首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
A new type of branched copolymer, poly(l-lactide)2-b-poly(l-glutamic acid) (PLLA2–PLGA), based on polypeptide PLGA is synthesized by the ring-opening polymerization (ROP) of N-carboxyanhydride of γ-benzyl-l-glutamate (BLG–NCA) with amino-terminated PLLA2–NH2 and subsequent deprotection. The branched copolymer is characterized by 1H NMR, FTIR and GPC measurements. The self-assembly of the copolymers in aqueous media has been systematically discussed. A pyrene probe has been used to demonstrate the aggregated formation of PLLA2–PLGA in solution by measuring the critical micelle concentration (cmc). The morphology and size of the micelles have further been studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and field emission scanning electron microscopy (ESEM). We demonstrated that the Rh of the vesicle is depending on solution pH and salt concentration. The vesicles show good stability with remained shapes and sizes during the lyophilizing process. These vesicles have great potential in the application of drug delivery.

A new type of branched copolymer, poly(l-lactide)2-b-poly(l-glutamic acid), based on polypeptide PLGA is synthesized by the ring-opening polymerization of N-carboxyanhydride of γ-benzyl-l-glutamate with amino-terminated PLLA2–NH2 and subsequent deprotection.  相似文献   

2.
Recent research suggests that the end groups of polymers can affect their self-assembly. However, the effect of end groups on the self-assembly of block copolymers in solution remains unclear, and thus far, only micelle–vesicle transformations have been achieved via end-group modification. Herein, we report that hydrophilic block end groups and the junction between two blocks can affect the solution self-assembly of block copolymers, leading to the formation of different morphologies, including vesicles, cubosomes, and hexosomes. Poly(ethylene glycol)-b-polystyrene (PEG-b-PS) with hydroxyl, methoxy, azido, or amino groups at the PEG chain ends was synthesized and self-assembled in solution via the cosolvent method. As a result, the morphology of the block copolymers transformed from vesicles to hexosomes upon increasing the end-group hydrophobicity. In addition, a morphological transition from cubosomes to vesicles was observed upon changing the junction from a triazole to an amide, and the interaction between the solvent and end groups significantly affected the self-assembly behavior.

Recent research suggests that the end groups of polymers can affect their self-assembly.  相似文献   

3.
Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via α-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for α-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking.

Self-assembly of the double hydrophilic block copolymer poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) and supramolecular crosslinking via α-cyclodextrin in water is presented.  相似文献   

4.
Gold nanoparticles (AuNPs) are the predominant and representative metal nano-carriers used for the tumor-targeted delivery of therapeutics because they possess advantages such as biocompatibility, high drug loading efficiency, and enhanced accumulation at tumor sites via the size-dependent enhanced permeability and retention (EPR) effect. In this study, we designed an AuNP functionalized with block polymers comprising polyethylenimine and azide group-functionalized poly(ethyl glycol) for the electrostatic incorporation of cytosine–guanine oligonucleotide (CpG ODN) on the surface. The ODN-incorporated AuNPs were cross-linked to gold nanoparticle clusters (AuNCs) via click chemistry using a matrix metalloproteinase (MMP)-2 cleavable peptide linker modified with alkyne groups at both ends. In the presence of Cu(i), azide groups and alkyne groups spontaneously cyclize to form a triazole ring with high fidelity and efficiency, and therefore allow single AuNPs to stack to larger AuNCs for increased EPR effect-mediated tumor targeting. 1H-NMR and Fourier transform infrared spectroscopy revealed the successful synthesis of an azide–PEG-grafted branched polyethylenimine, and the size and morphology of AuNPs fabricated by the synthesized polymer were confirmed to be 4.02 ± 0.45 nm by field emission-transmission electron microscopy. Raman spectroscopy characterization demonstrated the introduction of azide groups on the surface of the synthesized AuNPs. Zeta-potential and gel-retardation analysis of CpG-loaded AuNPs indicated complete CpG sequestration by AuNPs when the CpG : AuNP weight ratio was higher than 1 : 2.5. The clustering process of the CpG-loaded AuNPs was monitored and was demonstrated to be dependent on the alkyne linker-to-AuNP ratio. Thus, the clicked AuNC can be tailored as a gene carrier where a high accumulation of therapeutics is required.

