首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A solvometallurgical approach for the recovery of rare-earth elements from lamp phosphor waste was developed. The solubility of individual phosphors in different deep-eutectic solvents (DESs) was measured. The DES levulinic acid–choline chloride (xChCl = 0.33) showed high solubility of the YOX phosphor (Y2O3:Eu3+) and low solubility of the HALO phosphor (Sr,Ca)10(PO4)(Cl,F)2:Sb3+,Mn2+, which does not contain any rare-earth element. This DES was selected for further investigation. When the DES was compared to pure levulinic acid, very similar leaching behaviour was observed, showing that the proton activity is more important than the chloride as a metal ligand. The leaching of YOX and HALO using levulinic acid–choline chloride (xChCl = 0.33) or pure levulinic acid was optimised in terms of water content, temperature and leaching time. The optimised parameters were validated in a synthetic mixture of phosphors and in real lamp phosphor waste. The co-dissolution of HALO is higher in the real waste than in the synthetic mixture. The real waste was also leached with an aqueous solution of hydrochloric acid, which was non-selective against dissolution of YOX, and with the functionalised ionic liquid betainium bis(trifluoromethylsulfonyl)imide. The ionic liquid gave a similar selectivity as levulinic acid, but is much more expensive. The recovery of the metals from the pregnant leach solution was tested via precipitation with oxalic acid and solvent extraction. Oxalic acid precipitation was not suitable for the DES system. The metals could be extracted via solvent extraction with the acidic extractant bis(2-ethylhexyl)phosphoric acid (D2EHPA) and stripped by an aqueous hydrochloric acid solution. Pure levulinic acid was found to be more suitable than the corresponding ChCl-based DES for the selective recovery of YOX.

Yttrium and europium are selectively recovered from spent fluorescent lamps using levulinic acid-based solvents.  相似文献   

2.
Zn and Ge were selectively extracted from zinc oxide dust (ZOD) by the ultrasonic-H2O2 (UH) combined oxidation-leaching process. In the leaching process, the effects of the dosage of H2O2 (6–29.5 mL), ultrasonic power, initial acidity (100–200 g L−1), liquid/solid mass ratio (4–8 : 1), leaching temperature (50–90 °C), and leaching time (30–240 min) on the leaching rates of Zn and Ge were studied. The experimental results showed that the ultrasonic power and the dosage of H2O2 have the greatest influence on the leaching rates of Zn and Ge. The results showed the optimum conditions as: ultrasonic power 200 W, the dosage of H2O2 14.8 mL, initial acidity 160 g L−1, liquid/solid mass ratio 7 : 1, leaching time 60 min, stirring speed 400 rpm, leaching temperature 60 °C, and the leaching rate of Zn and Ge reaches 99.61% and 88.29%, respectively. The leaching rates of Zn and Ge by UH were 7.86% and 5.65% higher than that by conventional leaching (CL), respectively. The experimental results showed that UH leaching technology can improve the rates of Zn and Ge from ZOD, reduce the leaching temperature, save the production cost, solve the problem of low leaching rates of Zn and Ge in ZOD treatment technology, and realize the resource, reduction and harmless treatment of ZOD.

Zn and Ge were selectively extracted from zinc oxide dust (ZOD) by the ultrasonic-H2O2 (UH) combined oxidation-leaching process.  相似文献   

