首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrorheological (ER) fluids represent smart materials with extensive application potential due to their rheological properties which can be readily changed under an external electric field. In this study, the iron(ii) oxalate particles with rod-like morphology were successfully synthesized by the co-precipitation method using sulphate heptahydrate and oxalic acid dihydrate. The characterization of particles was performed via X-ray diffractometry and scanning electron microscopy. Subsequently, the ER fluids were prepared by dispersing the synthesized particles in silicone oil. The optical microscopy demonstrated the formation of chain-like particle structures upon the application of an electric field. Rheological properties were determined by means of rotational rheometry including creep-recovery experiments. The viscoelastic behavior of systems under investigation in the presence of the electric field was confirmed by the presence of recoverable strain of the system.

The application of rod-like iron(ii) oxalates particles led to significant electrorheological effect as proved e.g. via the creep-recovery experiments under the application of an external electric field.  相似文献   

2.
The exploration of highly efficient, stable and cheap water oxidation electrocatalysts using earth-abundant elements is still a great challenge. Herein, alkaline-stable cationic Ni(ii) coordination polymers (Ni-CPs) were successfully obtained under hydrothermal conditions, which could stabilize the incorporation of Fe(iii) to form Fe-immobilized Fe@Ni-CPs. The newly developed Ni-based CPs were used for the first time as an effective electrocatalyst for the oxygen evolution reaction in strong alkaline media.

An alkaline-stable cationic Ni(ii) coordination polymer showed remarkable oxygen evolution reaction (OER) catalytic activity due to capturing Fe ions.