AuNPs with bPEI and azide modification are loaded with CpG and self-assembled to AuNCs by click chemistry using an alkyne-terminated MMP-2 cleavable peptide as a linker. The clusters are dissembled by MMP-2 to release CpG in a stimuli-responsive manner.  相似文献   

5.
A novel sustainable hydrogel catalyst based on the reaction of sodium alginate naturally extracted from brown algae Laminaria digitata residue with copper(ii) was prepared as spherical beads, namely Cu(ii)-alginate hydrogel (Cu(ii)-AHG). The morphology and structural characteristics of these beads were elucidated by different techniques such as SEM, EDX, BET, FTIR and TGA analysis. Cu(ii)-AHG and its dried form, namely Cu(ii)-alginate (Cu(ii)-AD), are relatively uniform with an average pore ranging from 200 nm to more than 20 μm. These superporous structure beads were employed for the copper catalyzed [3 + 2] cycloaddition reaction of aryl azides and terminal aryl alkynes (CuAAC) via click chemistry at low catalyst loading, using water as a solvent at room temperature and pressure. The catalytic active copper(i) species was generated by the reduction of copper(ii) by terminal alkyne via the oxidative alkyne homocoupling reaction. The prepared catalysts were found to be efficient (85–92%) and regioselective by affording only 1,4-disubstituted-1,2,3-triazoles. They were also recoverable and reused in their dried form for at least four consecutive times without a clear loss of efficiency. A mechanistic study was performed through density functional theory (DFT) calculations in order to explain the regioselectivity outcome of Cu(ii)-alginate in CuAAC reactions. The analysis of the local electrophilicity (ωk) at the electrophilic reagent and the local nucleophilicity (Nk) at the nucleophilic confirms the polar character of CuAAC. This catalyst has the main advantage of being sustainably ligand-free and recyclable.

The Cu(ii)-alginate-based superporous hydrogel was prepared and used as a heterogenous catalyst in the regioselective click of 1,4-disubstituted-1,2,3-triazoles by CuAAC reactions.  相似文献   

6.
To increase the bioavailability and water solubility of hydrophobic medicine, an amphiphilic block copolymer, polycaprolactone-block-polyhydroxyethyl acrylamide (PCL-b-PHEAA), was synthesized. The copolymer can self-assemble into micelles by dialysis. The micelles were characterized by the Tyndall effect, static drop method, fluorescence spectrometry, dynamic light scattering, scanning electron microscopy and transmission electron microscopy. Ibuprofen was encapsulated inside the micelles by dialysis as a model medicine. The results show that the amphiphilic copolymer forms a uniform micelle system, with spherical micelles dispersed well in solution which have a low critical micelle concentration. In addition, the system shows good amphipathic behavior. Average particle size of a micelle is 104 nm, which increases a lot after drug loading and standing for half a month. In the first few hours, the cumulative release of the drug increases gradually; the rate of increase in the first ten hours is faster, then reaching a plateau which tends to be flat finally. It is similar under two different pH conditions. This biocompatible, biodegradable amphiphilic block copolymer has potential applications in the biomedical field.

To increase the bioavailability and water solubility of hydrophobic medicine, an amphiphilic block copolymer, polycaprolactone-block-polyhydroxyethyl acrylamide (PCL-b-PHEAA), was synthesized.  相似文献   

7.
Vectorization has experienced significant development over the last few years and has been used to control the distribution of active ingredients to a target by their association with a vector. However, controlled drug delivery suffers from “burst release” as the drugs are released before the targeted site. Very few studies have examined the collective mechanisms of fission–fusion on micelles in the transport and expulsion of active ingredients. Endocytosis and exocytosis of cells are examples of fusion and fission in biological matter. Understanding these dynamics becomes crucial for the design and the control of new materials and new processes effective in controlled drug delivery. In this work, a study of the exchange dynamics between amphiphilic block copolymers and lipid membranes for vectorization of hydrophobic molecules using a fluorescence technique is presented. A highly hydrophobic alkylated pyrene, PyC18, is used as a fluorescent probe that can be exchanged between amphiphilic block copolymer micelles and liposomes via different mechanisms. It is demonstrated that the exchange dynamics evaluated for different liposome concentrations is a collective mechanism characterized by having two rate constants.