3.
The increase in photovoltaic panel installations in Europe will generate vast amounts of waste in the near future. Therefore, it is important to develop new technologies that allow the recycling of end-of-life photovoltaic panels. This material can serve as a secondary resource, not only for precious metals (e.g. silver), but also for base metals. In this work, the extraction and recovery of the base metals copper, zinc and lead from a copper-rich photovoltaic panel residue was investigated. The material was first leached at 80 °C under microwave irradiation with a mixture of hydrochloric acid, sodium chloride and hydrogen peroxide solutions. Based on the Box–Behnken factorial design optimization, it was possible to extract 81.2% of Cu, 96.4% of Zn and 77.6% of Pb, under the following leaching conditions: [HCl] = 0.5 mol L−1, [NaCl] = 200 g L−1, [H2O2] = 7.5 wt% and t = 60 min. Cementation with iron powder at a 1.2 iron-to-copper stoichiometric ratio allowed the recovery of copper nearly quantitatively (99.8%) as a copper–iron sediment. The gas–liquid separation technique of ion flotation was employed to separate lead and zinc from the dilute copper-free leachate. Cetyltrimethylammonium bromide (CTAB), a cationic surfactant, selectively recovered lead (99.4%) over zinc as lead(ii) tetrachloro cetyltrimethylammonium colloid, after eight ion flotation stages and [CTAB]total = 7.2 mmol L−1. The zinc that remained in the solution after the ion flotation step was recovered by precipitation and by adding sodium sulfide at 110% of the stoichiometric amount after removing iron as ferric hydroxide by slowly raising the pH to 3.7.

Extraction of copper, lead and zinc from photovoltaic panel residue by microwave-assisted chloride leaching, followed by recovery of extracted metals from the pregnant leaching solution by cementation, ion flotation and precipitation.  相似文献   

4.
Correction for ‘Porous monoliths synthesized via polymerization of styrene and divinyl benzene in nonaqueous deep-eutectic solvent-based HIPEs’ by M. G. Pérez-García et al., RSC Adv., 2015, 5, 23255–23260.

The authors regret that there was an error in the results and discussion section of the original article. On page 23257, the text read, “The surfactant employed here was sorbitan monooleate”. This should have read, “The surfactant employed here was sorbitan stearate”.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

5.
Ethylenediaminetetraacetic acid (EDTA) has been widely used as an effective reagent for removal of lead from soil because of its high lead extraction efficiency caused by the high thermodynamic stability of the Pb(ii)–EDTA complex. In this study, EDTA was used as a lixiviant for recovery of lead from residues (matte and slag) of secondary lead smelter plants. The residues were composed mainly of iron (34–66 wt%) and lead (7–11 wt%). Leaching parameters (EDTA concentration, pH, temperature, liquid-to-solid ratio and leaching time) were optimized. The optimum leaching efficiency was achieved when leached for 1 h at room temperature using 0.05 mol L−1 EDTA at a liquid-to-solid ratio of 5 mL g−1. At such conditions, 72 to 80% of lead and less than 1% of iron were leached from both matte and slag. The high selectivity towards lead with minimal co-dissolution of iron is a major advantage since it reduces the chemical consumption and simplifies the downstream processes. Although the stability constants of the complexes Fe(iii)–EDTA, Fe(ii)–EDTA and Pb–EDTA are all large (log KS 25.1, 14.33 and 18.04, respectively), the leaching of iron was most likely limited by its presence in insoluble phases such as iron oxides, sulfides and silicates in the residues. 100% leaching of lead was achieved by a multi-step leaching process where the leaching residues were contacted three times by a fresh EDTA solution. To recover EDTA, first iron was precipitated as iron hydroxide by raising the pH of pregnant leach solution (PLS) above 12.6 using sodium hydroxide, followed by precipitation of lead as lead sulfide by adding ammonium sulfide. The recovered EDTA was successfully reused two times for leaching without significant changes in leaching yields.

Lead was selectively extracted from lead smelter residues as a lead sulfide by EDTA leaching and ammonium sulfide precipitation, with subsequent EDTA recovery and reuse.  相似文献   

6.
Deep eutectic solvents (DESs) were used as alternatives to the aqueous phase in solvent extraction of iron(iii), zinc(ii) and lead(ii). The selective extraction of iron(iii) and zinc(ii) was studied from a feed of ethaline (1 : 2 molar ratio of choline chloride : ethylene glycol) and lactiline (1 : 2 molar ratio of choline chloride : lactic acid), with the former DES being more selective. A commercial mixture of trialkylphosphine oxides (Cyanex 923, C923) diluted in an aliphatic diluent selectively extracted iron(iii) from a feed containing also zinc(ii) and lead(ii). The subsequent separation of zinc(ii) from lead(ii) was carried out using the basic extractant Aliquat 336 (A336). The equilibration time and the extractant concentration were optimized for both systems. Iron(iii) and zinc(ii) were stripped using 1.2 mol L−1 oxalic acid and 0.5 mol L−1 aqueous ammonia, respectively. An efficient solvometallurgical flowsheet is proposed for the separation and recovery of iron(iii), lead(ii) and zinc(ii) from ethaline using commercial extractants. Moreover, the process was upscaled in a countercurrent mixer-settler set-up resulting in successful separation and purification.

