首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
Several microfluidic applications are available for liquid metal droplet generation, but the surface oxidation of liquid metal has placed limitations on its application. Multiphase microfluidics makes it possible to protect the inner droplets by producing the structure of double emulsion droplets. Thus, the generation of liquid metal double emulsion droplets has been developed to prevent the surface oxidation of Galinstan. However, the generation using common methods faces considerable challenges due to the gravity effect introduced from the high density of liquid metal, making it difficult for the shell phase to wrap the inner phase. To overcome this obstacle, we introduce an innovative method – a gravity-induced microfluidic device – to creatively generate controllable liquid metal double emulsion droplets, achieved by altering the measurable inclination angle of the plane. It is found that when the inclination angle ranges from 30° to 45°, the device manages to generate liquid metal double emulsion droplets with perfect double sphere-type configuration. Additionally, the core–shell liquid metal hydrogel capsules present potential applications as multifunctional materials for controlled release systems in drug delivery and biomedical applications. By regulating pH or imposing mechanical force, the hydrogel shell can be dissolved to recover the electrical conductivity of Galinstan for applications in flexible electronics, self-healing conductors, elastomer electronic skin, and tumor therapy.

An innovative method – a gravity-induced microfluidic device – to generate liquid metal double emulsion droplets to prevent the formation of an oxide layer on the liquid metal is introduced.  相似文献   

2.
The synergistic effect of oil viscosity and oil droplet size on the deposition profile of oil on cotton fabric was studied using polydimethylsiloxane (PDMS) as a model oil-in-water emulsion system. Under the same preparation conditions, low viscosity PDMS produced emulsions containing small droplets, which resulted in a uniform surface deposition profile, whilst high viscosity PDMS resulted in a localised deposition profile. Interfacial phenomena such as wicking and penetration of PDMS into cotton fabrics were found to be viscosity-dependent, which agrees with the surface deposition data. Both mechanical characterisation (friction, compression, stiffness) and consumer evaluation confirm that the fabrics treated by the emulsion containing low viscosity PDMS were preferred, suggesting that a homogeneous surface deposition and an excellent penetration profile of PDMS are critical for maximising tactile sensorial benefits, which could be accomplished by optimising the emulsion formulation to contain oil of low viscosity and small PDMS droplets.

The synergistic effect of oil viscosity and oil droplet size on the deposition profile of oil on cotton fabric was studied using polydimethylsiloxane (PDMS) as a model oil-in-water emulsion system.  相似文献   

3.
Application of droplet microfluidics for the encapsulation of bacteria in water-in-oil-in-water (W/O/W) emulsion allows for production of monodisperse droplets with controllable size. In this study the release of bacteria from W/O/W emulsion, the effect of the double emulsion structure on bacterial growth and metabolic activity, and the stability and mechanism of bacterial release were investigated. W/O/W emulsions were formed using a double flow-focusing junction microfluidic device under controlled pressure to produce droplets of approximately 100 μm in diameter containing an inner aqueous phase (W1) of about 40–50 μm in diameter. GFP-labelled Escherichia coli (E. coli-GFP) bacteria were encapsulated within the W1 droplets and the stability of emulsions was studied by monitoring droplet size and creaming behaviour. The double emulsions were stabilised using a hydrophilic (Tween 80) and a lipophilic surfactant (polyglycerol polyricinoleate) and were destabilised by altering the osmotic balance, adding NaCl either in the inner W1 phase (hypo-osmotic) or outer W2 phase (hyper-osmotic). The release of E. coli-GFP was monitored by plating on agar whereby the colony form unit (CFU) of the released bacteria was determined while fluorescent microscopy was employed to observe the mechanism of release from the droplets. The release of E. coli-GFP was significantly increased with higher concentrations of NaCl and lower amounts of Tween 80. Microscopic observation revealed a two-step mechanism for the release of bacteria: double W/O/W emulsion droplet splitting to release W1 droplets forming a secondary double emulsion followed by the collapse of W1 droplets to release E. coli-GFP into the continuous aqueous phase.