Exchange dynamics between P104 micelles and liposomes for vectorization followed by using PyC18 hydrophobic probe.  相似文献   

8.
Three-coordinated Zn(ii) complexes bearing sterically encumbered bidentate monoanionic [N,N] pyridylamido ligands efficiently catalyze the ring opening polymerization of lactide (LA) and ε-caprolactone (CL). Owing to the polymerization controlled nature and high rate, precise stereodiblock poly(LLA-b-DLA) with different block lengths can be easily produced by one-pot sequential monomer addition at room temperature in short reaction times. NMR, SEC and DSC analyses confirm the production of highly isotactic diblock copolymers which crystallize in the high melting stereocomplex phase. Stereo-triblock and tetrablock copolymers of l-LA, d-LA and rac-LA have been synthesized similarly. Finally, a diblock poly(CL-b-LA) has been easily obtained by sequential addition of ε-caprolactone and lactide under mild conditions.

New 3-coordinated Zn ROP catalysts afford lactide stereo-block copolymers with variable block lengths and steric structures and diblock ε-caprolactone-lactide copolymers at room temperature and in short reaction times.  相似文献   

9.
In this study, a spherical Fe/C composite (AIBC) was successfully prepared via carbonization of Fe3+-crosslinked sodium alginate. The removal capacity and mechanism of AIBC were evaluated for the adsorption of Pb(ii) from aqueous solution and compared with that of commercial nanoscale zero-valent iron (nZVI). The effects of the initial concentration, pH of Pb(ii) solution, the contact time, coexisting anions, and aging under air were investigated. The results showed that the pH had a strong impact on the adsorption of Pb(ii) by AIBC. The adsorption data for AIBC followed the Langmuir model, while the maximum adsorption capacity at pH 5 was 1881.73 mg g−1. The AIBC had a higher adsorption capability than nZVI, especially under the condition of relatively high Pb(ii) concentrations. The oxidation–reduction reaction between Fe and Pb(ii) was the main mechanism for the adsorption of Pb(ii) onto nZVI. AIBC converted the largest amount of Pb(ii) into PbO·XH2O/Pb(OH)2 mainly by generating Fe2+.

In this study, a spherical Fe/C composite (AIBC) was successfully prepared via carbonization of Fe3+-crosslinked sodium alginate.  相似文献   

10.
A new Ni(ii)-α-diimine-based porous organic polymer, namely Ni(ii)-α-diimine-POP, was constructed in high yield via the Sonogashira coupling reaction between the metallo-building block of Ni(ii)-α-diimine and 1,3,5-triethynylbenzene. Besides the high thermal and chemical stability, the obtained Ni(ii)-α-diimine-POP can be a highly active reusable heterogeneous catalyst to promote the Suzuki–Miyaura coupling reaction. The obtained results indicate that the Ni(ii)-α-diimine-POP herein is a promising sustainable alternative to the Pd-based catalysts for catalysing the C–C formation in a heterogeneous way.