Deep eutectic solvents (DESs) were used as alternatives to the aqueous phase in solvent extraction of iron(iii), zinc(ii) and lead(ii).  相似文献   

7.
Solidification/stabilization (S/S) is recognized as an effective technology for solid waste treatment. In S/S, the application of geopolymers synthesized by industrial waste (rich in active silicon and aluminum) to immobilize hazardous waste is a research focus. In this article, a fly ash based geopolymer was used to immobilize lead–zinc slag containing Pb, Ni, Zn and Mn. A fly ash based geopolymer with good mechanical strength was obtained through single factor experiments and the compressive strength of the geopolymer reached 29.72 MPa. The effects of immobilizing lead–zinc slag in the fly ash based geopolymer were discussed by means of compressive strength, leaching test and speciation analysis. The solidification/stabilization mechanism was further investigated using XRD, FTIR and SEM. The mechanical properties of the fly ash based geopolymer were negatively affected by addition of lead–zinc slag, and compressive strength decreased to 8.67 MPa when 60% lead–zinc slag was added. The geopolymer has the ability to reduce toxicity of lead–zinc slag by immobilizing heavy metals (Pb, Ni, Zn and Mn), but the ability was not unlimited. The migration of heavy metals to residual form indicates that heavy metals may either be bonded into the geopolymer matrix via the T–O bond (T = Si, Al) or captured in framework cavities to maintain the charge balance. The NASH (Na2O–Al2O3–SiO2–H2O) gel structure observed by XRD, FTIR and SEM can physically encapsulate the contaminants during geopolymerization. It is finally concluded that heavy metals were immobilized in the fly ash based geopolymer through a combination of chemical bonding and physical encapsulation.

The toxicity of lead–zinc slag was significantly reduced by chemical and physical ways during immobilization.  相似文献   

8.
In our previous work, a citric acid assisted sol–gel method was developed for preparing monolithic metal oxide aerogels. Such method adopted citric acid as the gelator, which replaced the well-studied proton scavenger propylene oxide. In this work, we have further extended this “organic acid assisted” sol–gel method and investigated the gelation mechanism. Four different organic acids (butanedioic acid, l-malic acid, l-aspartic acid and mercaptosuccinic acid) with an identical main chain but different side groups were used as the gelators for preparing monolithic zirconia aerogels. It was found that complex interactions including covalent bond and coordination bond interactions between organic acids and zirconium ions were vital to give a rigid gel network. After supercritical drying, crystalline zirconia aerogels can be obtained with high surface areas over 330 m2 g−1 and large pore volumes over 3.574 cm3 g−1.

The mechanism of the organic acid assisted sol–gel method free of propylene oxide for preparing monolithic zirconia aerogels was investigated in detail.  相似文献   

9.
A natural deep eutectic solvent (NADES) composed of choline chloride (ChCl) and sesamol was successfully employed in the vortex-assisted liquid–liquid microextraction (VALLME) of food toxicant Sudan I (1-phenylazo-2-naphthalenol) in food samples for HPLC-UV analysis. Sesamol-based NADESs exhibited better Sudan I extraction abilities than other deep eutectic solvents and conventional organic solvents. 1H NMR and 2D NOESY spectra were used to characterize the sesamol-based NADESs, indicating that hydrogen bonds were formed between ChCl and sesamol. The developed VALLME method showed a high extraction efficiency (near 100%) within 60 s at room temperature. Under the optimized extraction conditions, this established method showed good linearity (r2 = 1.000) and a low limit of detection (LOD) of 0.02 mg kg−1. The recoveries were in the range of 93–118%, and the intra-day and inter-day precisions were less than 4.5%. The developed method was successfully applied to the determination of Sudan I in various food samples, including chili oil, chili sauce, and duck egg yolk. This method gave a higher recovery than that of the EU recommended method when applied to sample analysis.

