首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient anode materials with porous structures have drawn increasing attention due to their high specific surface area, which can compensate for the slow reaction rate of electrochemical oxidation. However, the use of these materials is often limited due to their poor corrosion resistance. Herein, we report a facile scale-up method, by carbothermal reduction, for the preparation of porous niobium carbide to be used as an anode for the electrochemical oxidation of phenol in water. No niobium ions were detected when the anodes were under aggressive attack by sulfuric acid and under electrochemical corrosion tests with a current density less than 20.98 mA cm−2. The porous niobium carbide was further modified by applying a ruthenium oxide coating to improve its catalytic activity. The removal rates of phenol and chemical oxygen demand by the RuO2/NbC anode reached 1.87 × 10−2 mg min−1 cm−2 and 6.33 × 10−2 mg min−1 cm−2, respectively. The average current efficiency was 85.2%. Thus, an anti-corrosion, highly catalytically active and energy-efficient porous RuO2/NbC anode for the degradation of aqueous phenol in wastewater was successfully prepared.

Efficient anode materials with porous structures have drawn increasing attention due to their high specific surface area, which can compensate for the slow reaction rate of electrochemical oxidation.  相似文献   

2.
Spent lithium batteries contain valuable metals such as cobalt, copper, nickel, lithium, etc. After pretreatment and recovery of copper, only cobalt, nickel and lithium were left in the acid solution. Since the chemical properties of cobalt and nickel are similar, separation of cobalt from a solution containing nickel is technically challenging. In this study, Co(ii) was separated from Ni(ii) by chelating Co(ii) with chlorine ions, Co(ii) was then extracted from the aforementioned chelating complexes by methyltrioctylammonium chloride (MTOAC). The effects of concentrations of chlorine ions in the aqueous phase ([Cl]aq), MTOAC concentrations in organic phase ([MTOAC]org), ratios of organic phase to aqueous phase (O/A), and the initial aqueous pH on cobalt separation were studied. The results showed that [Cl]aq had a significant impact on cobalt extraction efficiency with cobalt extraction efficiency increasing rapidly with the increase in [Cl]aq. The effect of initial pH on cobalt extraction efficiency was not significant when it varied from 1 to 6. Under the condition of [Cl]aq = 5.5 M, [MTOAC]org = 1.3 M, O/A = 1.5, and pH = 1.0, cobalt extraction efficiency reached the maximum of 98.23%, and nickel loss rate was only 0.86%. The stripping rate of cobalt from Co(ii)–MTOAC complexes using diluted hydrochloric acid was 99.95%. By XRD and XRF analysis, the recovered cobalt was in the form of cobalt chloride with the purity of cobalt produced reaching 97.7%. The mode of cobalt extraction was verified to be limited by chemical reaction and the kinetic equation for cobalt extraction was determined to be: R(Co) = 4.7 × 10−3[MTOAC](org)1.85[Co](aq)1.25.

Interception of dearomatized tertiary boronic ester in a diastereoselective [4 + 2] cycloaddition or 1,3-borotopic shift in the presence or absence of “naked” Li+, understanding reactivities by activation/strain model, were evaluated by DFT calculations.  相似文献   

3.
Cobalt sulfide@reduced graphene oxide composites were prepared through a simple solvothermal method. The cobalt sulfide@reduced graphene oxide composites are composed of cobalt sulfide nanoparticles uniformly attached on both sides of reduced graphene oxide. Some favorable electrochemical performances in specific capacity, cycling performance, and rate capability are achieved using the porous nanocomposites as an anode for lithium-ion batteries. In a half-cell, it exhibits a high specific capacity of 1253.9 mA h g−1 at 500 mA g−1 after 100 cycles. A full cell consists of the cobalt sulfide@reduced graphene oxide nanocomposite anode and a commercial LiCoO2 cathode, and is able to hold a high capacity of 574.7 mA h g−1 at 200 mA g−1 after 200 cycles. The reduced graphene oxide plays a key role in enhancing the electrical conductivity of the electrode materials; and it effectively prevents the cobalt sulfide nanoparticles from dropping off the electrode and buffers the volume variation during the discharge–charge process. The cobalt sulfide@reduced graphene oxide nanocomposites present great potential to be a promising anode material for lithium-ion batteries.