A porous organic polymer with Ni(ii) α-diimine moiety, which can be a highly active reusable heterogeneous catalyst to promote the Suzuki–Miyaura coupling reaction, was reported.  相似文献   

11.
The electrochemical behaviors of CuCl, SnCl2 and a CuCl–SnCl2 mixture were investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The reduction potentials of Cu(i) and Sn(ii) on CV curves are −0.49 and −0.36 V, respectively, while the reduction potentials of Cu(i)–Sn(ii) in the CuCl–SnCl2 mixture almost overlap. The co-chlorination reaction progress between CuCl–SnCl2 and Zr was also studied by monitoring the concentration changes of Cu(i), Sn(ii) and Zr(iv) ions in situ by CV, SWV and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analyses. The results indicate that during the reaction, the concentration of Zr(iv) ions increases gradually, while those of Cu(i) and Sn(ii) decrease rapidly until they disappear. When the molar ratios of Cu(i) to Sn(ii) are 1 : 1 and 1 : 0.5, the reaction between Cu(i) and Zr is faster but cannot exceed twice that of Sn(ii) and Zr in a short time. When the theoretical product of ZrCl4 is a constant, and with the proportion of CuCl to SnCl2 decreasing from 1 : 0 to 0 : 1, the chlorination reaction time periods increase from 40 to 170 min. Chloride products such as CuxSny, SnxZry, and CuxZry, are formed with different molar ratios. The coupling effect caused by the formation of alloys will promote the chlorination reaction when the ratios of CuCl to SnCl2 are 0.66 : 0.17 and 0.5 : 0.25. The results provide a theoretical basis for the electrolytic refinement of zirconium.

A LiCl–KCl–ZrCl4 melt was prepared via a co-chlorination reaction between a binary mixture of CuCl–SnCl2 and Zr, and the reaction progress was electrochemically monitored.  相似文献   

12.
A polycarbazole-Sn(iv) arsenotungstate (Pcz-SnAT) nanocomposite cation exchanger membrane (CEM) was prepared via the casting solution technique utilizing polycarbazole-Sn(iv) arsenotungstate and PVC (polyvinyl chloride) as a binder. The synthesis of the Pcz-SnAT membrane was confirmed via various characterization methods such as EDX, SEM, TGA, XRD, and FTIR spectroscopy. This membrane having a 4.5 : 1 composition ratio of composite by PVC exhibited the most effective outcomes for swelling, thickness, porosity, and water content. Our research indicates that the present ion selective membrane electrode is selective towards Pb(ii) ions, with the detection limit ranging from 1 × 10−7 mol L−1 to 1 × 10−1 mol L−1 where 20 s is the response time and 3–7 is the working value pH. The mechanism of the Pcz SnAT ion exchange membrane was obtained by kinetic studies by utilizing the equation given by Nernst Planck at 40–80 °C. As a result, activation energy and thermodynamic studies were done. The analytical utility of this electrode is conventional by utilizing it as an electrode indicator within the potentiometric titration.

A polycarbazole-Sn(iv) arsenotungstate (Pcz-SnAT) nanocomposite cation exchanger membrane (CEM) was prepared via the casting solution technique utilizing polycarbazole-Sn(iv) arsenotungstate and PVC (polyvinyl chloride) as a binder.  相似文献   

13.
A novel diatomite-based mesoporous material of MCM-41/co-(PPy-Tp) was prepared with MCM-41 as carrier and functionalized with the copolymer of pyrrole and thiophene. The physicochemical characteristics of the as-prepared materials were characterized by various characterization means. The removal behaviour of Hg(ii) was adequately investigated via series of single factor experiments and some vital influence factors were optimized via response surface methodology method. The results exhibit that diatomite-based materials MCM-41/co-(PPy-Tp) has an optimal adsorption capability of 537.15 mg g−1 towards Hg(ii) at pH = 7.1. The removal process of Hg(ii) onto MCM-41/co-(PPy-Tp) is controlled by monolayer chemisorption based on the fitting results of pseudo-second-order kinetic and Langmuir models. In addition, the adsorption of Hg(ii) ions onto MCM-41/co-(PPy-Tp) is mainly completed through forming a stable complex with N or S atoms in MCM-41/co-(PPy-Tp) by electrostatic attraction and chelation. The as-developed MCM-41/co-(PPy-Tp) displays excellent recyclability and stabilization, has obviously selective adsorption for Hg(ii) in the treatment of actual electroplating wastewater. Diatomite-based mesoporous material functionalized by the copolymer of pyrrole and thiophene exhibits promising application prospect.