Encapsulation enhanced viability and metabolic activity. Nutrients can cross the oil layer. Bacterial release increased while emulsion stability decreased at high osmotic pressure and low surfactant concentration. Two-step release mechanism observed.  相似文献   

4.
Ultrasound-mediated delivery systems have mainly focused on microbubble contrast agents as carriers of drugs or genetic material. This study uses micron-sized, perfluoropentane (PFP) emulsions as carriers of chlorambucil (CHL), a lipophilic chemotherapeutic. The release of CHL is achieved via acoustic droplet vaporization (ADV), whereby the superheated emulsion is converted into gas bubbles using ultrasound. Emulsions were made using an albumin shell and soybean oil as the CHL carrier. The ratio of the PFP to soybean oil phases in the droplets and the fraction of droplets that vaporize per ultrasound exposure were shown to correlate with droplet diameter. A 60-min incubation with the CHL-loaded emulsion caused a 46.7% cellular growth inhibition, whereas incubation with the CHL-loaded emulsion that was exposed to ultrasound at 6.3 MHz caused an 84.3% growth inhibition. This difference was statistically significant (p < 0.01), signifying that ADV can be used as a method to substantially enhance drug delivery. (E-mail: mfabiill@umich.edu)  相似文献   

5.
Terrace-based microfluidic devices are currently used to prepare highly monodisperse micro-droplets. Droplets are generated due to the spontaneous pressure drop induced by the Laplace pressure, and so the flow rate of a dispersed phase has little effect on droplet size. As a result, control over the droplet is limited once a step emulsification device has been fabricated. In this work, a terrace model was established to study the effect of the wall contact angle on droplet size based on computational fluid dynamics simulations. The results for contact angles from 140° to 180° show that a lower contact angle induces wall-wetting, increasing the droplet size. The Laplace pressure equations for droplet generation were determined based on combining pressure change curves with theoretical analyses, to provide a theoretical basis for controlling and handling droplets generated through step emulsification.

A study on the effects of wall contact angle makes it more flexible to predict and control the size of droplets generated in step emulsification.  相似文献   

6.
Oil-in-water Pickering emulsions are stabilized by in situ functionalization of hydrophilic silica nanoparticles with two organosilane precursors of opposite polarity, dodecyltriethoxysilane (DTES) and 3-(aminopropyl)triethoxysilane (APTES), in a two-step emulsification procedure. The modification of the silica nanoparticles is verified by Fourier transform infrared (FTIR) spectroscopy analysis. The stabilization of the oil droplets by silica is confirmed by tracing the localization of the colloidal silica nanoparticles at the oil–water interface, as observed by confocal fluorescence microscopy. In comparison to modification of the silica nanoparticles prior to the emulsification, in situ functionalization of silica with both organosilanes achieves enhanced emulsion stability and homogeneity, by forming a polysiloxane network between the silica nanoparticles, through polymerization of the organosilanes in the presence of water. The polysiloxane network fixes the silica in place as solid shells around the emulsion droplets, in structures called colloidosomes. These colloidosome shell structures are visualized using confocal microscopy and cryogenic scanning electron microscopy, the latter method successfully enables the direct observation of the silica nanoparticles embedded in the polysiloxane matrix around the oil droplets. Stabilizing the Pickering emulsion droplets and forming silica-based colloidosome shells is dependent on the extent of the hydrolysis and polycondensation reaction of the two organosilanes.

Oil-in-water Pickering emulsions are stabilized by in situ functionalization of hydrophilic silica nanoparticles with two organosilane precursors of opposite polarity in a two-step emulsification procedure.  相似文献   

7.
This work discusses the possibility of designing multilayer oil-in-water emulsions to introduce the maximum possible amount of an antioxidant at the droplet interfaces for the optimal protection of a linseed oil core against oxidation, using a systematic three-step colloidal procedure. An antioxidant (here Tannic Acid – TA) is chosen and its interactions with a primary emulsifier (here Bovine Serum Albumin – BSA) and several polysaccharides are first examined in solution using turbidity measurements. As a second step, LbL deposition on solid surfaces is used to determine which of the polysaccharides to combine with BSA and tannic acid in a multilayer system to ensure maximum presence of tannic acid in the films. From UV-vis and polarization modulation infrared reflection–absorption (PM-IRRAS) spectroscopic measurements it is suggested that the best components to use in a multilayer emulsion droplet, together with BSA and TA, are chitosan and pectin. BSA, chitosan and pectin are subsequently used for the formation of three-layer linseed oil emulsions, and tannic acid is introduced into any of the three layers as an antioxidant. The effect of the exact placement of tannic acid on the oxidative stabilization of linseed oil is assessed by monitoring the fluorescence of Nile red, dissolved in the oil droplets, under the attack of radicals generated in the aqueous phase of the emulsion. From the results it appears that the three-stage procedure presented here can serve to identify successful combinations of interfacial components of multilayer emulsions. It is also concluded that the exact interfacial placement of the antioxidant plays an important role in the oxidative stabilization of the valuable oil core.