Cobalt sulfide@reduced graphene oxide nanocomposites obtained through a dipping and hydrothermal process, exhibit ascendant lithium-ion storage properties.  相似文献   

4.
In this research paper, the equilibrium isotherms for the adsorption of cobalt(ii)nitrate and cobalt(ii)chloride on tetrakis(4-tolylphenyl)porphyrin (H2TTPP) were obtained at four temperatures for modeling analysis. The experimental data describing the adsorbed quantity of cobalt particles were measured using the quartz crystal microbalance (QCM) strategy. Then, statistical physics formalism was employed to interpret the complexation mechanism by applying the real gas law that contemplates the interaction between the adsorbate particles in the free state. Advanced models treated with the law of van der Waals were applied for the single and L.B.L adsorptions of Co2+ at various temperatures (288–318 K). The experimental adsorption data of CoCl2 on porphyrins were satisfactorily fitted with the monolayer equation, showing that the chlorine particles had no effect on the complexation system, while the nitrate particles were involved in the adsorption of Co(NO3)2 and contributed to the layer formation. The physicochemical parameters of statistical physics models were estimated and used to compare the complexation mechanisms of both adsorbates. The study of the cohesion pressure (a) and the co-volume (b) confirmed that cobalt chloride guaranteed more stability during the formation of the vitamin B12 nucleus. Deeper energetic analysis demonstrated that cobalt ions were complexed by ionic or covalent bonds in the case of cobalt chloride (complexation energy (–E1/2) varies from −48.2 to −50.3), while a physisorption process took place in the case of cobalt nitrate ((–E1) varies from −33.6 to −36.1), thus indicating that CoCl2–H2TTPP was the most stable complex. The statistical physics models were also used to investigate two thermodynamic functions that govern the adsorption mechanisms, namely, the configurational entropy and the Gibbs free enthalpy.

Quartz Crystal Microbalance (QCM) setup for the measurement of adsorption isotherms of cobalt(ii)nitrate and cobalt(ii)chloride on tetrakis(4-tolylphenyl)porphyrin (H2TTPP).  相似文献   

5.
In this paper, three-dimensional mesoporous calcium carbonate–silica frameworks have been created from the straw tufa (ST) originating from porous fossil bryophyte by a thermal activation technique. A batch of adsorption kinetic and thermodynamic experiments were used to investigate the adsorption capacity of Cd(ii) onto the samples. The ST after thermal activation has shown a significant ability for the uptake of heavy metals. It exhibited maximum adsorption capacities of 12.76 mg g−1, 14.09 mg g−1, 17.00 mg g−1, and 33.81 mg g−1 for Cd(ii) at the activation temperature of 300, 450, 600 and 750 °C, respectively. Through competitive adsorption for Cd(ii)and Pb(ii), the ST thermally activated at 750 °C exhibited maximum equilibrium adsorption capacities of 24.65 mg g−1, 25.91 mg g−1, and 30.94 mg g−1 for Cd(ii) uptake at 298.1 K, 308.1 K and 318.1 K, respectively, whereas it exhibited values of 91.59 mg g−1, 101.32 mg g−1, and 112.19 mg g−1 for Pb(ii) removal. The adsorption capacities of Cd(ii) and Pb(ii) both decrease with the addition of the other heavy metal cations, indicating that the adsorption is hindered by the competitive adsorption and the adsorption active sites on the mineral surface are readily exchangeable. The adsorption of Cd(ii) and Pb(ii) followed the pseudo-second order kinetics model well. In addition, the Langmuir model could accurately describe the adsorption isotherms. Based on the results of characterization with TEM, XRD and XPS, the adsorption mechanisms could be primarily explained as formation of Cd(OH)2 and CdCO3 as well as Cd(HCO3)2 precipitation on the surface of ST. These characteristics of ion-exchange and the adsorptive property for ST modified allow it to be widely used in artificial wetland landfill and environmental protection.