The oxygen evolution reaction (OER) plays a vital role in energy storage and conversion applications due to energy issues and the need for sustainable development.1–4 Because of the sluggish kinetics of the OER, excellent electrocatalysts are required to work in acidic or strong alkaline environments.5,6 Noble metal-based catalysts like IrO2 and RuO2 with high efficiency showed excellent OER catalytic activity.7 However, noble metal with high-cost and scarcity are impractical for scale-up applications. Currently, to substitute these precious metal-based materials, transition-metal-based (Fe, Co, Ni and so on) and metal-free (e.g., N, P and S) hybrid materials have been extensively developed.8–10 For example, metal–organic frameworks (MOFs) such as ZIF-8/67 derived metal–carbon composite materials exhibit promising electrocatalytic performance.11,12 Unfortunately, the pyrolysis process destroys the framework completely and causes agglomeration of metals, resulting in a decreased number of active sites. Therefore, to explore highly efficient and low-cost OER catalysts that can be directly used in the OER without calcination are desired, including complexes and MOFs.Recently, much of transition bimetallic materials showed excellent electrocatalytic activity.13–15 However, a handful of examples such as Fe–Co-MOFs or Co–Ni-MOFs have been explored due to instability, poor conductivity and harsh synthesis conditions.16–20 Notably, the disadvantages of MOFs have limited their usage in the potential OER. Therefore, it is urgent to develop cheap, stable and active OER catalysts to replace the precious metals. However, this is still a great challenge. Coordination polymers (CPs) with a low-dimensional framework similar to MOFs are constructed by metal ion and organic ligands with potential active sites and functional groups, exhibiting wide applications in sensing, photoluminescence and photocatalysis.21–26 However, rare examples of CPs have been directly explored in the OER. For Fe/Ni-based bimetal electrocatalysts, a novel strategy involves doping Fe(iii) into a functional Ni-based CPs, which could enhance the electrocatalytic OER activities.Herein, we report the hydrothermal synthesis of a Ni-based CPs as a high-performance OER electrocatalyst in strong alkaline solutions (Scheme 1). The blue crystals of [Ni(bp)3·(H2O)2]·(bp)·(ClO4)2 (bp = 4,4′-biprydine) were obtained upon the reaction of bp ligands with NiClO4·6H2O under hydrothermal systems. Chemical stability tests displayed that Ni-CPs could retain their original framework in water or even a strong alkaline (pH = 14) solution after 12 hours (Fig. S1), which is rarely reported for most transition metal CPs. The thermogravimetric analysis (TGA) showed that there is a significant change at about 110 °C due to the weight loss of the partial guest (Fig. S2). Interestingly, the cationic Ni-CPs successfully captured the Mohr''s salt (ammonium iron(ii) sulfate) by taking advantage of the post-synthetic strategy. The obtained Fe@Ni-CPs exhibited a high-efficient OER activity under strong alkaline conditions.Open in a separate windowScheme 1Illustration of the synthesis process for Fe doped Ni coordination polymers for the OER.Single-crystal X-ray diffraction analysis revealed that the Ni-CPs crystallized in the C2/c space group (Table S1). The obtained Ni coordination polymer was the isostructural compound reported by Talham,27 but their packing modes were distinctly different (Fig. S3–S5). It also had a similar coordination environment to the railroad-like double chains synthesized by Yaghi.28 The parallel chains were occupied by 4,4′-bpy, perchlorate and water molecules. In the Ni-CPs, most of the phenyl rings adopted the face-to-face mode. There were evident π⋯π interactions between the adjacent 4,4′-biprydine (Fig. 1a). In addition, there were strong intermolecular hydrogen bonds between 4,4′-bpy and perchlorate (strong Cl–O⋯C amongst adjacent layers) (Fig. 1a). The weak reaction increased the high density of the framework and protected the coordination bonds against external guest attacking. These chains and guests were further packed with a three-dimensional structure along the c-axis (Fig. 1b).Open in a separate windowFig. 1(a) The weak reaction between chains in Ni CPs, showing the Cl–O⋯C (green and black dashed line) and π⋯π interactions (pink dashed line) between the adjacent perchlorate and 4,4′-biprydine, respectively; (b) the packing view of Ni CPs along the c-axis. Cl in green, Ni in pale blue, N in blue, O in red and C in black. H atoms and partial guest molecules were omitted for clarity.The unique cationic Ni-CPs framework has the potential to immobilize some counterpart ions. To demonstrate this, Mohr''s salts were investigated. Most strikingly, the color slowly changed from blue to green in an aqueous solution, given by the optical image (Fig. 2a and b), which not only indicated that Ni-CPs captured Mohr''s salts via ion-exchange, but also suggested an alteration in the valence of Fe ions. It was possible that Fe2+ may have been further oxidized to Fe3+ under the O2 and water environment when we prepared the Fe@Ni-CPs (4Fe2+ + 2H2O + O2 = 4Fe3+ + 4OH). The PXRD pattern showed that the frameworks remained unchanged after doping with Fe ions (Fig. S1). From the transmission electron microscopy (TEM) images (Fig. 2c), after immobilization, the morphology of the Fe@Ni-CPs was still level and smooth; no ring-like patterns arose corresponding to the selected area for electron diffraction (SAED) (Fig. 2d), indicating that no bulk Fe particles formed during ion-exchange. This was further demonstrated using high resolution TEM (HRTEM) (Fig. 2e), in which there was no lattice fringe of crystallized Fe. The well distribution of C, N, O, Cl, Fe, and Ni in Fe@Ni-CPs was demonstrated by elemental mapping (Fig. 2f–l). Energy-dispersive X-ray spectroscopy (EDX) also agreed well with the above mapping data (Fig. S6). In addition, the Fe3+ uptake was 4.1 wt%, as determined by inductively coupled plasma atomic emission spectroscopy (ICP). These results showed Fe ions to have been successfully immobilized by the Ni-CPs.Open in a separate windowFig. 2(a–b) The optical image of Ni-CPs and Fe@Ni-CPs; (c) TEM images of Fe@ Ni-CPs; (d–e) the corresponding SAED and HRTEM pattern. (f–l) Element mapping of C, N, O, Cl, Fe, and Ni in Fe@Ni-CPs.The X-ray photoelectron spectroscopy (XPS) survey spectrum of the Fe@Ni-CPs also showed the presence of C, N, O, Cl, Fe, and Ni elements (Fig. 3a). The Fe 2p high resolution XPS spectrum exhibited peaks at 725 eV and 711 eV (Fig. 3b), further indicating the presence of the Fe3+ oxidation state. This could be explained by the transformations of Fe2+ to Fe3+ during the ion-exchange process. Similarly, in the Ni 2p spectra (Fig. 3c), two main peaks located at 855.8 eV and 873.5 eV can be ascribed to Ni2+ 2p3/2 and Ni2+ 2p1/2, respectively. These peaks are associated with two shakeup satellite peaks, indicating that Ni still remained in a divalent state. The Cl 2p and N 1s region could be corresponded to the ClO4 and biprydine, respectively (Fig. S7). The O 1s spectrum (Fig. 3d) was divided into two peaks at 531.7 eV and 533.2 eV, which could be assigned to the OH group from filled H2O molecules and partial ClO4, respectively.Open in a separate windowFig. 3(a) XPS survey spectrum of the Ni-CPs; XPS spectra of the Ni-CPs in the (b) Fe 2p, (c) Ni 2p, and (d) O 1s regions.The above Ni-CPs with Fe doping encouraged us to investigate its electrocatalytic application in oxygen evolution reaction. To study the electrocatalytic activity of Fe@Ni-CPs for the OER, linear sweep voltammetry (LSV) was performed in a strong alkaline solution (pH = 14) for Fe@Ni-CPs@GC (fresh samples coated on glassy carbon electrode with Nafion binder). Fe@Ni-CPs@GC directly acted as working electrodes and showed good OER activity with an onset potential of 1.52 V (Fig. 4a), overpotential of 368 mV at 10 mA cm−2, and a Tafel slope of 59.3 mV dec−1 (Fig. 4b). These OER performances are close to some reported MOFs catalysts (Table S2) and even better than commercial benchmark OER catalysts like RuO2 working at the same condition (Fig. S8). In contrast, the electrocatalytic OER activities of the pristine Ni-CPs@GC without Fe incorporation displayed much worse activity. The onset potential, overpotential (at 10 mA cm−2), and the Tafel slope reached 1.62 V, 458 mV, and 96.8 mV dec−1, respectively (Fig. 4a and b). In addition, Fe@Ni-CPs showed a strong durability during the OER process. The chronoamperometric response of Fe@Ni-CPs displayed a slight anodic current attenuation within 12 h due to the peeling of samples during the evolution of a large amount of O2 gas (Fig. S9). Furthermore, LSV of Fe@Ni-CPs showed negligible changes after OER tests for 12 h (Fig. S10). These results indicate that the Fe-doped Ni-CPs with more active sites could serve as an excellent candidate for OER in strong alkaline conditions.Open in a separate windowFig. 4(a) OER polarization curves and (b) Tafel plots of various electrocatalysts in a 1 M KOH aqueous solution; (c) linear relationship of the current density at 1.1 V (vs. RHE) vs. scan rates for Fe@Ni-CPs@GC and Ni-CPs@GC; (d) EIS of Fe@Ni-CPs and Ni-CPs electrode.When Fe(iii) was introduced, the resulting Fe@Ni-CPs catalysts greatly improved OER catalytic performance. There were dynamic collisions between Fe3+ ions and Ni-CPs, which allowed for more accessible catalytic active sites compared to the Ni-CPs. Particularly, Fe(iii) doping can contribute to the adsorption and reaction of OH groups in OER process.29 As a result, Fe@Ni-CPs enhanced charge transfer under an apt electronic environment of the mixed Fe⋯Ni systems. In addition, electrochemical impedance spectrum and double-layer capacitance (Cdl) of the Fe@Ni-CP were also studied. The Cdl of Fe@Ni-CPs was confirmed to be 269.7 μF cm−2 (Fig. 4c and S11), which is higher than that of Ni-CPs (Cdl = 174.2 μF cm−2) (Fig. 4c and S12). The semicircular diameter in EIS of Fe@Ni-PCP was smaller than that of Ni-CPS (Fig. 4d). These results further showed that Fe@Ni-CPs were more effective in enlarging the catalytically active surface area, conductivity and synergistic effects between Fe and Ni in comparison to Ni-CPs coated on electrodes.In conclusion, a new alkaline-stable cationic Ni(ii) coordinated polymers was synthesized under hydrothermal conditions. The Ni CPs could quickly interact with Mohr''s salt. Interestingly, the Ni CPs could act as a unique oxidation matrix to realize the transformation of Fe2+ to Fe3+ during the ion-exchange process. Furthermore, the resulting Fe@Ni-CPs electrode, for the first time, showed an excellent electrocatalytic activity for OER in strong alkaline media. This study provides a new avenue to explore stable coordinated polymers by incorporating the low-cost and high-activity transition metal, Fe, which will substitute the rare noble metals used in energy-related research.  相似文献   

