tested under visible light. The results show that the H2-evolution rate of the MoSx/g-C3N4 (7 wt%) photocatalyst reaches a maximum value of 1586 μmol g−1 h−1, which is about 70 times that of pure g-C3N4 nanosheets. The main reason is that amorphous MoSx forms intimate heterojunctions with g-C3N4 nanosheets, and the introduction of MoSx into g-C3N4 nanosheets not only enhances the ability to convert H+ into H2, but also promotes the separation of photoinduced electron–hole pairs for the photocatalyst. BET analysis shows that the specific surface area and pore volume of g-C3N4 are decreased in the presence of MoSx. XPS analysis manifests that MoSx provides a number of active sites. Mott–Schottky plots show that the conduction band of MoSx (−0.18 V vs. EAg/AgCl, pH = 7) is more negative than that of g-C3N4 nanosheets.

An MoSx/g-C3N4 composite photocatalyst was successfully fabricated by a sonochemical approach, where amorphous MoSx was synthesized using a hydrothermal method, and g-C3N4 nanosheets were produced using a two-step thermal polycondensation method.  相似文献   

8.
Defect rich molybdenum disulfide (MoS2) nanosheets were hydrothermally synthesized and their potential for ultrasound assisted dispersive solid phase microextraction of trace Hg(ii) ions was assessed. Ultrasonic dispersion allows the MoS2 nanosheets to chelate rapidly and evenly with Hg(ii) ions and results in improving the precision and minimizing the extraction time. The multiple defect rich surface was characterized by X-ray diffraction and high-resolution transmission electron microscopy. The surface charge of intrinsically sulfur rich MoS2 nanosheets and their elemental composition was characterized by zeta potential measurements, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The cracks and holes on the basal planes of MoS2 led to diffusion of the Hg(ii) ions into the interior channels. Inner-sphere chelation along with outer-sphere electrostatic interaction were the proposed mechanism for the Hg(ii) adsorption onto the MoS2 surface. The experimental data showed good selectivity of MoS2 nanosheets towards Hg(ii) adsorption. The systematic and constant errors of the proposed method were ruled out by the analysis of the Standard Reference Material (>95% recovery with <5% RSD). The Student''s t-test values for the analyzed Standard Reference Material were found to be less than the critical Student''s t value at 95% confidence level. The limit of detection (3S) was found to be 0.01 ng mL−1. The MoS2 nanosheets were successfully employed for the analysis of Hg(ii) in environmental water samples.

Hg(ii) ion adsorption onto an MoS2 surface.  相似文献   

9.
Effective separation and rapid transfer of photogenerated electron–hole pairs are key features of photocatalytic materials with high catalytic activity, which could be achieved in co-catalysts. It is reported that the two-dimensional (2D) MoS2 is a promising co-catalyst due to its unique semi-conductive properties and graphene-like layered structure. However, the application of MoS2 as a co-catalyst is limited by its poor electrical conductivity. On the other hand, it is worth noting that TiO2 possesses reactive crystal facets, which is one of the dominant mechanisms for the separation of photogenerated electron–hole pairs. In this work, we prepared MoS2/RGO hybrids as co-catalysts which were doped to TiO2 with highly reactive {001} planes via the hydrothermal method. It was found that the {001}-TiO2/MoS2/RGO photocatalysts with 7 wt% MoS2/RGO co-catalyst show the highest photodegradation activity for the degradation of Rh B under visible light irradiation (λ > 400 nm), which could result from the synergy of the effective separation of electron–hole pairs by the {001} facets in TiO2 and the rapid transfer of electron–hole pairs in MoS2/RGO. The results show that the {001}-TiO2/MoS2/RGO hybrid is a low-cost and stable photocatalyst for the effective degradation of Rh B under visible light.