Three-dimensional mesoporous calcium carbonate–silica frameworks have been created and have shown excellent adsorption capacities for Cd(ii) and Pb(ii).  相似文献   

6.
Mercury(ii) ions act as catalyst in the substitution of cyanide ion in hexacyanoruthenate(ii) by pyrazine (Pz) in an acidic medium. This property of Hg(ii) has been utilized for its determination in aqueous solutions. The progress of reaction was followed spectrophotometrically by measuring the increase in absorbance of the yellow colour product, [Ru(CN)5Pz]3− at 370 nm (λmax, ε = 4.2 × 103 M−1 s−1) under the optimized reaction conditions; 5.0 × 10−5 M [Ru(CN)64−], 7.5 × 10−4 M [Pz], pH 4.00 ± 0.02, ionic strength (I) = 0.05 M (KCl) and temp. 45.0 ± 0.1 °C. The proposed method is based on the fixed time procedure under optimum reaction conditions. The linear regression (calibration) equations between the absorbance at fixed times (t = 15, 20 and 25 min) and [Hg(ii)] were established in the range of 1.0 to 30.0 × 10−6 M. The detection limit was found to be 1.5 × 10−7 M of Hg(ii). The effect of various foreign ions on the proposed method was also studied and discussed. The method was applied for the determination of Hg(ii) in different wastewater samples. The present method is simple, rapid and sensitive for the determination of Hg(ii) in trace amount in the environmental samples.

Mercury(ii) ions act as catalyst in the substitution of cyanide ion in hexacyanoruthenate(ii) by pyrazine (Pz) in an acidic medium.  相似文献   

7.
In this study, raw attapulgite and two aluminium hydroxide-modified attapulgites prepared using different aluminium salts were calcined at 600 °C to successfully prepare three novel adsorbents (C-ATP, C-ATP-SO42− and C-ATP-Cl). The three adsorbents were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis and X-ray photoelectron spectroscopy (XPS). Batch experiments revealed that the Cd(ii) adsorption capacity of the three adsorbents increased with increasing pH, increasing the initial concentration of Cd(ii) in solution, and with longer adsorption times. The order of adsorption capacity was always C-ATP > C-ATP-Cl > C-ATP-SO42−. C-ATP and C-ATP-Cl were better described by the Langmuir model, while C-ATP-SO42− was better described by the Freundlich model. The three adsorbents reached adsorption equilibrium within 2 h, and all followed pseudo-second order kinetics. The adsorption of Cd(ii) onto the three adsorbents was physisorption, as suggested by the calculated thermodynamic parameters. Although the adsorption of Cd(ii) on C-ATP and C-ATP-Cl was exothermic, the adsorption on C-ATP-SO42− was endothermic. Ion exchange and cadmium precipitation were the primary mechanisms of cadmium adsorption on the three adsorbents analysed by XPS. The presence of SO42− in C-ATP-SO42− may result in weaker binding of Cd(ii) by the adsorbent than C-ATP-Cl.

Schematic illustration about the synthetic route of the C-ATP, C-ATP-SO42− and C-ATP-Cl for the adsorption of Cd(ii).  相似文献   

8.
The extraction ability of 1,3-diaminocalix[4]arene (2: H2L) toward platinum group metals (PGMs) has been investigated, which revealed that 2 is able to extract Pd(ii) and Pt(ii) from hydrochloric acid via different extraction modes. The extraction species for Pd(ii) and Pt(ii) are [PdL] and [Pt2Cl6(H3L)2], respectively, as evidenced by equilibrium analysis and X-ray crystallography. In [PdL], the two phenoxide oxygens and two amino nitrogens of L2− coordinate to the Pd ion. On the other hand, in [Pt2Cl6(H3L)2], two anionic trichloro complexes PtCl3 are sandwiched between two H3L+, in which one amino nitrogen directly coordinates to a PtCl3 species and another protonated amino group forms an ion pair with another PtCl3. Utilizing the different extraction modes, switching of the extraction selectivity has been achieved in the competitive extraction between Pd(ii) and Pt(ii) by varying the concentrations of H+ and Cl in the aqueous phase. Finally, from the extracted organic phase, back-extraction of Pd(ii) and Pt(ii) was easily performed, respectively.