3.
By rational assembly of polytorsional-amide [N,N′-bis(4-methylenepyridin-4-yl)-1,4-naphthalene dicarboxamide (L)] and polytorsional-carboxylates [H2ADI = adipic acid, H2PIM = pimelic acid, H2SUB = suberic acid], three new Cd-based coordination polymers (CPs) C30H30CdN4O7 (1), C31H32CdN4O7 (2) and C31.03H30.55CdCl0.24N4O5.52 (3) were successfully synthesized. CPs 1–2 and 3 are 2D networks and a 3D framework, which all display 3,5-connected topologies with different structural details. The effects of carboxylates with different carbon chains on the structure of the complexes were studied. Fluorescence experiments show that CPs 1–3 have good multi-functional sensing ability for metal cations (Fe3+), anions (MnO4, CrO42−, Cr2O72−) and organochlorine pesticides (2,6-dichloro-4-nitroamine) with good anti-interference and recyclable characteristics. The possible sensing mechanism is also investigated in detail.

Three (3,5)-connected Cd(ii) coordination polymers induced by polytorsional-amide/carboxylates exhibiting controllable multifunctional fluorescent sensing activities.  相似文献   

4.
Two new metal–organic coordination polymers (CPs), aqua-2,2′-bipyridine-5-(4′-carboxylphenoxy)isophthalatezinc(ii) polymer [Zn(HL)(2,2′-bipy)(H2O)]n (1) and tris-4,4′-bipyridine-bis-5-(4′-carboxylphenoxy)isophthalatetrizinc(ii) polymer [Zn3(L)2(4,4′-bipy)3]n (2) (H3L = 5-(4′-carboxylphenoxy)isophthalic acid, 4,4′-bipy = 4,4′-bipyridine and 2,2′-bipy = 2,2′-bipyridine), were obtained under hydrothermal conditions and characterized by microanalysis, FTIR spectroscopy and single crystal X-ray diffraction. The single crystal X-ray diffraction indicated that in both the CPs the coordination networks exhibited varied topologies and coordination modes around the Zn(ii) centers. CP 1 exhibits a one-dimensional (1D) chain structure, which further forms a 3D supramolecular architecture via intermolecular π⋯π and hydrogen bonding interactions, while 2 possesses a 3D framework generated from a 2D layered motif comprising zinc and tripodal carboxylate subunits pillared by 4,4′-bpy ligands. Apart from the structural investigation, the photocatalytic performances of both the coordination polymers to photodecompose an aqueous solution of methyl violet (MV) were examined. The results indicated that both the CPs displayed the potential to photodecompose aromatic dyes and in particular 2 showed good photocatalytic activity for dye degradation under light irradiation. The photocatalytic mechanism through which these CPs executed degradation of dyes has been explained with the assistance of band gap calculations using density of states (DOS) and its decomposed partial DOS calculations.