The diatomite-based MCM-41/co-(PPy-Tp) has a Langmuir adsorption capacity of 533.57 mg g−1 towards Hg(ii). Synthesized adsorbent has high selectivity for Hg(ii) in the treatment of electroplating wastewater.  相似文献   

14.
A controlled synthesis method of alkyl methacrylate block copolymers such as poly(methyl methacrylate)-b-poly(ethyl methacrylate) (PMMA-b-PEMA), poly(methyl methacrylate)-b-poly(butyl methacrylate) (PMMA-b-PBMA) and poly(ethyl methacrylate)-b-poly(butyl methacrylate) (PEMA-b-PBMA) via living anionic polymerization was innovated with potassium tert-butoxide (t-BuOK) as initiator in tetrahydrofuran(THF) solvent. The sequential anionic copolymerization could be smoothly conducted at 0 °C and the conversion of all monomers reached up to almost 100%. The copolymers were characterized by gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H-NMR), fourier transform infrared spectroscopy (FTIR) and dynamic mechanical analysis (DMA). It was found that all block copolymers were in a narrow MWD while Mw and weight ratio of each block were coincided with the theoretical values and feed ratio. DMA measurement indicated that all the block copolymers have two glass transition temperatures which have proved the certain microphase separation and the partial compatibility of the blocks. The similar results were achieved after changing feed order or addition amount. Furthermore, the reactivity ratio was also studied and confirmed that reactivity ratio of MMA was the largest among alkyl methacrylate. Based on these results, the anionic block copolymerization containing polar alkyl methacrylate monomers at a commercial scale starts to become possible.

A series of well-defined diblock copolymers containing PMMA, PEMA and PBMA blocks were synthesized with narrow MWDs and high yields via anionic polymerization, while t-BuOK was selected as initiator in THF at 0 °C. .  相似文献   

15.
A novel type of high-χ block copolymer, polystyrene-block-polycarbonate (PS-b-PC), which contains an active –NH– group on the polymer backbone between the PS block and the PC block, has been successfully synthesized. Vertical micro-phase separation can be successfully achieved on Si substrates with neutral-layer-free materials with a pitch of 16.8 nm. Water contact angle experiments indicate that PS and PC have approximate surface energy values on Si substrates. A hydrogen bond mechanism has been proposed for the formation of a periodic and lamella-forming phase separation structure, with the domains oriented perpendicular to the substrate. A combination of both theory and experimental verification proves that the hydrogen bonding plays a dominant role as a real driving force to promote vertical micro-phase separation in the absence of a neutral layer. Subsequently, the study of a novel block copolymer on four different types of substrate without any neutral layer further confirms that the newly synthesized material enables greater flexibility and potential applications for the fabrication of various nanostructures and functional electronic devices in a simple, cost-effective and efficient way, which is of considerable importance to contemporary and emerging technology applications.

A novel type of high-χ block copolymer, polystyrene-block-polycarbonate (PS-b-PC), which contains an active –NH– group on the polymer backbone between the PS block and the PC block, has been successfully synthesized.  相似文献   

16.
A new fluorescence chemosensor based on (Z)-2-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)hydrazine-1-carbothioamide (CEHC) has been developed for the determination of Fe(iii) in drinking water. The optimum conditions were acetate buffer solution with a pH 5.0. In this approach, the determination of Fe(iii) is based on static quenching of the luminescence of the probe upon increasing concentrations of Fe(iii). The CEHC sensor binds Fe(iii) in a 1 : 1 stoichiometry with a binding constant Ka = 1.30 × 104 M−1. CEHC responds to Fe(iii) in a way that is more sensitive, selective, and quick to turn off the fluorescence than to other heavy metal ions. Selectivity was proved against seven other metal ions (Mn(ii), Al(iii), Cu(ii), Ni(ii), Zn(ii), Pb(ii), and Cd(ii)). The calibration curve was constructed based on the Stern–Volmer equation. The linear range was 2.50–150 μM with the correlation coefficient of 0.9994, and the LOD was 0.76 μM. The method was successfully applied to determine Fe(iii) in drinking water samples, and the accuracy of the chemosensor was validated by atomic absorption spectrometry.