Effective separation and rapid transfer of photogenerated electron–hole pairs are key features of photocatalytic materials with high catalytic activity, which could be achieved by co-catalysts.  相似文献   

10.
In this paper, a new type of nitrogen-doped carbon fiber/molybdenum disulfide (N-CFs/MoS2) hybrid electrode materials are prepared via a certain concentration in solvothermal synthesis followed by a high-temperature carbonization process and using the carboxymethylcellulose ammonium (CMC-NH4) as a structure-directing agent for MoS2 nanosheet growth during the solvothermal synthesis process. The addition of CMC-NH4 effectively prevents the agglomeration of MoS2 nanosheets to increase the specific surface area. Moreover, it not only serves as a carbon source to provide conductive pathways, but also introduces N atoms to improve the conductivity of the CFs and promote the transfer of electrons and ions. This ultimately increases the conductivity of the electrode materials. Thus, the as-prepared N-CFs/MoS2 hybrids exhibit excellent electrochemical performance. The specific capacitance is up to 572.6 F g−1 under a current density of 0.75 A g−1 and the specific capacitance retained 98% of the initial capacitance after 5000 cycles of charge–discharge tests at a current density of 2.5 A g−1. Moreover, the hybrids show a maximum energy density of 19.5 W h kg−1 at a power density of 94 W kg−1. Therefore, the as-prepared N-CFs/MoS2 hybrids with remarkable electrochemical properties, low cost and environment protection show potential for practical application in the development of high-performance electrochemical energy storage devices.

Novel CMC-NH4-derived nitrogen-doped CFs/MoS2 hybrid electrode materials are prepared using CMC-NH4 as a structure-directing agent for MoS2 nanosheets.  相似文献   

11.
MoS2 nanosheets can be applied as electrochemical biosensors to selectively and sensitively respond to the surrounding environment and detect various biomolecules due to their large specific surface area and unique physicochemical properties. In this paper, single-layer or few-layer MoS2 nanosheets were prepared by an improved liquid phase stripping method, and then combining the unique material characteristics of MoS2 and the metallic property of Au nanoparticles (AuNPs), Au@MoS2 composite nanosheets were synthesized based on MoS2 nanosheets. Then, the structure and properties of MoS2 nanosheets and Au@MoS2 composite nanosheets were comprehensively characterized. The results proved that AuNPs were successfully loaded on MoS2 nanosheets. At the same time, on the basis of the successful preparation of Au@MoS2 composite nanosheets, an electrochemical biosensor targeting dopamine was successfully constructed by cyclic voltammetry. The linear detection range was 0.5–350 μM, and the detection limit was 0.2 μM. The high-sensitive electrochemical detection of dopamine has been achieved, which provides a new idea for the application of MoS2-based nanomaterials in the biosensing of neurotransmitters. In addition, density functional theory (DFT) was used to explore the electrochemical performance of Au@MoS2 composite nanosheets. The results show that the adsorption of Au atoms on the MoS2 2D structure improves the conductivity of MoS2 nanosheets, which theoretically supports the possibilities of its application as a platform for the ultrasensitive detection of neurotransmitters or other biomolecules in the field of disease diagnosis.

An electrochemical biosensor based on Au@MoS2 composite nanosheets was successfully prepared for the high-sensitivity detection of dopamine.  相似文献   

12.
In this article, an exquisite flexible hybrid MoS2/graphene free-standing electrocatalyst paper was fabricated by a one-step in situ solvothermal process. The assembled MoS2/graphene catalysts exhibit significantly enhanced electrocatalytic activity and cycling stability towards the splitting of water in acidic solution. Furthermore, a strategic balance of abundant active sites at the edge of the S–Mo–S layers with efficient electron transfer in the MoS2/graphene hybrid catalyst plays a key role in controlling the electrochemical performance of the MoS2 nanosheets. Most importantly, the hybrid MoS2/graphene nanosheet paper shows excellent flexibility and high electrocatalytic performance under the various bending states. This work demonstrates an opportunity for the development of flexible electrocatalysts, which have potential applications in renewable energy conversion and energy storage systems.