Three-step method optimizes multilayer emulsion for maximum tannic acid (TA) amount at surfaces. (1) TA–emulsifier bulk interactions assessed. (2) LbL films built for optimal TA presence. (3) Emulsions built as per LbL design and TA action evaluated.  相似文献   

8.
We developed a rapid and simple method to fabricate microfluidic non-planar axisymmetric droplet generators using 3D printed fittings and commercially available components. 3D printing allows facile fabrication of microchannels albeit with limitations in the repeatability at low resolutions. In this work, we used 3D printed fitting to arrange the flow in the axisymmetric configuration, while the commercially available needles formed a flow-focusing nozzle as small as 60 μm in diameter. We assembled 3D printed fitting, needle, and soft tubes as different modules to make a single droplet generator. The design of our device allowed for reconfiguration of the modules after fabrication to achieve customized generation of droplets. We produced droplets of varying diameters by switching the standard needles and the minimum diameter of droplet obtained was 332 ± 10 μm for 34 G (ID = 60 μm). Our method allowed for generating complex emulsions (i.e. double emulsions and compartmented emulsions) by adding 3D printed sub-units with the fluidic connections. Our approach offered characteristics complementary to existing methods to fabricate flow-focusing generators. The standardized needles serving as a module offered well-defined dimensions of the channels not attainable in desktop 3D printers, while the 3D printed components, in turn, offered a facile route to reconfigure and extend the flow pattern in the device. Fabrication can be completed in a plug-and-play manner. Overall, the technology we developed here will provide a standard approachable route to generate customized microfluidic emulsions for specific applications in chemical and biological sciences.

We developed a rapid method to prototype axisymmetric droplet generators using 3D printed fittings and commercially available components. This simple method allowed generating simple and complex emulsions of varying sizes and configurations.  相似文献   

9.
Water-in-oil-in-water double emulsions (W/O/W) consist of dispersed oil globules containing smaller aqueous droplets. These materials offer interesting possibilities for the controlled release of chemical species initially entrapped in the internal droplets. A better understanding of the stability conditions and release properties in double emulsions requires the use of model systems with a well-defined droplet size. In this paper, we use quasi-monodisperse double emulsions made of calibrated water droplets and oil globules to investigate the two mechanisms that are responsible for the release of a chemical substance (NaCl). (i) One is due to the coalescence of the thin liquid film separating the internal droplets and the globule surfaces. (ii) The other mechanism termed as 'compositional ripening' occurs without film rupturing; instead it occurs by diffusion and/or permeation of the chemical substance across the oil phase. By varying the proportions and/or the chemical nature of the surface active species it is possible to shift from one mechanism to the other one. We therefore study separately both mechanisms and we establish some basic rules that govern the behavior of W/O/W double emulsions.  相似文献   

10.
W/O/W emulsions are expected to protect bioactive substances from degradation by pancreatic enzymes. We investigated the enzymatic hydrolysis of the oil phase and release of a marker substance from the inner-aqueous phase to the outer-aqueous phase using an artificial digestive fluid. Octanoic acid triacylglycerol (C8TG) was used as the oil phase. W/O/W emulsions were prepared by two-step homogenization and succeeding membrane filtration. When the artificial digestive fluid containing lipase and gall was added to the emulsion, release of the marker substance from the inner-phase solution, oil-phase hydrolysis, and emulsion coalescence occurred in that order. When a coarse emulsion and 0.2- and 0.8-microm membrane-filtered fine emulsions were treated with the fluid for 1 h, the degrees of C8TG hydrolysis were 3.8%, 55% and 57%, the fractions of the marker substance released from the inner-water phase were 2.7%, 89% and 72%, and the median diameters of the oil droplets were changed from 32 to 23 microm, 0.71 to 27 microm, and from 2.2 to 26 microm, respectively. These results suggested that the diameter of the oil droplets in the W/O/W emulsion significantly affected the release profile of the marker loaded in the inner-water phase of the emulsion.  相似文献   