A new fluorescence chemosensor based on (Z)-2-(1-(3-oxo-3H-benzo[f]chromen-2-yl)ethylidene)hydrazine-1-carbothioamide (CEHC) has been developed for the determination of the fluorescence probe of Fe(iii) in drinking water.  相似文献   

17.
To understand the influence of the construction of pH-responsive glycopolymer carriers on loading and release behaviors of the drug, three types of block glycopolymers with similar compositions but different constructions, PEG-b-P(DEA-co-GAMA), PEG-b-PDEA-b-PGAMA and PEG-b-PGAMA-b-PDEA, were successfully synthesized via atom transfer radical polymerization (ATRP) method. The compositions and structures of the three glycopolymers were characterized using 1H NMR (nuclear magnetic resonance) and GPC (gel permeation chromatography), while the morphology and size of aggregates from pH-sensitive block glycopolymers were measured using TEM (transmission electron microscopy) and DLS (dynamic light scattering). The results indicated that the micelles prepared from PEG-b-PGAMA-b-PDEA had a more compact shell structure. The drug-loaded micelles were prepared using the diafiltration method at pH 10, and the loading content and loading efficiency were analyzed using a UV-visible spectrophotometer. DOX-loaded micelles formed by PEG-b-PGAMA-b-PDEA with the more compact shell construction showed the highest loading content and loading efficiency (12.0 wt% and 58.0%) compared with the other two micelles. Moreover, the DOX release tests of these micelles were carried out under two PBS conditions (pH 7.4 and pH 5.5), and the DOX release amount in a certain time was analyzed using a UV-visible spectrophotometer. The results showed that the more compact shell construction of the three layered micelle obstructed the diffusion of a proton into the PDEA core at pH 5.5 and delayed the drug from releasing under both conditions. Moreover the two-layered micelle with a PDEA and PGAMA mixed core showed a relatively high release amount owing to the porous core permitting unimpeded releasing at pH 7.4 and promoted the protonation of PDEA at pH 5.5. Insights gained from this study show that the structure of block copolymers, leading to different constructions of micelles, could adjust the drug loading and release behavior to certain extent, thus it may contribute to improving the design of desirable drug delivery systems.

Synthesized a pH-responsive block glycopolymers micelles, for the DOX loading and release behavior enhancing the design of drug delivery systems.  相似文献   

18.
Coumarin-based 1,4-disubstituted 1,2,3-triazole derivatives were synthesized using a highly efficient, eco-friendly protocol via a copper(i)-catalyzed click reaction between various substituted arylazides and terminal alkynes. The synthetic route was easy to access and gave excellent yields under microwave irradiation conditions compared to the conventional heating route. The structures of all the compounds were characterized by IR, 1H NMR, 13C NMR spectroscopy and mass spectrometry. All the synthesized compounds were screened for their in vitro antimicrobial, antioxidant and anti-inflammatory activities; among all compounds, 8a, 8j, 8k and 8l exhibited better results with respect to standard drugs. Furthermore, molecular docking studies have been carried out with PDB IDs 2VCX (anti-inflammatory), 3VXI (antioxidant), 4GEE (antimicrobial) and 2XFH (antifungal) using the Glide module of the Schrödinger suite. The final compounds 8d, 8e, 8h, and 8k showed the highest hydrogen bond interactions with His-88 and Val-191 proteins and with water in all the proteins.