1,3-Diaminocalix[4]arene shows extraction ability toward Pd(ii) and Pt(ii), the selectivity of which can be switched by changing the concentrations of H+ and Cl in the aqueous phase.  相似文献   

9.
A novel macroscale porous structure electrode, molybdenum carbide nanoparticles-modified carbonized cotton textile (Mo2C/CCT), was synthesized by a facile two-step method and used as an anode material for high-performance microbial fuel cells (MFCs). The characterization results show that the carbonized cotton textile modified with Mo2C nanoparticles offers a great specific surface area (832.17 m2 g−1) for bacterial adhesion. The MFC using Mo2C/CCT anode delivers the maximum power density of 1.12 W m−2, which is 51% and 116% higher than that of CCT and unmodified carbon felt anodes under the same conditions. The high power density is mainly due to the Mo2C nanoparticles with good biocompatibility and high conductivity and superior electrochemical activity, as well as the macroscale porous structure of carbonized cotton textile, which facilitate the formation of electroactive biofilm and improve the electron transfer. This paper introduces a feasible way to synthesize cost-effective and high-performance anode materials for MFCs.

A novel macroscale porous structure electrode, molybdenum carbide nanoparticles-modified carbonized cotton textile (Mo2C/CCT), was synthesized by a facile two-step method and used as anode material for high-performance microbial fuel cell (MFC).  相似文献   

10.
Flavonoids are used as natural additives and antioxidants in foods, and after coordination to metal ions, as drug candidates, depending on the flavonoid structure. The rate of radical scavenging of the ubiquitous plant flavonoid kaempferol (3,5,7,4′-tetrahydroxyflavone, Kaem) was found to be significantly enhanced by coordination of Mg(ii), Ca(ii), Sr(ii), and Ba(ii) ions, whereas the radical scavenging rate of apigenin (5,7,4′-trihydroxyflavone, Api) was almost unaffected by alkaline earth metal (AEM) ions, as studied for short-lived β-carotene radical cations (β-Car˙+) formed by laser flash photolysis in chloroform/ethanol (7 : 3) and for the semi-stable 2,2-diphenyl-1-picrylhydrazyl radical, DPPH˙, in ethanol at 25 °C. A 1 : 1 Mg(ii)–Kaem complex was found to be in equilibrium with a 1 : 2 Mg(ii)–Kaem2 complex, while for Ca(ii), Sr(ii) and Ba(ii), only 1 : 2 AEM(ii)–Kaem complexes were detected, where all complexes showed 3-hydroxyl and 4-carbonyl coordination and stability constants of higher than 109 L2 mol−2. The 1 : 2 Ca(ii)–Kaem2 complex had the highest second order rate constant for both β-Car˙+ (5 × 108 L mol−1 s−1) and DPPH˙ radical (3 × 105 L mol−1 s−1) scavenging, which can be attributed to the optimal combination of the stronger electron withdrawing capability of the (n − 1)d orbital in the heavier AEM ions and their spatially asymmetrical structures in 1 : 2 AEM–Kaem complexes with metal ion coordination of the least steric hindrance of two perpendicular flavone backbones as ligands in the Ca(ii) complex, as shown by density functional theory calculations.

Radical scavenging activity of kaempferol is notably enhanced by Ca(ii) binding.  相似文献   

11.
A facile and green method was adopted to synthesize highly selective gum acacia-mediated silver nanoparticles as dual sensor (fluorescence turn-on and colorimetric) for Hg(ii) and fluorescence turn-off sensor for S2− and malachite green. The mechanism proposed for a dual response towards Hg(ii) is the redox reaction between Ag(0) and Hg(ii), resulting in the formation of Ag(i) and Hg(0) and electron transfer from gum acacia to Ag(i), which further leads to the formation of an Ag@Hg nanoalloy. The enhanced fluorescence signal was quenched selectively by S2− owing to the formation of Ag2S and HgS. The reported nanosensor was found to be useful for sensing malachite green via the inner filter effect. The linear ranges were 3 nmol L−1 to 13 μmol L−1 for Hg(ii), 3–170 μmol L−1 for S2− and 7–80 μmol L−1 for malachite green, and the corresponding detection limits were 2.1 nmol L−1 for Hg(ii), 1.3 μmol L−1 for S2− and 1.6 μmol L−1 for malachite green.