An improved flexible hybrid MoS2/graphene free-standing electrocatalyst paper was fabricated by a one-step in situ solvothermal process for hydrogen evolution reaction applications.  相似文献   

13.
Alloying/doping in two-dimensional (2D) materials is emerging as an increasingly important strategy due to the wide-range bandgap tunability and versatility of these materials. Monolayer 2D transition metal dichalcogenide (TMD) alloy has been investigated both theoretically and experimentally in recent years. Here, we synthesized a bilayer MoS2(1−x)Se2x semiconductor alloy via the chemical-vapor deposition technique. The as-grown triangular MoS2(1−x)Se2x flakes with size of roughly 10 μm were observed by optical microscope and scanning electron microscope (SEM). The 1.4–1.9 nm thickness of the samples, as measured by AFM, means that bilayer MoS2(1−x)Se2x alloys were grown. The characteristic Raman modes related to Mo–S and Mo–Se vibrations were observed in the Raman spectrum. Two emission peaks were respectively found, corresponding to the A and B excitons in the photoluminescence (PL) spectrum. XPS measurements confirmed the Se doping of the alloy. The first-principles calculation results show a contraction of the band gap value with the increase of Se doping in the MoS2 lattice. Compared with monolayer MoS2(1−x)Se2x alloy, the band bending effect is more obvious, and the bilayer MoS2(1−x)Se2x alloy still shows the direct band gap luminescence characteristic, which has certain guiding significance for the growth of two-dimensional materials and for device preparation.

Alloying/doping in two-dimensional (2D) materials is emerging as an increasingly important strategy due to the wide-range bandgap tunability and versatility of these materials.  相似文献   

14.
Fabrication of a high-performance room-temperature (RT) gas sensor is important for the future integration of sensors into smart, portable and Internet-of-Things (IoT)-based devices. Herein, we developed a NO2 gas sensor based on ultrathin MoS2 nanoflowers with high sensitivity at RT. The MoS2 flower-like nanostructures were synthesised via a simple hydrothermal method with different growth times of 24, 36, 48, and 60 h. The synthesised MoS2 nanoflowers were subsequently characterised by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The petal-like nanosheets in pure MoS2 agglomerated to form a flower-like structure with Raman vibrational modes at 378 and 403 cm−1 and crystallisation in the hexagonal phase. The specific surface areas of the MoS2 grown at different times were measured by using the Brunauer–Emmett–Teller method. The largest specific surface area of 56.57 m2 g−1 was obtained for the MoS2 nanoflowers grown for 48 h. This sample also possessed the smallest activation energy of 0.08 eV. The gas-sensing characteristics of sensors based on the synthesised MoS2 nanostructures were investigated using oxidising and reducing gases, such as NO2, SO2, H2, CH4, CO and NH3, at different concentrations and at working temperatures ranging from RT to 150 °C. The sensor based on the MoS2 nanoflowers grown for 48 h showed a high gas response of 67.4% and high selectivity to 10 ppm NO2 at RT. This finding can be ascribed to the synergistic effects of largest specific surface area, smallest crystallite size and lowest activation energy of the MoS2-48 h sample among the samples. The sensors also exhibited a relative humidity-independent sensing characteristic at RT and a low detection limit of 84 ppb, thereby allowing their practical application to portable IoT-based devices.

