首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
A simple and effective template-free method to prepare hierarchical porous carbons (HPCs) has been developed by using low-cost coal-tar pitch as a starting material, anhydrous aluminum chloride as the Friedel–Crafts catalyst, and oxalyl chloride as the cross-linking agent. By a simple controllable Friedel–Crafts reaction, diketone-functionalized coal-tar pitch as the hierarchical porous coal-tar pitch precursor was obtained via a one-step carbonization to provide a well-developed micro–mesoporous network. Nitrogen adsorption and desorption measurements showed that the surface area, pore volume, pore size and pore size distributions of the resulting carbon materials was dependent on the usage of the cross-linking agent. The as-fabricated HPCs have a large Brunauer–Emmett–Teller specific surface area of 1394.6 m2 g−1 and exhibit an excellent electrochemical performance with the highest specific capacitance of 317 F g−1 at a current density of 1 A g−1 in a three-electrode system. A symmetric supercapacitor was fabricated from HPC-DK-1.0 in a two-electrode system, which exhibits a high specific capacitance of 276 F g−1 at a current density of 0.25 A g−1, a high rate capability and an excellent cycling stability with a capacitance retention of 92.9% after 10 000 cycles. The one-step carbonization method that produced HPCs for electrical double-layer capacitors represents a new approach for high-performance energy storage.

The hierarchical porous carbons have an excellent cycling stability with a capacitance retention of 92.9% after 10 000 cycles.  相似文献   

2.
Biomass-derived O- and N-doped porous carbon has become the most competitive supercapacitor electrode material because of its renewability and sustainability. We herein presented a facile approach to prepare O/N-doped porous carbon with cotton as the starting material. Absorbent cotton immersed in diammonium hydrogen phosphate (DAP) was activated at 800 °C (CDAP800s) and then was oxidized in a temperature range of 300–400 °C. The electrochemical capacitance of the impregnated cotton was significantly improved by doping with O and N, and the yield was improved from 13% to 38%. The sample oxidation at 350 °C (CDAP800-350) demonstrated superior electrical properties. CDAP800-350 showed the highest BET surface area (1022 m2 g−1) and a relatively high pore volume (0.53 cm3 g−1). In a three-electrode system, the CDAP800-350 electrodes had high specific capacitances of 292 F g−1 in 6 M KOH electrolyte at a current density of 0.5 A g−1. In the two-electrode system, CDAP800-350 electrode displayed a specific capacitance of 270 F g−1 at 0.5 A g−1 and 212 F g−1 at 10 A in KOH electrolyte. In addition, the CDAP800-350-based symmetric supercapacitor achieved a high stability with 87% of capacitance retained after 5000 cycles at 5 A g−1, as well as a high volumetric energy density (18 W h kg−1 at 250 W kg−1).

Biomass-derived O- and N-doped porous carbon has become one of the most competitive supercapacitor electrode material because of its renewability and sustainability.  相似文献   

3.
Tremella-like NiO microspheres embedded with fish-scale-like polypyrrole (PPy) were synthesized by polymerizing pyrrole (Py) onto uniform NiO nanosheets. PPy has a fish-scale-like appearance with a thickness of approximately 10 nm, and is connected to the NiO nanosheet surface. NiO/PPy microspheres (diameter of ∼4 μm) were applied as the electrode material in a supercapacitor. The NiO/PPy-6 obtained under a NiO : Py molar ratio of 6 shows a high specific capacitance of 3648.6 F g−1 at 3 A g−1 and good rate capability (1783 F g−1 at a high current density of 30 A g−1). An asymmetric supercapacitor (ASC) was fabricated using NiO/PPy-6 and activated carbon (AC) as the positive electrode and the negative electrode, respectively. NiO/PPy-6//AC can achieve a high specific capacitance of 937.5 F g−1 at 3 A g−1 and a high energy density of 333.3 W h kg−1 at a power density of 2399.99 W kg−1. The excellent supercapacitor performance is assigned to the combined contribution of both components and the unique heterostructure in NiO/PPy-6.