Gum acacia-stabilized silver nanoparticles for the detection of Hg(ii), S2− and malachite green.  相似文献   

12.
Due to the toxicity of lead(ii) to all living organisms as it destroys the central nervous system leading to circulatory system and brain disorders, the development of effective and selective lead(ii) ionophores for its detection is very important. In this work, 1,3-bis[2-(N-morpholino)acetamidophenoxy]propane (BMAPP), belonging to acyclic diamides, was applied as a highly selective lead(ii) ionophore in a carbon paste ion selective electrode for the accurate and precise determination of Pb(ii) ions even in the presence of other interfering ions. Factors affecting the electrode''s response behavior were studied and optimized. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and FT-IR spectroscopy were used for studying the morphology and response mechanism of the prepared sensor. The lipophilicity of the used ionophore, which contributes to the mechanical stability of the sensor, was studied using the contact angle measurement technique. The selectivity coefficients obtained by the separate solution method (SSM) and fixed interference method (FIM) confirmed the selectivity of the proposed sensor for Pb(ii) ions. The proposed sensor exhibited a Nernstian slope of 29.96 ± 0.34 mV per decade over a wide linear range of 5 × 10−8 to 1 × 10−1 mol L−1 and detection limit of 3 × 10−8 mol L−1 for 2 months with a fast response time (<10 s) and working pH range (2.5–5.5). To further ensure the practical applicability of the sensor, it was successfully applied for the lead(ii) ion determination in different water samples and the obtained data showed an agreement with those obtained by atomic absorption spectroscopy. In addition, it was successfully applied for the potentiometric titration of Pb(ii) against K2CrO4 and Na2SO4.

Due to the toxicity of lead(ii) to all living organisms destroying the central nervous system and leading to circulatory system and brain disorders, the development of effective and selective lead(ii) ionophores for its detection is very important.  相似文献   

13.
New selective and sensitive electrochemical sensors were designed based on the deposition of a promising ion imprinted polymer (IIP) on the surface of glassy carbon electrode (GCE) for the detection and monitoring of Cd(ii) in different real samples. Herein, a highly selective Cd-imprinted polymer was successfully synthesized using a novel heterocyclic compound based on the benzo[f]chromene scaffold that acted as a complexing agent and a functional monomer in the presence of azobisisobutyronitrile (initiator) and ethylene glycol dimethacrylate (cross-linker). The characterization of the synthesized chelating agent and IIP was performed using FT-IR, SEM, 1H-NMR, EIMS, and EDX analyses. After that, the voltammetric sensor was manufactured by introducing graphene oxide (GO) on the surface of GCE; then, the IIP was grown by a drop coating technique. The electrochemical characterization of the voltammetric sensor (IIP/GO@GCE) was performed by CV and EIS. For comparison, the potentiometric sensor was also prepared by embedding IIP in plasticized polyvinyl chloride and depositing it as one layer on the GCE surface. Anodic stripping voltammetry was used to construct the calibration graph; the IIP/GO@GCE exhibited a wider detection range (4.2 × 10−12–5.6 × 10−3 mol L−1) and extremely low detection limit (7 × 10−14 mol L−1) for Cd(ii). Meanwhile, the potentiometric sensor showed a linear calibration curve for Cd(ii) over a concentration range from 7.3 × 10−8 mol L−1 to 2.4 × 10−3 mol L−1 with a detection limit of 6.3 × 10−10 mol L−1. Furthermore, both sensors offered outstanding selectivity for Cd(ii) over a wide assortment of other common ions, high reproducibility, and excellent stability.

New selective and sensitive electrochemical sensors were designed based on the deposition of a promising ion imprinted polymer (IIP) on the surface of glassy carbon electrode (GCE) for the detection and monitoring of Cd(ii) in different real samples.  相似文献   

14.
This paper discusses the sorption characteristics of Pb(ii) and U(vi) on magnetic and nonmagnetic rice husk biochars. The porosity, specific surface area, hydrophobility, and reusability of biochar were effectively improved (1–2 times) after magnetic modification. The optimum adsorption conditions were as follows: biochar loading was 0.4 g L−1, pH value was 7.0, and anion strength of NO3 and PO43− were 0.01 mol L−1 for Pb(ii) and 0.04 mol L−1 for U(vi) respectively. Compared with U(vi), Pb(ii) had the faster adsorption rate and higher adsorption capacity on magnetic biochar (MBC). The adsorption experimental data were well fitted by pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption capacity of Pb(ii) and U(vi) on MBC was 129 and 118 mg g−1 at 328 K respectively, which was significantly higher than that of other sources biochars. Pb(ii) was mainly bonded to biochar by physisorption but the adsorption of U(vi) on biochar was mostly chemisorption. Fe oxides in MBC noticeably improved the ion exchange and complexation action between biochar and metal ion especially for U(vi). The experimental results confirmed MBC material can be used as a cost-effective adsorbent for the removal of Pb(ii) and U(vi) and can be separated easily from aqueous solution when application.