Controlled synthesis of ultrathin MoS2 nanoflowers is crucial to develop a high-performance room-temperature NO2 gas sensor for the future integration of sensors into smart, portable and Internet-of-Things (IoT)-based devices.  相似文献   

15.
The depletion of fossil fuels and associated environmental problems have drawn our attention to renewable energy resources in order to meet the global energy demand. Electrocatalytic hydrogen evolution has been considered a potential energy solution due of its high energy density and environment friendly technology. Herein, we have successfully synthesized a noble-metal-free Co–Ni/MoS2 nanocomposite for enhanced electrocatalytic hydrogen evolution. The nanocomposite has been well characterized using HRTEM, elemental mapping, XRD, and XPS analysis. The as-synthesized nanocomposite exhibits a much smaller onset potential and better current density than those of Co–MoS2, Ni–MoS2 and MoS2, with a Tafel value of 49 mV dec−1, which is comparable to that of a commercial Pt/C catalyst. The synergistic effect and interfacial interaction of Co–Ni bimetallic nanoparticles enhances the intrinsic modulation in the electronic structure resulting in an improved HER performance. Moreover, the electrochemical impedance spectroscopic results suggest smaller resistance values for the Co–Ni/MoS2 nanocomposite, compared to those for the charge transfer of bare nanosheets, which increase the faradaic process and in turn enhance the HER kinetics for a better performance. Our as-synthesized Co–Ni/MoS2 nanocomposite holds great potential for the future synthesis of noble-metal-free catalysts.

A noble-metal-free Co–Ni/MoS2 nanocomposite was synthesized, which showed enhanced electrocatalytic hydrogen evolution performance.  相似文献   

16.
In this study, we report a green synthesis of MoS2 nanosheets (NSs) using a facile hydrothermal technique in the presence of l-cysteine. l-Cysteine can serve as a greener source of sulfur as well as a capping agent to help the growth of MoS2 nanosheets. The prepared materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), electron transmission microscopy (TEM), X-ray photoelectron microscopy (XPS), and Brunauer, Emmett, and Teller (BET) analysis. The results showed that MoS2 NSs are of high crystallinity with a lattice spacing of 0.61 nm. The optical bandgap of MoS2 NSs nanosheets prepared using l-cysteine as a source of sulfur was found to be 1.79 eV. The photocatalytic degradation of MoS2 NSs towards methylene orange (MO) and rhodamine blue (RB) dyes under sunlight was found to be promising for practical applications. The fast kinetics of degradation of MO and RhB was observed over a wide range of pH range. Moreover, MoS2 NSs showed excellent antifungal activities against Trichophyton mentagrophytes and Penicillium chrysogenum fungus.

In this study, we report a green synthesis of MoS2 nanosheets (NSs) using a facile hydrothermal technique in the presence of l-cysteine.  相似文献   

17.
Flower-like nanostructures of molybdenum disulphide (MoS2) have been effectively synthesised by the hydrothermal method and further doped with nitrogen using varying concentrations of urea. The formed hierarchical nanostructures are characterised by spectroscopy as well as electrochemical techniques. The structural analysis confirms the formation of a hexagonal MoS2 crystal structure. The existence of MoO2/MoO3/MoS2 composites is also observed after heating MoS2 with a lower urea concentration. Surface morphological analysis of all the prepared compositions shows the appearance of flower-like nanostructures formed by the stacking of 20–80 nanosheets to create individual flower petals. Nitrogen doping shows enhancement in the specific capacitance of MoS2 due to an increase in the electronic conductivity. Furthermore, the specific capacitance is enhanced due to the formation of an MoO2/MoO3/MoS2 composite. The highest specific capacitance calculated from the charge–discharge curve for nitrogen-doped MoS2 prepared using 1 : 1 (MoS2 : urea) weight ratio is observed at around 129 (F g−1) at 2 (A g−1) specific current. The nitrogen-doped MoS2 demonstrates almost four-fold enhancement in specific capacitance than pristine nano-shaped MoS2.