Coumarin-based 1,4-disubstituted 1,2,3-triazole derivatives were synthesized using a highly efficient, eco-friendly protocol via a copper(i)-catalyzed click reaction between various substituted arylazides and terminal alkynes.  相似文献   

19.
The impact of calcium on the solubility, redox behavior, and speciation of the An(iii)–EDTA (An = Pu or Cm) system under reducing, anoxic conditions was investigated through batch solubility experiments, X-ray absorption spectroscopy (XAS), density functional theory (DFT), and time-resolved laser fluorescence spectroscopy (TRLFS). Batch solubility experiments were conducted from undersaturation using Pu(OH)3(am) as the solid phase in contact with 0.1 M NaCl–NaOH–HCl–EDTA–CaCl2 solutions at [EDTA] = 1 mM, pHm = 7.5–9.5, and [CaCl2] ≤20 mM. Additional samples targeted brine systems represented by 3.5 M CaCl2 and WIPP simulated brine. Solubility data in the absence of calcium were well-described by Pu(iii)–EDTA thermodynamic models, thus supporting the stabilization of Pu(iii)–EDTA complexes in solution. Cm(iii)–EDTA TRLFS data suggested the stepwise hydrolysis of An(iii)-EDTA complexes with increasing pH, and current Pu(iii)-EDTA solubility models were reassessed to evaluate the possibility of including Pu(iii)–OH–EDTA complexes and to calculate preliminary formation constants. Solubility data in the presence of calcium exhibited nearly constant log m(Pu)tot, as limited by total ligand concentration, with increasing [CaCl2]tot, which supports the formation of calcium-stabilized Pu(iii)–EDTA complexes in solution. XAS spectra without calcium showed partial oxidation of Pu(iii) to Pu(iv) in the aqueous phase, while calcium-containing experiments exhibited only Pu(iii), suggesting that Ca–Pu(iii)–EDTA complexes may stabilize Pu(iii) over short timeframes (t ≤45 days). DFT calculations on the Ca–Pu(iii)–EDTA system and TRLFS studies on the analogous Ca–Cm(iii)–EDTA system show that calcium likely stabilizes An(iii)–EDTA complexes but can also potentially stabilize An(iii)–OH–EDTA species in solution. This hints towards the possible existence of four major complex types within Ca–An(iii)–EDTA systems: An(iii)–EDTA, An(iii)–OH–EDTA, Ca–An(iii)–EDTA, and Ca–An(iii)–OH–EDTA. While the exact stoichiometry and degree of ligand protonation within these complexes remain undefined, their formation must be accounted for to properly assess the fate and transport of plutonium under conditions relevant to nuclear waste disposal.

Combined advanced spectroscopy and solubility studies provide evidence for the formation of novel calcium-containing and hydrolyzed (Cm,Pu)(iii)–EDTA complex(es).  相似文献   

20.
Based on the “arm-first” strategy, ring-opening polymerization (ROP) and one-pot azide–alkyne click reaction, well-defined star-shaped polymers with different architectures have been successfully synthesized, including the star homopolymers four-arm star-shaped polycaprolactone (4sPCL) and four-arm star-shaped poly(l-lactic acid) (4sPLLA), star-block copolymer 4sPCL-b-PLLA and miktoarm star-shaped copolymer PCL2PLLA2. The star homopolymers 4sPCL and 4sPLLA were synthesized by a click reaction of an azide small molecule initiator and HC Created by potrace 1.16, written by Peter Selinger 2001-2019 C-PCL or HC Created by potrace 1.16, written by Peter Selinger 2001-2019 C-PLLA. The star-block copolymer 4sPCL-b-PLLA was synthesized by a click reaction of an azide small molecule initiator and the block copolymer HC Created by potrace 1.16, written by Peter Selinger 2001-2019 C-PCL-b-PLLA. The miktoarm star polymer PCL2PLLA2 was synthesized by a one-pot azide–alkyne click reaction of simultaneous addition of equal proportions of HC Created by potrace 1.16, written by Peter Selinger 2001-2019 C-PCL and HC Created by potrace 1.16, written by Peter Selinger 2001-2019 C-PLLA. The structures of these star-shaped polymers have been confirmed by NMR, FT-IR and GPC. Furthermore, the melting and crystallization behaviors investigated using DSC and WXRD also confirm the formation of star-shaped polymers with different architectures.

Star, star-block, and miktoarm star biodegradable polymers were synthesized by an “arm-first” strategy, ring-opening polymerization and one-pot azide-alkyne click reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号