Two new Zn(ii) coordination polymers having semi-rigid V-shaped polycarboxylate ligands were synthesized and their photocatalytic performances to photodegrade methyl violet were assessed.  相似文献   

5.
The reduction behavior of Fe3+ during the preparation of a zero-valent iron cocoanut biochar (ZBC8-3) by the carbothermic reduction method was analyzed. Fe3+ was first converted into Fe3O4, which was subsequently decomposed into FeO, and finally reduced to Fe0. A minor amount of γ-Fe2O3 was produced in the process. The isothermal thermodynamic data for the removal of Cu(ii) over ZBC8-3 followed a Langmuir model. The Langmuir equation revealed a maximum removal capacity of 169.49 mg g−1 at pH = 5 for ZBC8-3. The removal of Cu(ii) over ZBC8-3 fitted well to a pseudo-first-order equation, which suggested that the rate limiting step of the process was diffusion. The Cu(ii) removal mechanism on ZBC8-3 involved the reduction of Cu(ii) by Fe0 to produce Cu0 and Cu2O, while C Created by potrace 1.16, written by Peter Selinger 2001-2019 C, C–O–, and –O–H formed a complex with Cu(ii).

The Cu(ii) removal mechanism on ZBC8-3 involved the reduction of Cu(ii) by Fe0 to produce Cu0 and Cu2O, while C Created by potrace 1.16, written by Peter Selinger 2001-2019 C, C–O–, –O–H formed a complex with Cu(ii).  相似文献   

6.
Four new coordination polymers, {[Zn(3-PBI)(H2O)]·2DMF}n (1), [Cd(3-PBI)(DMF)]n (2), {[Zn44-O)(4-PBI)3]·3DMF}n (3), {[Cd4(4-PBI)4(H2O)6]·13H2O}n (4), have been constructed from two isomeric flexible multi-carboxylate ligands, 3-H2PBI = 5-(3-(pyridin-3-yl)benzamido)isophthalic acid and 4-H2PBI = 5-(3-(pyridin-4-yl)benzamido)isophthalic acid. Structural analysis reveals that compound 1 is a one-dimensional (1D) ladder-like chain assembled by Zn(ii) ions and 3-PBI2− ligands, which further extend into a 3D supramolecular structure through π⋯π stacking and interlayer (O–H⋯O) hydrogen bonding interactions. In compound 2, Cd2+ metal ions are connected by carboxylate groups to form [Cd2(COO)4] secondary building units (SBUs). The whole framework possesses a quadrilateral channel and constitutes a unique 3D (3,6)-connected rutile net with the Schläfli symbol of (42·610·83)(4·62)2. As for 3, Zn(ii) ions are bridged by one μ4-O and six carboxylate groups to form a tetranuclear [Zn44-O)(COO)6] cluster, resulting in a rare (3,9)-connected 3D network. Compound 4 has an appealing 2D layered architecture involving two distinct topologies in the crystal structure, stacking in an unusual ABBABB mode (where A represents (4·82) topology and B denotes kgd topology). Moreover, compound 2 is prepared as a support for active selenium through a melt-diffusion method. The obtained Cd-CP/Se electrode can be tested for lithium–selenium batteries and shows an initial capacity of 514 mA h g−1 and a reversible capacity of 200 mA h g−1 at 1C after 500 cycles. The good storage performance of Cd-CP/Se demonstrates it to be a prospective cathode material for lithium–selenium batteries.

Four new coordination polymers were constructed and compound 2 was used as a host to active selenium for Li–Se batteries.  相似文献   

7.
A two-dimensional luminescent cadmium(ii) coordination polymer, [Cd(modbc)2]n (Cd-P); modbc = 2-methyl-6-oxygen-1,6-dihydro-3,4′-bipyridine-5-carbonitrile, was successfully synthesized by a solvothermal reaction and fully characterized. Cd-P exhibited excellent luminescence emission, and detected Cu2+, Co2+, Fe2+, Hg2+, Ni2+ and Fe3+ ions with high sensitivity and showed good anti-interference performance. After encapsulation of Tb3+ ions in Cd-P, the as-obtained fluorescent functionalized Tb3+@Cd-P maintained distinct chemical stabilities in different pHs and metal salt solutions. Subsequently, we explored the potential application of Tb3+@Cd-P as a probe for Fe3+ ions. A new and convenient method for individual identification of Fe3+ ions by the combination of Cd-P and Tb3+@Cd-P was successfully established. A possible sensing mechanism is discussed in detail.