A highly efficient vortex-assisted liquid–liquid microextraction based on natural deep eutectic solvent was developed for the determination of Sudan I.  相似文献   

10.
Bimetallic Ni–Sn alloys have been recognised as promising catalysts for the transformation of furanic compounds and their derivatives into valuable chemicals. Herein, we report the utilisation of a supported bimetallic RANEY® nickel–tin alloy supported on aluminium hydroxide (RNi–Sn(x)/AlOH; x is Ni/Sn molar ratio) catalysts for the one-pot conversion of biomass-derived furfural and levulinic acid to 1,4-pentanediol (1,4-PeD). The as prepared RNi–Sn(1.4)/AlOH catalyst exhibited the highest yield of 1,4-PeD (78%). The reduction of RNi–Sn(x)/AlOH with H2 at 673–873 K for 1.5 h resulted in the formation of Ni–Sn alloy phases (e.g., Ni3Sn and Ni3Sn2) and caused the transformation of aluminium hydroxide (AlOH) to amorphous alumina (AA). The RNi–Sn(1.4)/AA 673 K/H2 catalyst contained a Ni3Sn2 alloy as the major phase, which exhibited the best yield of 1,4-PeD from furfural (87%) at 433 K, H2 3.0 MPa for 12 h and from levulinic acid (up to 90%) at 503 K, H2 4.0 MPa, for 12 h. Supported RANEY® Ni–Sn(1.5)/AC and three types of supported Ni–Sn(1.5) alloy (e.g., Ni–Sn(1.5)/AC, Ni–Sn(1.5)/c-AlOH, and Ni–Sn(1.5)/γ-Al2O3) catalysts afforded high yields of 1,4-PeD (65–87%) both from furfural and levulinic acid under the optimised reaction conditions.

The RANEY® Ni–Sn(x) alloy catalysed the one-pot conversion of biomass-derived furfural and levulinic acid to allow remarkable yield of 1,4-pentanediol (up to 90%) under the mild reaction conditions.  相似文献   

11.
In this study, several representative deep eutectic solvents (DESs) were designed to evaluate the solubility for alkali lignin (AL). It was found that DESs with lactic acid (LA) as hydrogen bond donors (HBDs) had good solubility for AL, in which lactic acid(LA) : choline chloride(ChCl) 10 : 1 showed excellent solubility with more than 17 wt% under a relatively mild condition of 60 °C. The results of gel permeation chromatography (GPC), FTIR and 1H and HSQC NMR spectroscopies revealed an important possible dissolution mechanism of AL in LA-ChCl, that is, AL could be depolymerized under the action of LA when dissolved in LA-ChCl. Then, a new connection would form between the phenolic groups on the lignin fragments and ChCl, which is similar to that between ChCl and LA in DES, leading to an increase in the molecule weight of lignin. The new connections could be easily broken under the action of heat (150 °C) or microwave to the redispersion of lignin fragments. The results would provide a theoretic base for the high-value application of lignin in bioresources.

In this study, several representative deep eutectic solvents (DESs) were designed to evaluate the solubility for alkali lignin (AL).  相似文献   

12.
The effects of formic acid, acetic acid and levulinic acid on acetone–butanol–ethanol (ABE) fermentation under different pH adjustment conditions were investigated using Clostridium acetobutylicum as the fermentation strain. CaCO3 supplementation can alleviate the inhibitory effect of formic acid on ABE production. The ABE titers from the medium containing 0.5 g L−1 formic acid with pH adjusted by CaCO3 and KOH were 11.08 g L−1 and 1.04 g L−1, which reached 64.8% and 6.3% of the control group, respectively. Compared with CaCO3 pH adjustment, fermentation results with higher ABE titers and yields were obtained from the medium containing acetic acid or levulinic acid, when the pH was adjusted by KOH. When formic acid, acetic acid, and levulinic acid co-existed in the medium, better fermentation result was achieved by adjusting the pH by CaCO3. Moreover, 12.50 g L−1 ABE was obtained from the medium containing 2.0 g L−1 acetic acid, 0.4 g L−1 formic acid, and 1.0 g L−1 levulinic acid as compared to 3.98 g L−1 ABE obtained from the same medium when the pH was adjusted by KOH. CaCO3 supplementation is a more favorable pH adjustment method for ABE medium preparation from lignocellulosic hydrolysate.