11.
The mechanism of release of two fluorescent markers, fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) and fluorescein, from water-in-oil-in-water (w/o/w) emulsions was investigated using a rapid and sensitive method based on fluorescence-activated cell sorting (FACS). The release of FITC-BSA from a w/o/w emulsion was controlled by diffusion rather than by simple breakdown of the multiple droplets or by formation of reverse micelles in the oil phase. In contrast, the release of fluorescein from a double emulsion was controlled by formation of reverse micelles rather than by diffusion or simple breakdown of multiple droplets. A significant difference in the yield and fraction of FITC-BSA and fluorescein released from double emulsions was observed due to their different molecular structure and properties. The yield of FITC-BSA incorporation in a double emulsion increased with increasing FITC-BSA concentration in the internal water phase, while the yield of fluorescein decreased with increasing concentration. The fraction of FITC-BSA released from a w/o/w emulsion after 24 h decreased with an increasing concentration of FITC-BSA in the internal phase. The w/o/w emulsion with internalized FITC-BSA was more stable than that with fluorescein, indicating its further application for sorting or enriching size-controlled double droplets that contained genes and water-soluble drugs.  相似文献   

12.
The emulsification is the first step of the emulsification solvent evaporation method and has been extensively investigated. On the contrary the second step, the solvent transport out from the emulsion droplets that determine the particle morphology and with great influence on the microparticles encapsulation and release behavior has been scarcely studied. This study investigates the mechanism of the solvent elimination from the emulsion droplets and its influence on the particle morphology, encapsulation and release behavior. Usually, the solvent is highly volatile that makes the solvent elimination process very fast thus difficult to observe. In order to observe in detail the microparticle formation, the initial emulsion was monitored by optical microscope under controlled solvent evaporation conditions. The results from the optical microscopic observations corroborated with laser diffractometry analysis showed that in single emulsion formulations, spherical microparticles are formed by accelerated solvent elimination due to the combined effects of high solvent volatility and polymer precipitation. The solvent expulsion accompanied by important shrinkage generates on the microparticle surface a thin layer of nanoparticles attested by scanning electron microscopy and laser diffractometry. During the intense solvent elimination, the encapsulated substance is drained, affecting the loading efficiency. Furthermore, it will concentrate towards the microparticle surface contributing to the initial burst release. In double emulsion formulations, microparticles with different morphologies are generated due to the presence of the aqueous-phase microdroplets inside the emulsion droplet. During the solvent elimination, these microdroplets generally coalesce under the pressure of the precipitating polymer. Depending mainly on the polymer concentration and emulsification energies, the final microparticles will be a mixture of honeycomb, capsule or plain structure. During the shrinkage due to the incompressibility of the inner microdroplets, the precipitating polymer wall around them may break forming holes through which the encapsulated substance is partly expulsed. Through these holes, the encapsulated substance is further partitioning with the external aqueous phase during solvent evaporation and contributes to the initial burst release during the application.  相似文献   

13.
The objective of this paper is to propose a surface modification method for preparing PDMS microfluidic devices with partially hydrophilic–hydrophobic surfaces for generating double emulsion droplets. The device is designed to be easy to use without any complicated preparation process and also to achieve high droplet encapsulation efficiency compared to conventional devices. The key component of this preparation process is the permanent chemical coating for which the Pluronic surfactant is added into the bulk PDMS. The addition of Pluronic surfactant can modify the surface property of PDMS from a fully hydrophobic surface to a partially hydrophilic–hydrophobic surface whose property can be either hydrophilic or hydrophobic depending on the air- or water-treatment condition. In order to control the surface wettability, this microfluidic device with the partially hydrophilic–hydrophobic surface undergoes water treatment by injecting deionized water into the specific microchannels where their surface property changes to hydrophilic. This microfluidic device is tested by generating monodisperse water-in-oil-in-water (w/o/w) double emulsion micro-droplets for which the maximum droplet encapsulation efficiency of 92.4% is achieved with the average outer and inner diameters of 75.0 and 57.7 μm, respectively.