A new and convenient method for individual identification of Fe3+ ions by the combination of Cd-P and Tb3+@Cd-P was successfully established.  相似文献   

8.
Cage metal complexes iron(ii) clathrochelates, which are inherently CD silent, were discovered to demonstrate intensive output in induced circular dichroism (ICD) spectra upon their assembly to albumins. With the aim to design clathrochelates as protein-sensitive CD reporters, the approach for the functionalization of one chelate α-dioximate fragment of the clathrochelate framework with two non-equivalent substituents was developed, and constitutional isomers of clathrochelate with two non-equivalent carboxyphenylsulfide groups were synthesized. The interaction of designed iron(ii) clathrochelates and their symmetric homologues with globular proteins (serum albumins, lysozyme, β-lactoglobulin (BLG), trypsin, insulin) was studied by protein fluorescence quenching and CD techniques. A highly-intensive ICD output of the clathrochelates was observed upon their association with albumins and BLG. It was shown that in the presence of BLG, different clathrochelate isomers gave spectra of inverted signs, indicating the stabilization of opposite configurations (Λ or Δ) of the clathrochelate framework in the assembly with this protein. So, we suggest that the isomerism of the terminal carboxy group determined preferable configurations of the clathrochelate framework for the fixation in the protein binding site. MALDI TOF results show the formation of BLG–clathrochelate complex with ratio 1 : 1. Based on the docking simulations, the binding of the clathrochelate molecule (all isomers) to the main BLG binding site (calyx) in its open conformation is suggested. The above results point that the variation of the ribbed substituents at the clathrochelate framework is an effective tool to achieve the specificity of clathrochelate ICD reporting properties to the target protein.

Method of asymmetric mono-ribbed functionalization of iron(ii) clathrochelates is developed, new compounds are studied as ICD reporters for globular proteins.  相似文献   

9.
A Cd(ii)-based coordination compound, [CdI2(4-nvp)2] (1), has been synthesized using CdI2 and monodentate N-donor ligand 4-(1-naphthylvinyl)pyridine (4-nvp). The solid-state supramolecular architecture has been characterized by X-ray crystallography. An acute thermal stability and excellent level of phase purity tempted us to use it for material applications. Interestingly, compound 1 exhibits a high selectivity towards trinitrophenol (TNP) in the presence of other nitroaromatics. Therefore, this material may be used for anti-terrorist activities in the detection of explosive materials as well as in the recognition of TNP in analytical laboratories.

A Cd(ii)-based coordination compound, [CdI2(4-nvp)2] (1), has been synthesized using CdI2 and monodentate N-donor ligand 4-(1-naphthylvinyl)pyridine (4-nvp).  相似文献   

10.
Three novel coordination compounds based on α,α-disubstituted analogues of zoledronic acid with a cyclopropane (cpp) or cyclobutane (cbt) ring on the Cα carbon, isomorphous [Co(H2cppZol)(H2O)]·H2O (1a), [Ni(H2cppZol)(H2O)]·H2O (1b) and [Co(H2cbtZol)(H2O)]·H2O (2a), were synthesized under hydrothermal conditions at low pH. Single-crystal X-ray diffraction analysis revealed that all the compounds had a 1D double zig–zag chain architecture with an 8 + 8 ring motif formed by alternately arranged symmetrical (–O–P–O–)2 bridges linking equivalent octahedral metal centres. Both the ligand coordination mode and chain architecture displayed by 1a, 1b and 2a are unique among 1D [M(H2L)(H2O)xyH2O coordination polymers based on nitrogen-containing bisphosphonates reported so far. All the compounds exhibit similar decomposition pathways upon heating with thermal stabilities decreasing in the order 1b > 1a > 2a. The IR spectra revealed that lattice water release above 227, 178 and 97 °C, respectively, does not change the chain architecture leaving them intact up to ca. 320, 280 and 240 °C. Magnetic behaviour investigations indicated that 1a, 2a and 1b exhibit weak alternating antiferromagnetic–ferromagnetic exchange interactions propagated between the magnetic centres through double (–O–P–O–)2 bridges. The boundary between antiferro- and ferromagnetic couplings for the Co–O⋯O–Co angle in 1a and 2a was estimated to be ca. 80°. This value is also applicable for recently reported [M3(HL)2(H2O)6]·6H2O (M = Co, Ni) complexes based on α,α-disubstituted analogues of zoledronic acid and can be used to the explain magnetic behaviour of 1b.

1D Co(ii)/Ni(ii) coordination polymers with alternating antiferromagnetic–ferromagnetic exchange interactions between metal centers propagated through double (–O–P–O–)2 bridges.  相似文献   

11.
The development of Ru(ii) complexes as luminescent probes has attracted increasing attention in recent decades. In this study, the nanosized polymers of two Ru(ii) complexes [Ru(phen)2(dppz)](ClO4)2 (1, phen = 1,10-phenanthrolin; dppz = dipyrido[3,2-a:2′,3′-c]phenazine) and [Ru(phen)2(Br-dppz)](ClO4)2 (2, Br-dppz = 11-bromodipyrido[3,2-a:2′,3′-c]phenazine) with oligonucleotides were prepared and investigated as potential tumor-imaging probes. The formation of the nanosized polymers, which had an average width of 125–438 nm and an average height of 3–6 nm, for 1 and 2@oligonucleotides were observed through atomic force microscopy. The emission spectra indicated that the luminescence of 1 and 2 markedly increased after binding to oligonucleotides and double-strand DNA (calf thymus DNA), respectively. Moreover, further studies indicated that 1@oligonucleotides and 2@oligonucleotides can easily enter into tumor cells and selectively highlight the tumor area in the zebrafish bear xenograft tumor (MDA-MB-231). In summary, this study demonstrated that 1@oligonucleotides and 2@oligonucleotides could be developed as potential tumor-imaging luminescent probes for clinical diagnosis and therapy.