Tremella-like NiO/fish-scale-like PPy was fabricated via a solvothermal process coupled with in situ polymerization. The NiO/PPy-6//AC asymmetric supercapacitor can achieve a high specific capacitance and maintain a specific capacitance at 88.2% after 10 000 cycles.  相似文献   

4.
Rationally designed precursors of N-doped carbon are crucial for high performance carbon materials of supercapacitor electrodes. Herein, we report a scalable preparation of hierarchically structured N-doped carbon of micro/meso porous nanofiber morphology by using a supramolecular assembled polypyrrole as the precursor. The influences of the dose of supramolecular dopant on final products after carbonization and sequential chemical activation were investigated. The interconnected nanofiber backbone allows better electron transport and the optimized hierarchically porous structure of the material exhibits a large specific surface area of 2113.2 m2 g−1. The N content of the carbon is as high as 6.49 atom%, which is favorable to improve the supercapacitive performance via additional reversible redox reaction over pure carbon. The hierarchically porous N-doped carbon electrode delivered an outstanding specific capacitance of 435.6 F g−1 at 0.5 A g−1, significantly higher than that of the control sample derived from undoped polypyrrole samples. Moreover, the capacitance retention is as high as 96.1% after 5000 cycles. This precursor''s structural control route is readily applicable to various conducting polymers, and provides a methodology to design carbon materials with advanced structure for developing high-performance supercapacitor electrode materials.

Hierarchically porous N-doped carbon with optimized morphology exhibits an enhanced specific capacitance of 435.6 F g−1 at 0.5 A g−1 and 96.1% capacitance retention after 5000 cycles in 1 M H2SO4.  相似文献   

5.
An asymmetric supercapacitor (ASC) was constructed using a polythiophene/aluminium oxide (PTHA) nanocomposite as an anode electrode and charcoal as a cathode electrode. The highest specific capacitance (Csp) of the PTHA electrode was found to be 554.03 F g−1 at a current density (CD) of 1 A g−1 and that of the charcoal electrode was 374.71 F g−1 at 1.4 A g−1, measured using a three electrode system. The maximum Csp obtained for the assembled PTHA//charcoal asymmetric supercapacitor (ASC) was 265.14 F g−1 at 2 A g−1. It also showed a high energy density of 42.0 W h kg−1 at a power density of 735.86 W kg−1 and capacitance retention of 94.61% even after 2000 cycles. Moreover, it is worth mentioning that the asymmetric device was used to illuminate a light emitting diode (LED) for more than 15 minutes. This PTHA//charcoal ASC also possesses stable electrochemical properties in different bending positions and hence finds a promising application in flexible, wearable and portable energy storage electronic devices.

A high energy density flexible solid-state asymmetric supercapacitor is fabricated using polythiophene nanocomposites and charcoal which exhibits stable electrochemical properties in different bending position.  相似文献   

6.
Carbon nanofibrous mats (CNFMs) are prepared by electrospinning of blended precursor of polyacrylonitrile and polysulfone (PSF) followed by pre-oxidation stabilization and carbonization. Addition of PSF as a sacrificial polymer leads to CNFMs with high surface area, large numbers of micropores and mesopores, good degree of carbonization, and interconnected fibrous network, due to the high decomposition temperature, release of SO2 during decomposition, and large amount of carbon residue of PSF during carbonization. The electrochemical characterization shows that the CNFM electrode has a specific capacitance of 272 F g−1 at a current density of 1 A g−1 with 74% of the specific capacitance retained at 50 A g−1 in 2.0 M KOH electrolyte. The CNFM electrodes have excellent cycling durability with 100% capacitance retention after 10 000 cycles.

Carbon nanofibrous mats (CNFMs) are prepared by electrospinning of blended precursor of polyacrylonitrile and polysulfone (PSF) followed by pre-oxidation stabilization and carbonization.  相似文献   

7.
A simple template-free method of preparing mesoporous TiN nanostructures directly on Ti foils is developed by combining hydrothermal, ion exchange and nitridation reactions. The as-prepared TiN nanosheet arrays on Ti foils can be directly used as an electrode without any subsequent processing, and are found to be a good capacitance material. The specific capacitance of the TiN nanosheets electrode measured at the current density of 0.5 A g−1 reaches 81.63 F g−1, and the capacitance retention is still 75% after 4000 cycles. The symmetric supercapacitor made up of two TiN nanosheet electrodes sandwiching a solid electrolyte (polyvinyl alcohol in KOH) shows a specific capacitance of 0.42 F cm−3, and retains 77.6% of the capacitance even at the current density of 12.5 mA cm−3.