The effects of formic acid, acetic acid and levulinic acid on acetone–butanol–ethanol (ABE) fermentation under different pH adjustment conditions were investigated using Clostridium acetobutylicum as the fermentation strain.  相似文献   

13.
Dephosphorisation of iron ore is an important challenge to the sustainable development of iron-making industry. Hydrometallurgical processing is quite effective in the reduction of phosphorus level from iron ores, where dilute sulfuric acid is commonly chosen as the lixiviant due to its prominent cost-effectiveness. A cheap and effective biosorbent synthesized from garlic peel was proposed in present study to recover phosphorus selectively from acid leach liquor directly under acidic conditions near pH 1–2, allowing high purity phosphorus to be recovered and the residual acid to be recycled for the next round of leaching. This proposal would sharply reduce the dephosphorisation costs of iron ore. Various batch experiments were carried out under different conditions including varying pH, contact time, adsorbent dosages, and metal ion concentration to identify the optimal adsorption parameters for the model solutions. Results showed that the optimal pH for phosphate adsorption was around 1.5 and adsorption equilibrium was attained in 240 min, and the maximum adsorption capacity for phosphate was 1.40 mmol g−1 and 0.81 mmol g−1 at equilibrium pH of 1.5 and 6.5, respectively. A NaOH solution was effective to elute the adsorbed phosphate, and the eluted solution contained mainly Na3PO4 and NaOH. Recovery of phosphorus from the iron ore leach liquor by the garlic peel adsorbent was quite effective, and the adsorption efficiency could retain 85% of the original adsorption capability even after five cycles of adsorption and desorption. In summary, the Zr-loaded garlic peel appears a potential low-cost and effective adsorbent for phosphate recovery from the acid leach liquor of high phosphorus iron ore.

Dephosphorisation of iron ore is an important challenge to the sustainable development of the iron-making industry.  相似文献   

14.
The simple modification of the Schiff-base ligands often brings significant changes in the coordination properties of the metal-complexes, providing newer prospects for their unexplored applications. In this context, the present work utilized the “self-adaptable” acyclic diiminodipyrromethane Schiff''s bases (2a and 2b) for the synthesis of their Zn-based complexes and explored their potential in the ring-opening polymerization of benzoxazines. The two zinc complexes of composition [Zn{(Ph)(CH3)C(2,6-iPr2C6H3–N Created by potrace 1.16, written by Peter Selinger 2001-2019 CH–C4H2N)(2,6-iPr2C6H3–N Created by potrace 1.16, written by Peter Selinger 2001-2019 CH–C4H2NH)}2] (3) and [ZnCl2{(Ph)(CH3)C(Ph3C–NH Created by potrace 1.16, written by Peter Selinger 2001-2019 CH–C4H2N)2}] (4) were synthesized in good yields, and the structures were confirmed by single crystal X-ray diffraction (XRD). Later, zinc complexes (3 & 4) were used as catalysts to reduce the curing (ring-opening polymerization) temperature of benzoxazine monomers such as Bisphenol-A (BA-a) and Bisphenol-F (BF-a) benzoxazines. Dynamic scanning calorimetry (DSC) studies revealed that the on-set curing (Tp) temperatures were reasonably decreased upto 20% for the benzoxazines. Furthermore, the thermal stabilities of the polybenzoxazines (PBzs) derived in the presence of zinc catalysts (3 and 4) were compared with PBz obtained in the absence of catalyst under similar conditions. The thermal studies reveled that there is no significant changes in the initial degradation of polymers. However, the thermal stability in terms of char yields at 800 °C improved upto 10–21% for the bisphenol-A/F benzoxazines.