Ru(ii)@oligonucleotide nanoparticles can be developed as potential tumor selective tracker and have potential applications of tumor targeting imaging.  相似文献   

12.
Electrorheological (ER) fluid, containing polarized particles within an insulating liquid, represents a smart material, the mechanical properties of which can be altered mainly by an electric field. In this work, ER fluids based on cauliflower iron(ii) oxalate doped titanium particles show excellent rheological and wetting properties by the sample co-precipitation method. The morphology of the particles is observed by SEM and the molecular structure within the particles is obtained via XRD and FTIR. The distribution of elements within the particles is obtained by EDS. Owing to a lower current density than pure iron(ii) oxalate, the SEM and optical images show an obvious chain-like structure within the ER fluids with 2 wt% and 5 wt%, respectively, under 2 kV mm−1. Then, the rheological properties of these ER fluids are tested up to 3 kV mm−1 and the results show a gratifying property of resisting shear with different shear rates (0.1–100 s−1), which is attributed to the appearance of a stable chain-like structure. At the same time, the ER efficiency and the switching performance are obtained and the static yield stress fits the relevant electric field strength well. Ultimately, an excellent sedimentation ratio is obtained from 0 h to 600 h.

Electrorheological (ER) fluid, containing polarized particles within an insulating liquid, represents a smart material, the mechanical properties of which can be altered mainly by an electric field.  相似文献   

13.
In this study, a crosslinked yeast/β-cyclodextrin polymer (Y–β-CDP), for use as an effective adsorbent for removal Pb(ii) and Cd(ii) ions from aqueous solution, has been innovatively prepared by grafting β-cyclodextrin (β-CD) onto the surface of baker''s yeast (BY) and thiomalic acid as a crosslinker. Several characterization techniques, such as SEM equipped with an EDS analyzer, FTIR, XRD, and XPS were employed characterize the Y–β-CDP. The impact of various operating parameters, such as pH, adsorbent dosage, initial concentration of metal ions, contact time and solution temperature, as well as adsorption kinetics, isotherms and thermodynamics were systematically investigated. The adsorption of Pb(ii) and Cd(ii) on Y–β-CDP reached equilibrium in 25 min, and the kinetic process conforms to the pseudo-second order model. The Langmuir model was used to describe the adsorption isotherm data better than the Freundlich model. The predicted maximum adsorption capacity at 25 °C for Pb(ii) and Cd(ii) was 150.08 and 102.80 mg g−1, respectively, when the initial concentration of metal ions was 120 mg L−1. The thermodynamic analysis revealed that the adsorption procedure of Pb(ii) and Cd(ii) onto Y–β-CDP was spontaneous and endothermic. Furthermore, regeneration experiments demonstrated that Y–β-CDP had excellent recyclability. Together, all results suggested that Y–β-CDP could potentially be a promising adsorbent in the purification of water contaminated with heavy metal ions.

A cross-linked yeast/β-cyclodextrin polymer (Y–β-CDP) was synthesized to remove Pb(ii) and Cd(ii) from aqueous solution.  相似文献   

14.
Two new Zn(ii) coordination complexes, formulated as [Zn(opda)(pbib)] (1) and [Zn(ppda)(pbib)(H2O)] (2), (H2opda = 1,2-phenylenediacetic acid, H2ppda = 1,4-phenylene-diacetic acid, pbib = 1,4-bis(1-imidazoly)benzene), have been synthesized. The opda ligands extend a 1D chain containing (Zn-pbib) polymer chains into a 2D layer in 1. In 2, the ppda ligands link Zn(ii) atoms to form a 2D network, then the rigid bis(imidazole) ligands give rise to the 3D structure. The fluorescence property application and mechanisms of two complexes for detecting Cr2O72− and o-NP have been researched. For two complexes, the high quenching percentage in low concentration aqueous solution are 95.75% (Cr2O72−, 1), 95.28% (Cr2O72−, 2) and 97.56% (o-NP, 1), 96.59% (o-NP, 2). Compared with 2, complex 1 has higher quenching percentage, this could be because 1 is a 3D supramolecular with a large hole. The detection limits have been measured to be 2.992 × 10−7 M (Cr2O72−, 1), and 4.372 × 10−7 M (Cr2O72−, 2), 2.103 × 10−7 M (o-NP, 1), 1.862 × 10−7 M (o-NP, 2), respectively. The emissions of two complexes could be effectively and selectively quenched by o-NP and Cr2O72−, showing their potential as multi-responsive luminescent sensors.