This paper discusses the sorption characteristics of Pb(ii) and U(vi) on magnetic and nonmagnetic rice husk biochars.  相似文献   

15.
Direct and indirect antioxidant activities of rosmarinic acid (RA) based on HOO˙/CH3OO˙ radical scavenging and Fe(iii)/Fe(ii) ion chelation were theoretically studied using density functional theory at the M05-2X/6-311++G(2df,2p) level of theory. First, four antioxidant mechanisms including hydrogen atom transfer (HAT), radical adduct formation (RAF), proton loss (PL) and single electron transfer (SET) were investigated in water and pentyl ethanoate (PEA) phases. Regarding the free radical scavenging mechanism, HAT plays a decisive role with overall rate coefficients of 1.84 × 103 M−1 s−1 (HOO˙) and 4.49 × 103 M−1 s−1 (CH3OO˙) in water. In contrast to PL, RAF and especially SET processes, the HAT reaction in PEA is slightly more favorable than that in water. Second, the [Fe(iii)(H2O)6]3+ and [Fe(ii)(H2O)6]2+ ion chelating processes in an aqueous phase are both favorable and spontaneous especially at the O5, site-1, and site-2 positions with large negative ΔrG0 values and great formation constant Kf. Finally, the pro-oxidant risk of RA was also considered via the Fe(iii)-to-Fe(ii) complex reduction process, which may initiate Fenton-like reactions forming reactive HO˙ radicals. As a result, RA does not enhance the reduction process when ascorbate anions are present as reducing agents, whereas the pro-oxidant risk becomes remarkable when superoxide anions are found. The results encourage further attempts to verify the speculation using more powerful research implementations of the antioxidant activities of rosmarinic acid in relationship with its possible pro-oxidant risks.

Direct and indirect antioxidant activities of rosmarinic acid (RA) based on HOO˙/CH3OO˙ radical scavenging and Fe(iii)/Fe(ii) ion chelation were theoretically studied using density functional theory at the M05-2X/6-311++G(2df,2p) level of theory.  相似文献   

16.
Caffeic acid (CA), as a natural plant-derived polyphenol, has been widely used in surface coating technology in recent years due to its excellent properties. In this work, caffeic acid was introduced into the preparation of photonic band gap materials. By controlling the variables, a reasonable preparation method of polystyrene (PS) @polycaffeic (PCA)–Cu(ii) core–shell microspheres was achieved: 1 mmol L−1 cupric chloride anhydrous (CuCl2), 3 mmol L−1 sodium perborate tetrahydrate (NaBO3·4H2O), 2 mmol L−1 CA and 2 g L−1 polystyrene (PS) were reacted at 50 °C for 10 min to prepare PS@PCA–Cu(ii) core–shell microspheres through rapid oxidative polymerization of CA coated PS of different particle diameters. The amorphous photonic crystal structure was self-assembled through thermal assisted-gravity sedimentation, resulting in structural color nanomaterials with soft and uniform color, no angle dependence, stable mechanical fastness and excellent UV resistance.

Caffeic acid (CA), as a natural plant-derived polyphenol, has been widely used in surface coating technology in recent years due to its excellent properties.  相似文献   

17.
Modified aluminum scrap waste was used in the selective extraction of Hg(ii), and Cd(ii) ions. The aluminum scraps were modified with dibenzoylmethane, or isatoic anhydride, or 5-(2-chloroacetamide)-2-hydroxybenzoic acid. The modified aluminum sorbents were characterized by FT-IR, SEM, XRD, XPS, TGA, and elemental analysis. Modes of chelation between adsorbents and target metal ions were deduced via DFT. The highest adsorption capacity was observed for benzo-amino aluminum (BAA) toward Hg(ii), which reached 234.56 mg g−1, while other modified sorbents ranged from 135.28 mg g−1 to 229.3 mg g−1. Under the optimized conditions, the BAA adsorbent showed a lower limit of detection (1.1 mg L−1) and limit of quantification (3.66 mg L−1) for mercury ions than other sorbents. The prepared aluminum adsorbents also exhibited significant selectivities for Hg(ii) and Cd(ii) ions in the presence of competing metal ions.