The present work utilized the “self-adaptable” acyclic diiminodipyrromethane Schiff''s bases (2a and 2b) for the synthesis of their Zn-based complexes and explored their potential in the ring-opening polymerization of BA-a and BF-a benzoxazines.  相似文献   

15.
This review sheds light on the catalytic valorisation of agroforestry biomass through levulinic acid and formic acid towards γ-valerolactone and other higher-value chemicals. γ-Valerolactone is produced by the hydrogenation of levulinic acid, which can be achieved through an internal hydrogen transfer reaction with formic acid in the presence of catalyst. By reviewing corresponding catalysts, the paper underlines the most efficient steps constituting an integrated sustainable process that eliminates the need for external H2 sources while producing biofuels as an alternative energy source. Furthermore, the review emphasizes the role of catalysts in the hydrogenation of levulinic acid, with special focus on heterogeneous catalysts. The authors highlighted the dual role of different catalysts by comparing their activity, morphology, electronic structure, synergetic relation between support and doped species, as well as their deactivation and recyclability. Acknowledging the need for green and sustainable H2 production, the review extends to cover the role of photo catalysis in dissociating H2-donor solvents for reducing levulinic acid into γ-valerolactone under mild temperatures. To wrap up, the critical discussion presented enables readers to hone their knowledge about different schools and emphasizes research gaps emerging from experimental work. The review concludes with a comprehensive table summarizing the recent catalysts reported between the years 2017–2021.

This review sheds light on the catalytic valorisation of agroforestry biomass through levulinic acid and formic acid towards γ-valerolactone and other higher-value chemicals.  相似文献   

16.
The detection of mitochondrial Cu2+ and cysteine is very important for investigating cellular functions or dysfunctions. In this study, we designed a novel cyclometalated iridium(iii) luminescence chemosensor Ir bearing a bidentate chelating pyrazolyl-pyridine ligand as a copper-specific receptor. The biocompatible and photostable Ir complex exhibited not only mitochondria-targeting properties but also an “on–off–on” type phosphorescence change for the reversible dual detection of Cu2+ and cysteine. Ir had a highly sensitive (detection limit = 20 nM) and selective sensor performance for Cu2+ in aqueous solution due to the formation of a non-phosphorescent Ir–Cu(ii) ensemble through 1 : 1 binding. According to the displacement approach, Ir was released from the Ir–Cu(ii) ensemble accompanied with “turn-on” phosphorescence in the presence of 0–10 μM cysteine, with a low detection limit of 54 nM. This “on–off–on” process could be accomplished within 30 s and repeated at least five times without significant loss of signal strength. Moreover, benefiting from its good permeability, low cytotoxicity, high efficiency, and anti-interference properties, Ir was found to be suitable for imaging and detecting mitochondrial Cu2+ and cysteine in living cells and zebrafish.

An iridium(iii) complex-based mitochondria targeting phosphorescent probe for selectively detecting Cu2+ and Cys in aqueous solution, living cells and zebrafish has been developed.  相似文献   

17.
Correction for ‘An efficient multicomponent synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a magnetic nanoparticle supported Lewis acidic deep eutectic solvent’ by Thanh Thi Nguyen et al., RSC Adv., 2019, 9, 38148–38153, DOI: 10.1039/C9RA08074K.

The authors apologise that a related reference, given here as ref. 1–5, was not cited in the original article. On page 38148, in the first paragraph of the Introduction, a citation to the reference should be added at the end of the sentence beginning “Among them, Lewis acidic…”. The paragraph should be changed as follows “In past decade, deep eutectic solvents (DESs) have attracted much attention in both reaction media and catalysts due to their unique properties such as wide liquid range, biodegradability, excellent thermal stability, and negligible vapor pressure.1,2 Among them, Lewis acidic deep eutectic solvents (LADESs) have been intensively studied as efficient media for organic syntheses.3–5”.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