Two zinc(ii) complexes exhibit the different architectures, and they have been shown to be excellent discriminative probe for the highly selective and sensitive detection of Cr2O72− and o-NP based on their sensitive fluorescence quenching.  相似文献   

15.
To develop the biomimetic chemistry of [NiFe]-H2ases, the first azadithiolato-bridged NiFe model complexes [CpNi{(μ-SCH2)2NR}Fe(CO)(diphos)]BF4 (5, R = Ph, diphos = dppv; 6, 4-ClC6H4, dppv; 7, 4-MeC6H4, dppv; 8, CO2CH2Ph, dppe; 9, H, dppe) have been synthesized via well-designed synthetic routes. Thus, treatment of RN[CH2S(O)CMe]2 with t-BuONa followed by reaction of the resulting intermediates RN(CH2SNa)2 with (dppv)Fe(CO)2Cl2 or (dppe)Fe(CO)2Cl2 gave the N-substituted azadithiolato-chelated Fe complexes [RN(CH2S)2]Fe(CO)2(diphos) (1, R = Ph, diphos = dppv; 2, 4-ClC6H4, dppv; 3, 4-MeC6H4, dppv; 4, CO2CH2Ph, dppe). Further treatment of 1–4 with nickelocene in the presence of HBF4·Et2O afforded the corresponding N-substituted azadithiolato-bridged NiFe model complexes 5–8, while treatment of 8 with HBF4·Et2O resulted in formation of the parent azadithiolato-bridged model complex 9. While all the new complexes 1–9 were characterized by elemental analysis and spectroscopy, the molecular structures of model complexes 6–8 were confirmed by X-ray crystallographic study. In addition, model complexes 7 and 9 were found to be catalysts for H2 production with moderate icat/ip and overpotential values from TFA under CV conditions.

The first azadithiolato-bridged NiFe model complexes with a general formula [CpNi{(μ-SCH2)2NR}Fe(CO)(diphos)]BF4 have been synthesized, characterized, and for some of them found to be catalysts for proton reduction to H2 under CV conditions.  相似文献   

16.
Deep eutectic solvents (DESs) were used as alternatives to the aqueous phase in solvent extraction of iron(iii), zinc(ii) and lead(ii). The selective extraction of iron(iii) and zinc(ii) was studied from a feed of ethaline (1 : 2 molar ratio of choline chloride : ethylene glycol) and lactiline (1 : 2 molar ratio of choline chloride : lactic acid), with the former DES being more selective. A commercial mixture of trialkylphosphine oxides (Cyanex 923, C923) diluted in an aliphatic diluent selectively extracted iron(iii) from a feed containing also zinc(ii) and lead(ii). The subsequent separation of zinc(ii) from lead(ii) was carried out using the basic extractant Aliquat 336 (A336). The equilibration time and the extractant concentration were optimized for both systems. Iron(iii) and zinc(ii) were stripped using 1.2 mol L−1 oxalic acid and 0.5 mol L−1 aqueous ammonia, respectively. An efficient solvometallurgical flowsheet is proposed for the separation and recovery of iron(iii), lead(ii) and zinc(ii) from ethaline using commercial extractants. Moreover, the process was upscaled in a countercurrent mixer-settler set-up resulting in successful separation and purification.

Deep eutectic solvents (DESs) were used as alternatives to the aqueous phase in solvent extraction of iron(iii), zinc(ii) and lead(ii).  相似文献   

17.
Vapochromic Pt(ii) complexes that exhibit color and luminescence changes induced by the presence of vapor molecules have drawn considerable attention because of their potential use as vapor sensors. Generally, the vapochromic responsiveness of Pt(ii)-based complexes is difficult to envisage, because a typical molecular design facilitates the stabilization of a vapor-adsorbed form through weak intermolecular interactions. Herein, we investigate the vapochromic behavior of a Pt(ii) complex with potassium ions, which act as vapor coordination sites, by strongly stabilizing the vapor-adsorbed form. Upon exposure to N,N-dimethylacetamide and N,N-dimethylformamide vapors, the complex exhibits crystal structural transformation with luminescence spectral changes. Crystal structural analysis indicates that the vapor molecules are coordinated to the potassium ions after vapor exposure. This study suggests the possibility of inducing Pt(ii)-based vapochromic responsiveness through establishing potassium-ion-based vapor coordination sites.

A luminescent Pt(ii) complex with potassium ions was successfully synthesized and its coordination-based vapochromic behavior was investigated.  相似文献   