(a) Droplet encapsulation efficiency & inner and outer diameters of water-in-oil-in-water droplets at various frequency ratios and flow rate ratios and (b) Images of water-in-oil-in-water droplets over a frequency-ratio range of fr = 0.73–1.30  相似文献   

14.
Formulation optimization of the water-in-oil-in-water multiple emulsion incorporating insulin was performed based on statistical methods such as the orthogonal experimental design and the response surface evaluation. As model formulations, 16 types of emulsions were prepared according to the orthogonal experimental design. To optimize the formulation, the influence of causal factors such as amounts of gelatin, insulin, oleic acid (OA) and the volume ratio of the outer aqueous phase to total and agitation time of the second emulsification process on individual characteristics of the emulsion, such as inner droplet size, viscosity, stability and pharmacological effect, was evaluated first. Based on the analysis of ANOVA, it was concluded that the droplet size of the emulsion was influenced by the volume ratio of the outer aqueous phase significantly. The viscosity of the emulsion was affected by these causal factors and their interactions; however, the most predominant contribution of all causal factors was the volume ratio of the outer aqueous phase. Similarly, one of the most important characteristics in the design of the formulation, stability, was affected by the causal factors. With regard to the hypoglycemic effect, the most influential factor was the content of OA in the emulsion. By means of a novel optimization technique involving a multivariate spline interpolation (MSI), formulation optimization was performed with respect to pharmacological effect and stability, and the optimum formulation with a desirable pharmacological effect and high stability was successfully estimated.  相似文献   

15.
The stability and viscoelasticity of an oil-in-water emulsion formed with canola proteins could be significantly improved by heat-induced protein thermal denaturation followed by aggregation at the oil droplet surface. This phenomenon was used to develop emulsion-templated oleogels with improved rheology and used in cake baking. Canola oil (50 wt%)-in-water emulsions stabilized by 1 and 4 wt% canola protein isolates (CPI), prepared by high-pressure homogenization, were dried at 60 °C in a vacuum oven followed by shearing to create the oleogels. Before drying, the emulsions were heated (90 °C for 30 min) to induce protein denaturation. The oleogel from 4 wt% CPI heated emulsions (HE) exhibited the lowest oil loss, highest gel strength, firmness and stickiness compared to all other oleogels. Cake batter prepared with shortening showed the lowest specific gravity, highest viscosity and storage modulus compared to CPI oleogels. Confocal micrographs of shortening cake batters showed smaller air bubbles entrapped in the continuous fat phase. In comparison, the oleogel cake batters showed dispersion of larger air bubbles, oil droplets, and protein aggregates. The oleogel cake showed a darker colour compared to the shortening cake due to the dark colour of CPI. Interestingly, oleogel cakes showed lower hardness, higher cohesiveness and springiness than the shortening cake, which was attributed to the higher cake volume of the former due to the formation of larger air channels stabilized by canola proteins. In conclusion, CPI stabilized emulsion-templated oleogels could be used as a potential shortening replacer in cake and other baking applications.

The stability and viscoelasticity of an oil-in-water emulsion formed with canola proteins could be significantly improved by heat-induced protein thermal denaturation followed by aggregation at the oil droplet surface.  相似文献   

16.
Functionalized alginate microbeads (MB) have been widely used for three-dimensional (3D) culture of cells and creating biomimetic tissue models. However, conventional methods for preparing these MB suffer from poor polydispersity, due to coalescence of droplets during the gelation process and post-aggregation. It remains an immense challenge to prepare alginate MB with narrow size distribution and uniform shape, especially when their diameters are similar to the size of cells. In this work, we developed a simple method to produce monodispersed, cell-size alginate MB through microfluidic emulsification, followed by a controlled shrinkage process and gelation in mineral oil with low concentration of calcium ion (Ca2+). During the gelation process caused by the diffusion of Ca2+ from the oil to water phase, a large amount of satellite droplets with sub-micrometer sizes was formed at the water/oil interface. As a result, each original droplet was transformed to one shrunken-MB with much smaller size and numerous submicron-size satellites. To explore the feasibility of the shrunken-MB for culturing with cells, we have successfully modified a variety of polymer nanofilms on MB surfaces using a layer-by-layer assembly approach. Finally, the nanofilm-modified MB was applied to a 3D culture of GFP-expressing fibroblast cells and demonstrated good biocompatibility.