Mesoporous TiN nanostructures were fabricated directly on Ti foils, which can be used as an electrode directly. The specific capacitance at the current of 0.5 A g−1 reaches 81.63 F g−1, and the capacitance retention is still 100% after 2500 cycles.  相似文献   

8.
Porous carbon nanofibers are fabricated by one-step carbonization and activation of electrospun cellulose acetate (CA) nanofibres. Electrospun CA nanofibers were obtained by the electrospinning of a CA/DMAC/acetone solution, followed by deacetylation in NaOH/ethanol solution. One-step carbonization and activation was achieved by dipping the as-spun fibers in ZnCl2 solution, followed by one-step high temperature treatment. The effects of the concentration of the dipping solution on the microstructure of the CA-based carbon nanofibers (CACNFs), including the morphology, crystal structure, porous structure, specific surface area and surface chemical properties, have been investigated. The coating of ZnCl2 effectively improves the thermal stability of electrospun CA nanofibers and obviously enhances the oxygen-containing surface groups of the CACNFs. The CACNFs have a norrow pore size distribution (0.6–1.2 nm) and a high specific surface area (∼1188 m2 g−1). Electrochemical performances of the CACNFs were evaluated as supercapacitor electrodes in 6 M KOH solution. The CACNFs demonstrate high specific capacitance (202 F g−1 at 0.1 A g−1) and excellent rate capability (61% of the retention from 0.1 to 20 A g−1). After 5000 cycles of the electrode, the capacitance is maintained at 92%, and the coulombic efficiency is close to 100%, showing high electrochemical stability and reversibility. The renewable features and excellent performance make CACNFs quite a promising alternative to efficient supercapacitor electrodes for energy storage applications.

Porous carbon nanofibers are fabricated by one-step carbonization and activation of electrospun cellulose acetate (CA) nanofibres.  相似文献   

9.
To design high specific surface area and optimize the pore size distribution of materials, we employ a combination of carbonization and KOH activation to prepare activated carbon derived from ground grain hulls. The resulting carbon material at lower temperature (800, BSAC-A-800) exhibits a porous structure with a high specific surface area of 1037.6 m2 g−1 and a pore volume of 0.57 m3 g−1. Due to the synergistic structural characteristics, BSAC-A-800 reveals preferable capacitive performance, showing a specific capacitance as high as 313.3 F g−1 at 0.5 A g−1, good rate performance (above 73%), and particularly stable cycling performance (99.1% capacitance retention after 10 000 cycles at a current density of 10 A g−1). More importantly, the assembled symmetric supercapacitor using a water-in-salt electrolyte (17 m NaClO4) with high discharge specific capacitance (59 F g−1 at 0.5 A g−1), high energy density (47.2 W h kg−1) and high voltage (2.4 V) represents significant progress towards performance comparable to that of commercial salt-in-water electrolyte supercapacitors (with discharge specific capacitance of 50 F g−1, energy densities of ∼28.1 W h kg−1 and voltages of 2.0 V).

To design high specific surface area and optimize the pore size distribution of materials, we employ a combination of carbonization and KOH activation to prepare activated carbon derived from ground grain hulls.  相似文献   

10.
It is critical for nanoporous carbons to have a large surface area, and low cost and be readily available for challenging energy and environmental issues. The pursuit of all three characteristics, particularly large surface area, is a formidable challenge because traditional methods to produce porous carbon materials with a high surface area are complicated and expensive, frequently resulting in pollution (commonly from the activation process). Here we report a facile method to synthesize nanoporous carbon materials with a high surface area of up to 1234 m2 g−1 and an average pore diameter of 0.88 nm through a simple carbonization procedure with carefully selected carbon precursors (biomass material) and carbonization conditions. It is the high surface area that leads to a high capacitance (up to 213 F g−1 at 0.1 A g−1) and a stable cycle performance (6.6% loss over 12 000 cycles) as shown in a three-electrode cell. Furthermore, the high capacitance (107 F g−1 at 0.1 A g−1) can be obtained in a supercapacitor device. This facile approach may open a door for the preparation of high surface area porous carbons for energy storage.