The specific capacitance values describe the effect of urea concentration for nitrogen-doped molybdenum sulphide.  相似文献   

18.
Kai He  Liejin Guo 《RSC advances》2021,11(37):23064
An irregular CdS pyramid/flower-like MoS2 microsphere composite photocatalyst was successfully synthesized using a simple one-step hydrothermal method. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, ultraviolet visible absorption spectroscopy, fluorescence spectroscopy and photoelectrochemical tests. The composite photocatalysts showed superior photocatalytic activities for hydrogen evolution from water under visible light irradiation (λ ≥ 420 nm) with an extremely high apparent quantum yield (AQY = 64.8%) at 420 nm. To our knowledge, this value is the highest reported efficiency value for CdS/MoS2 photocatalysts. Further detailed characterization revealed that the special structure for some CdS pyramid structures dispersed in the MoS2 microsphere structures and surrounded by MoS2 nanosheets led to the photogenerated electrons migrating from the conduction band of different faces of the CdS pyramid to the conduction band of different MoS2 nanosheets while photogenerated holes remained in the CdS pyramid structures, which greatly promoted the separation of photogenerated electrons and holes, improving the photoactivity of the CdS/MoS2 catalyst. The catalyst also exhibited perfect stability, and the photoactivity displayed no significant degradation during continuous hydrogen production over nearly 70 h.

Schematic diagram of the photogenerated carrier migration between CdS and MoS2.  相似文献   

19.
In this paper, a 2D molybdenum disulfide (MoS2) nanosheet is prepared via a one-step hydrothermal method as electrode material for supercapacitors. Meanwhile, a series of MoS2−x nanostructures with sulfur vacancies have been successfully obtained in an Ar/H2 mixed atmosphere at different annealing temperatures. The prepared materials were characterized by XRD, HR-TEM, Raman and XPS to identify their morphology and crystal properties. MoS2−x assembled by interconnected nanosheets (MoS2−x-700) provides a maximum specific capacitance of 143.12 F g−1 at a current density of 1.0 A g−1 with 87.1% of initial capacitance reserved after 5000 cycles. The outstanding performance of the annealed MoS2−x nanosheets in sodium storage is mainly attributed to the synergistic effect of the unique interconnected structure and the abundant active vacancy generated by the sulfur vacancies. Atomic models of sulfur vacancy defects on the basal plane, Mo-edge and S-edge were established and the electronic properties of MoS2−x were further evaluated assisted by first principles theory. DFT calculation results show that sulfur vacancy defects can provide additional empty states near the Fermi level and induce unpaired electrons, thus increasing the carrier density and improving electrical conductivity. Our findings in this work provide experimental and theoretical evidence of improving the electrochemical performance of 2H-MoS2 nanosheets by annealing treatment.

In this paper, a 2D molybdenum disulfide (MoS2) nanosheet is prepared via a one-step hydrothermal method as electrode material for supercapacitors.  相似文献   

20.
In order to realize the characteristics of new types of wave-absorbing materials, such as strong absorption, broad bandwidth, low weight and small thickness, a hollow-structured flower-like Fe3O4@MoS2 composite was successfully prepared by simple solvothermal and hydrothermal methods in this paper. The structural properties were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Besides, the microwave properties and magnetic properties were measured using a vector network analyzer and via a hysteresis loop. SEM and TEM images revealed that MoS2 nanosheets grew on the surface of hollow nanospheres. The results showed that the composite exhibited excellent absorbing property. When the molar ratio of Fe3O4 and MoS2 was 1 : 18, the minimum reflection loss value reached −49.6 dB at 13.2 GHz with a thickness of 2.0 mm and the effective absorption bandwidth was 4.24 GHz (11.68–15.92 GHz). Meanwhile, the effective absorption in the entire X-band (8–12 GHz) and part of the C-band (4–8 GHz) and Ku-band (12–18 GHz) could be achieved by designing the sample thickness. In addition, the hollow structure effectively reduced the density of the material, which was in line with the current development trend of absorption materials. It could be predicted that the hollow core–shell structure composite has a potential application prospect in the field of microwave absorption.

A hollow-structured flower-like Fe3O4@MoS2 composite was synthesized. The minimum reflection loss value reached −49.6 dB at 13.2 GHz with a thickness of 2.0 mm and the effective absorbing bandwidth was 4.24 GHz (11.68–15.92 GHz).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号