18.
New and stable coordinated compounds have been isolated in a good yield. The chelates have been prepared by mixing Co(ii), Ni(ii), Cu(ii), and Cd(ii) metal ions with (1E)-1-((6-methyl-4-oxo-4H-chromen-3-yl)methylene)thiocarbonohydrazide (MCMT) in 2 : 1 stoichiometry (MCMT : M2+). Various techniques, including elemental microanalyses, molar conductance, thermal studies, FT-IR, 1H-NMR, UV-Vis, and XRD spectral analyses, magnetic moment measurements, and electrical conductivity, were applied for the structural and spectroscopic elucidation of the coordinating compounds. Further, computational studies using the DFT-B3LYP method were reported for MCMT and its metal complexes. MCMT behaves as a neutral NS bidentate moiety that forms octahedral complexes with general formula [M(MCMT)2Cl(OH2)]Cl·XH2O (M = Cu2+; (X = ½), Ni2+, Co2+; (X = 1)); [Cd(MCMT)2Cl2]·½H2O. There is good confirmation between experimental infrared spectral data and theoretical DFT-B3LYP computational outcomes where MCMT acts as a five-membered chelate bonded to the metal ion through azomethine nitrogen and thiocarbonyl sulphur donors. The thermal analysis is studied to confirm the elucidated structure of the complexes. Also, the kinetic and thermodynamic parameters of the thermal decomposition steps were evaluated. The measured optical band gap values of the prepared compounds exhibited semiconducting nature. AC conductivity and dielectric properties of the ligand and its complexes were examined, which showed that Cu(ii) complex has the highest dielectric constant referring to its high polarization and storage ability.

New and stable coordinated compounds have been isolated in a good yield.  相似文献   

19.
Bentonite is a porous clay material that shows good performance for adsorbing heavy metals and other pollutants for wastewater remediation. However, it is very difficult to separate the bentonite from water after adsorption as it forms a stable suspension. In this paper, we prepared magnetic bentonite (M-B) by loading Fe3O4 particles onto aluminum-pillared bentonite (Al-B) in order to facilitate its removal from water. The functional groups, skeleton structure, surface morphology and electrical changes of the prepared material were investigated by FT-IR, XRD, BET, SEM, VSM and zeta potential measurements. It was used as an adsorbent for Hg(ii) removal from aqueous solutions and the influence of various parameters on the adsorption performance was investigated. The adsorption kinetics were best fitted by the pseudo-second-order model, and also followed the intra-particle diffusion model up to 18 min. Moreover, adsorption data were successfully reproduced by the Langmuir isotherm, and the Hg(ii) adsorption saturation capacity was determined as 26.18 mg g−1. The average adsorption free energy change calculated by the D-R adsorption isotherm model was 11.89 kJ mol−1, which indicated the occurrence of ionic exchange. The adsorption thermodynamic parameter ΔH was calculated as 42.92 kJ mol−1, which indicated chemical adsorption. Overall, the thermodynamic parameters implied that Hg(ii) adsorption was endothermic and spontaneous.

Bentonite is a porous clay material that shows good performance for adsorbing heavy metals in wastewater remediation. Magnetic bentonite (M-B) was prepared and it was successfully used as an adsorbent to remove Hg(ii) from aqueous solutions in this paper.  相似文献   

20.
Three transition metal complexes (MC) namely, [TpMeMeCuCl(H2O)] (CuC), [TpMeMeNiCl] (NiC), and [TpMeMeFeCl2(H2O)] (FeC) {TpMeMe = tris(3,5-dimethylpyrazolyl)borate} were synthesized and structurally characterized. The three complexes CuC, NiC, and FeC-modified glassy carbon (GC) were examined as molecular electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution (0.1 M KOH). Various GC-MC electrodes were prepared by loading different amounts (ca. 0.2–0.8 mg cm−2) of each metal complex on GC electrodes. These electrodes were used as cathodes in aqueous alkaline solutions (0.1 M KOH) to efficiently generate H2 employing various electrochemical techniques. The three metal complexes'' HER catalytic activity was assessed using cathodic polarization studies. The charge-transfer kinetics of the HER at the (GC-MC)/OH interface at a given overpotential were also studied using the electrochemical impedance spectroscopy (EIS) technique. The electrocatalyst''s stability and long-term durability tests were performed employing cyclic voltammetry (repetitive cycling up to 5000 cycles) and 48 h of chronoamperometry measurements. The catalytic evolution of hydrogen on the three studied MC surfaces was further assessed using density functional theory (DFT) simulations. The GC-CuC catalysts revealed the highest HER electrocatalytic activity, which increased with the catalyst loading density. With a low HER onset potential (EHER) of −25 mV vs. RHE and a high exchange current density of 0.7 mA cm−2, the best performing electrocatalyst, GC-CuC (0.8 mg cm−2), showed significant HER catalytic performance. Furthermore, the best performing electrocatalyst required an overpotential value of 120 mV to generate a current density of 10 mA cm−2 and featured a Tafel slope value of −112 mV dec−1. These HER electrochemical kinetic parameters were comparable to those measured here for the commercial Pt/C under the same operating conditions (−10 mV vs. RHE, 0.88 mA cm−2, 108 mV dec−1, and 110 mV to yield a current density of 10 mA cm−2), as well as the most active molecular electrocatalysts for H2 generation from aqueous alkaline electrolytes. Density functional theory (DFT) simulations were used to investigate the nature of metal complex activities in relation to hydrogen adsorption. The molecular electrostatic surface potential (MESP) of the metal complexes was determined to assess the putative binding sites of the H atoms to the metal complex.

Three transition metal complexes (MC) namely, [TpMeMeCuCl(H2O)] (CuC), [TpMeMeNiCl] (NiC), and [TpMeMeFeCl2(H2O)] (FeC) {TpMeMe = tris(3,5-dimethylpyrazolyl)borate} were synthesized and structurally characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号