High-surface-area nanoporous carbon is obtained by direct pyrolysis of biomass resources without an activation process. An electrochemical test shows high capacitance.  相似文献   

11.
Biomass-derived porous carbon has received increasing attention as an energy storage device due to its cost-effectiveness, ease of manufacture, environmental friendliness, and sustainability. In this work, phosphorus-doped porous carbon was prepared from biomass sawdust (carbon source) and a small amount of phosphoric acid (P-doping source and gas expanding agent) by one-step carbonization. For comparison, parallel studies without phosphate treatment were performed under the same conditions. Benefiting from the addition of phosphoric acid, the prepared carbon material has higher carbon yield, higher specific area and micropore volume. Due to the heteroatom doping of P in the carbon material, the optimized PC-900 sample not only exhibits high specific capacitances of 292 F g−1 and 169.4 F g−1 at current densities of 0.1 A g−1 and 0.5 A g−1, respectively, but also excellent cycle longevity (98.3% capacitance retention after 5000 cycles) in 1 M H2SO4. In addition, the supercapacitor exhibits a high energy density of 10.6 W h kg−1 when the power density is 224.8 W kg−1 at a discharge current density of 0.5 A g−1. This work proposes a sustainable strategy to reuse waste biomass in high-performance and green supercapacitors for advanced energy storage equipment.

P-doped porous carbon can be prepared by one-step carbonization using biomass sawdust impregnated with a small amount of phosphoric acid.  相似文献   

12.
NiCo metal–organic framework (MOF) electrodes were prepared by a simple hydrothermal method. The flower-like NiCo MOF electrode exhibited an exciting potential window of 1.2 V and an excellent specific capacitance of 927.1 F g−1 at 1 A g−1. The flower-like NiCo MOF//activated carbon (AC) device delivered a high energy density of 28.5 W hkg−1 at a power density of 400.5 W kg−1 and good cycle stability (95.4% after 5000 cycles at 10 A g−1). Based on the flower-like NiCo MOF electrode, the asymmetric quasi-solid-state flexible supercapacitor (AFSC) was prepared and exhibited good capacitance retention after bending (79% after 100 bends and 64.4% after 200 bends). Furthermore, two AFSCs in series successfully lit up ten parallel red LED lights, showing great application potential in flexible and wearable energy storage devices.

The flower-like NiCo MOF prepared by a hydrothermal has a specific capacitance of 927.1 F g−1 at 1 A g−1 and a capacitance retention of 69.7% from 1 A g−1 to 10 A g−1, showing excellent electrochemical performance.  相似文献   

13.
The ever-increasing global energy consumption necessitates the development of efficient energy conversion and storage devices. Nitrogen-doped porous carbons as electrode materials for supercapacitors feature superior electrochemical performances compared to pristine activated carbons. Herein, a facile synthetic strategy including solid-state mixing of benzimidazole as an inexpensive single-source precursor of nitrogen and carbon and zinc chloride as a high temperature solvent/activator followed by pyrolysis of the mixture (T = 700–1000 °C under Ar) is introduced. The addition of ZnCl2 prevents early sublimation of benzimidazole and promotes carbonization and pore generation. The sample obtained under the optimal carbonization temperature of 900 °C and ZnCl2/benzimidazole weight ratio of 2/1 (ZBIDC-2-900) features a moderate specific surface area of 855 m2 g−1, high N-doping level (10 wt%), and a wide micropore size distribution (∼1 nm). ZBIDC-2-900 as a supercapacitor electrode exhibits a large gravimetric capacitance of 332 F g−1 (at 1 A g−1 in 1 M H2SO4) thanks to the cooperative advantages of the electrochemical activity of the nitrogen functional groups and the accessible porosity. The excellent capacitance performance coupled with robust cyclic stability, high yield and straightforward synthesis of the proposed carbons holds great potential for large-scale energy storage applications.