Cell-size alginate microbeads for 3D cell culture were prepared by microfluidic emulsification and controlled shrinkage, followed by nanofilm modification.  相似文献   

17.
Ultrasound is explored as a method of inducing the release of encapsulated materials from eLiposomes, defined as liposomes containing emulsion droplets. Emulsions were formed using perfluorohexane and perfluoropentane. eLiposomes were formed by folding interdigitated lipid sheets into closed vesicles around the emulsion droplets. Cryogenic transmission electron microscopy was used to verify droplet encapsulation. Self-quenched calcein was also encapsulated inside the vesicles. A fluorometer was used to measure baseline fluorescence, calcein release after ultrasound exposure, and total release from the vesicles. eLiposome samples released 3 to 5 times more of the encapsulated calcein than did controls when exposed to 20-kHz ultrasound. Calcein release increased with exposure time and intensity of ultrasound. eLiposomes with large (400 nm) droplets produced more calcein release than small (100 nm) droplets. These observations suggest that the emulsions are vaporized by ultrasound and that the Laplace pressure in the emulsions has an effect on droplet vaporization.  相似文献   

18.
Two small-scale double emulsion techniques for incorporation of formaldehyde-inactivated rotavirus particles (FRRV) into poly(lactide-co-glycolide) (PLG) microspheres were developed and optimised. The effects of high-speed homogenisation versus vortex mixing on the double emulsion stability, microsphere size, entrapment efficiency and in vitro release of FRRV in the second emulsification step were studied. A stable double emulsion was verified only when using vortex mixing in this step. Slow removal of the organic phase allowed measurement of the size of the emulsion droplets and subsequent prediction of the size of the resulting microspheres. Microspheres in the size range of 1-10 microm were prepared using both techniques. The homogenisation technique was sensitive to changes in the operating time, the emulsification energy and the volume of the outer aqueous phase, while the vortex technique was more robust. Rotavirus was released in vitro in a triphasic manner with both techniques. The more robust vortex technique was selected for preparation of PLG microspheres containing rotavirus for in vivo studies. After immunisation of mice with a single intramuscular injection, the PLG-FRRV microspheres elicited an IgG antibody response in serum detected by ELISA equally high as that elicited with FRRV alone. These results indicate that the antigenicity of FFRV was retained after incorporation into PLG microspheres using the vortex technique.  相似文献   

19.
An emulsion is a thermodynamically unstable system consisting of at least two immiscible liquid phases, one of which is dispersed in the other in the form of droplets of varying size. Most studies on emulsions have focused on the behaviour of emulsion droplets with diameter from ∼50 μm and upwards. However, the properties of smaller droplets may be highly relevant in order to understand the behaviour of emulsions, including their performance in numerous applications within the fields of food, industry, and medical science. The relatively long life-time and small size of these droplets compared to other emulsion droplets, make them suited for optical trapping and micromanipulation technologies. Optical tweezers have previously shown potential in the study of stabilized emulsions. Here we employ optical tweezers to examine unstable oil-in-water emulsions to determine the effects of system parameters on depletion force and coalescence times.

Presented here are ways of producing unstable emulsions and use these in optical tweezers studies to determine the effects of system parameters on droplet depletion force and coalescence time.  相似文献   

20.
BACKGROUND: Artificial oxygen carriers such as perfluorocarbon (PFC) emulsions have reached Phase III clinical trials as alternatives to homologous blood, but their rheologic effects have not been characterized. In this study, the rheologic effects of PFC emulsion in the presence of clinically used volume expanders were investigated. STUDY DESIGN AND METHODS: The effects of a new PFC emulsion (small droplet size with narrow size distribution) at two PFC concentrations (4 and 8 g/dL) on plasma and whole-blood viscosity in the presence of human albumin solution (HAS), hydroxyethyl starch (HES), or modified fluid gelatin (MFG) were investigated. Three hematocrit (Hct) levels were investigated: 30, 20, and 13 percent. Plasma, PFC emulsions, and whole-blood viscosity, with a Couette viscometer, and RBC elongation, with an ektacytometer, were measured for shear rates of 0.2 to 128 per second. RESULTS: The two PFC concentrations increased plasma and whole-blood viscosities. Viscosity values similar to physiologic ones (Hct level, 40%) were observed at: 1) Hct level of 13 percent, with 4 or 8 g per dL MFG-PFC; 2) Hct level of 20 percent, with 4 g per dL MFG-PFC; and 3) Hct level of 30 percent, with 4 g per dL HES-PFC and 4 and 8 g per dL HAS-PFC. RBC deformability was unchanged. CONCLUSION: It is concluded that this new PFC emulsion increases plasma and blood viscosity and that among the three studied volume expanders, the interaction with MFG can result in viscosity values above the physiologic one even at low Hct values. The possible consequences of the increased viscosity at low Hct values are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号