18.
High volume blast furnace slag (BFS) resulting from iron-making activities has long been considered a burden for the environment. Despite considerable research efforts, attempts to convert BFS into high value-added products for environmental remediation are still challenging. In this study, calcium–magnesium–aluminium layered double hydroxides (CaMgAl-LDHs) and ordered mesoporous silica material (MCM-41) sorbents were simultaneously synthesized from BFS, and their CO2 adsorption performance was evaluated. Calcium (Ca), magnesium (Mg) and aluminium (Al) were selectively extracted from BFS using hydrochloric acid. Leaching conditions consisting of 2 mol L−1 acid concentration, 100 °C leaching temperature, 90 min leaching time and a solid-to-liquid ratio of 40 g L−1 achieved a high leaching ratio of Ca, Mg and Al at 88.08%, 88.59% and 82.27%, respectively. The silica-rich residue (SiO2 > 98.6 wt%) generated from the leaching process could be used as a precursor for MCM-41 preparation. Chemical composition, surface chemical bonds, morphology and textural properties of the as-synthesized CaMgAl-LDHs and MCM-41 sorbents were determined. Both the CaMgAl-LDHs and MCM-41 sorbents were found to be thermally stable and exhibited comparable adsorption uptake and rates over 20 CO2 adsorption/desorption cycles. This work demonstrated that a total solution for the utilisation of BFS can be achieved and the resulting valuable products, i.e. CaMgAl-LDHs and MCM-41 are promising sorbents for CO2 capture.

A total solution for the utilisation of BFS can be achieved and the resulting valuable products CaMgAl-LDHs and MCM-41 are promising sorbents for CO2 capture.  相似文献   

19.
Three new triazole meso-arylporphyrins (4a–c) were synthesized by the copper(i)-catalyzed azide alkyne cycloaddition (CuAAC) “click” reaction in high yield. The corresponding zinc(ii) coordination compounds (5a–c) have also been prepared. All 4a–c and 5a–c porphyrin species were fully characterized by elemental analysis, electrospray ionization and MALDI-TOF mass spectrometry, infrared spectroscopy, proton nuclear magnetic resonance, UV-visible, fluorescence and cyclic voltammetry. The zinc(ii) 5a–c complexes have been tested as detectors for Cl and Br anions. UV-visible titrations reveal that these host systems exhibit strong anion binding affinities. The efficiency of the adsorption of the malachite green dye (MG) dye on the 4a–c free base porphyrins and the corresponding zinc(ii) complexes 5a–c was investigated by a kinetic study using these synthetic porphyrin derivatives as adsorbents. The use of our triazole Zn(ii) complexes in the catalytic degradation of the MG dye is the first example where a metalloporphyrin is involved in the MG dye decolorization reaction. The degradation reactions were carried out using an ecological oxidant (H2O2), where the efficiency of the decolorization has been characterized by UV-visible spectroscopic analysis. Several factors affecting the degradation phenomenon have been studied. The energetic parameters concerning the degradation process have also been determined.

Three triazole porphyrins and there corresponding zinc complexes are described as well as their spectroscopic and electrochemical data. The chloride and bromide sensing efficiency and the degradation of the malachite green dye are also reported.  相似文献   

20.
Two coupling processes—solution seepage and chemical replacement—occur in the in situ leaching process of ion-absorbed-rare-earth ore. In this study, saturated leaching tests were applied to investigate the permeability characteristics of rare earth ore under the hydro-chemical coupling effect. The pore radius distributions based on two leaching solutions (H2O and (NH4)2SO4) were obtained by nuclear magnetic resonance detection technology. The results indicated that 10–25 μm and 4–10 μm pores are dominant in the ore under solution leaching using H2O and (NH4)2SO4, respectively. A “black belt” in the pores of (NH4)2SO4 leaching was discovered from the reconstruction of the pore structure distribution image. The results also reveal that the hydraulic conductivity will initially increase, then decrease and finally increase during the leaching process. The hydro-chemical coupling effect will lead to variations in the pore structure and permeability of rare earth ore. The pore radius will increase due to solution seepage, whereas it decreases due to the particle recombination induced by chemical replacement. The permeability of rare earth ore is influenced more by chemical replacement than by solution seepage.

Two coupling processes—solution seepage and chemical replacement—occur in the in situ leaching process of ion-absorbed-rare-earth ore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号