Modified aluminum scrap waste was used in the selective extraction of Hg(ii), and Cd(ii) ions.  相似文献   

18.
Pyrrole and cobalt nitrate were used as nitrogen and metal sources respectively to synthesize a dinitratobis(polypyrrole)cobalt(ii) (Co(polypyrrole)2(NO3)2) adduct as the precursor of a Co–pyrrole/MPC catalyst. Pyrrole has the capability of polymerization and coordination with Co(ii). Taking this advantage, the Co(polypyrrole)2(NO3)2 coordination can form a long-chain structure with abundant and robust Co–N bonds, contributing to significantly increased catalytic sites in the product catalyst. As a result, the obtained Co–pyrrole/MPC (MPC = macroporous carbon) catalyst exhibited high ORR catalytic activity in alkaline media and excellent performance in direct borohydride fuel cell (DBFC). A peak power density up to 325 mW cm−2 was achieved at ambient condition, outperforming the commercialized Pt/XC-72 benchmark containing 28.6 wt% Pt. The construction of long-chain coordination precursor was verified playing a key role in the electrochemical improvement of Co–pyrrole/MPC catalyst in DBFC.

Co–pyrrole/MPC was synthesized by using pyrrole and cobalt nitrate as nitrogen and metal source, which enabled a higher peak power density than the commercialized 28.6 wt% Pt/XC72 in DBFC.  相似文献   

19.
In the present study, g-C3N4 with various morphologies was successfully synthesized via a variety of facile in situ methods. The as-prepared products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and X-ray diffraction (XRD). The results obtained using square wave anodic stripping voltammetry (SWASV) showed that when g-C3N4 was applied as an electrochemical sensor, it exhibited excellent sensitivity and selectivity for the detection of heavy metal ions including Pb(ii), Cu(ii) and Hg(ii). Compared to nanoporous graphitic carbon nitride (npg-C3N4) and g-C3N4 nanosheet-modified glass carbon electrode (GCE), g-C3N4 successfully realized the individual and simultaneous detection of four target heavy ions for the first time. In particular, g-C3N4 displayed significant electrocatalytic activity towards Hg(ii) with a good sensitivity of 18.180 μA μM−1 and 35.923 μA μM−1 under the individual and simultaneous determination conditions, respectively. The sensitivity for simultaneous determination was almost 2 times that of the individual determination. Moreover, the fabricated electrochemical sensor showed good anti-interference, stability and repeatability; this indicated significant potential of the proposed materials for application in high-performance electrochemical sensors for the individual and simultaneous detection of heavy metal ions.

In the present study, g-C3N4 with various morphologies was successfully synthesized via a variety of facile in situ methods.  相似文献   

20.
Cobalt disulfides with high theoretical capacity are regarded as appropriate anode materials for sodium ion batteries (SIBs), but their intrinsically low conductivity and large volume expansion lead to a poor electrochemical performance. In this work, graphitic carbon coated CoS2 nanoparticles are encapsulated in bamboo-like carbon nanotubes by pyrolysis and sulfidation process. Graphitic carbon can improve the electrical conductivity and prevent the agglomeration of CoS2 nanoparticles. Meanwhile, bamboo-like carbon nanotubes can serve as conductive skeleton frames to provide rapid and constant transport pathways for electrons and offer void space to buffer the volume change of CoS2 nanoparticles. The advanced anode material exhibits a long-term capacity of 432.6 mA h g−1 at 5 A g−1 after 900 cycles and a rate capability of 419.6 mA h g−1 even at 10 A g−1 in the carbonate ester-based electrolyte. This avenue can be applicable for preparing other metal sulfide/carbon anode materials for sodium-ion batteries.

The outstanding electrochemical performance is ascribed to the novel structure design of CoS2@GC@B-CNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号