Zinc chloride activated benzimidazole derived carbons (ZBIDCs) with optimal textural and chemical properties exhibit remarkable and stable performance in supercapacitor applications.  相似文献   

14.
Biomass porous carbon materials are ideal supercapacitor electrode materials due to their low price, rich source of raw materials and environmental friendliness. In this study, an ultrasonic-assisted method was applied to synthesize the rice-straw-based porous carbon (UPC). The obtained UPC exhibited a two-dimensional structure and high specific surface area. In addition, the electrochemical test results showed that the UPC with a 1 hour ultrasonic treatment and lower activation temperature of 600 °C (UPC-600) demonstrated optimal performance: high specific capacitances of 420 F g−1 at 1.0 A g−1 and 314 F g−1 at a high current of 10 A g−1. Significantly, the symmetric supercapacitors showed a high energy density of 11.1 W h kg−1 and power density of 500 W kg−1. After 10 000 cycles, 99.8% of the specific capacitance was retained at 20 A g−1. These results indicate that UPC-600 is a promising candidate for supercapacitor electrode materials.

Rice-straw-based porous carbon was successfully prepared via an ultrasonic-assisted method to lower activation temperature and for ultra-stable electrode materials of symmetric supercapacitors.  相似文献   

15.
Herein, novel hierarchical carbon layer-anchored WO3−x/C ultra-long nanowires were developed via a facile solvent-thermal treatment and a subsequent rapid carbonization process. The inner anchored carbon layers and abundant oxygen vacancies endowed the WO3−x/C nanowire electrode with high conductivity, as measured with a single nanowire, which greatly enhanced the redox reaction active sites and rate performance. Surprisingly, the WO3−x/C electrode exhibited outstanding specific capacitance of 1032.16 F g−1 at the current density of 1 A g−1 in a 2 M H2SO4 electrolyte and maintained the specific capacitance of 660 F g−1 when the current density increased to 50 A g−1. Significantly, the constructed WO3−x/C//WO3−x/C symmetric supercapacitors achieved specific capacitance of 243.84 F g−1 at the current density of 0.5 A g−1 and maintained the capacitance retention of 94.29% after 5000 charging/discharging cycles at the current density of 4 A g−1. These excellent electrochemical performances resulted from the fascinating structure of the WO3−x/C nanowires, showing a great potential for future energy storage applications.

A high-performance supercapacitor electrode comprising hierarchical carbon layer-anchored WO3−x/C nanowires with inner abundant redox reaction active sites and numerous oxygen vacancies is presented.  相似文献   

16.
We report a facile and novel approach for the fabrication of all-in-one supercapacitor electrodes by in situ electrochemical exfoliation of flexible graphite paper (FGP) on a nickel collector. The binder-free three dimensional (3D) graphene nanosheets@Ni (GNSs@Ni) supercapacitor electrodes exhibit a high specific capacitance of 196.4 F g−1 and 36.2 mF cm−2, respectively, at a scan rate of 50 mV s−1. Even at the high scan rate of 2500 mV s−1 the specific capacitance of the capacitor still shows a retention of 85.6% (168 F g−1, 31 mF cm−2). Meanwhile, the as-prepared electrode offers excellent cycling performance with 91.5% capacitance retention after 100 000 charging–discharging cycles even at the high current density of 11 A g−1. Such high rate capability, specific capacitance and exceptional cycling ability of the GNSs@Ni electrode are attributed to the all-in-one architecture which provides unique properties including high electrical conductivity, large specific surface area and excellent electrochemical stability. We anticipate that these results will shed light on new strategies to synthesize high-performance hybrid nanoarchitectures electrodes using the prepared graphene nanosheets as the support, which offers great potential in energy storage devices and electrochemical catalysis applications.

GNSs@Ni electrode has a high current density, and the Cm and Cs are estimated to be 196.4 F g−1 and 36.2 mF cm−2.  相似文献   

17.
Graphene/polyaniline composites have attracted considerable attention as high-performance supercapacitor electrode materials; however, there are still numerous challenges for their practical applications, such as the complex preparation process, high cost, and disequilibrium between energy density and power density. Herein, we report an efficient method to produce graphene/polyaniline composites via a one-pot ball-milling process, in which aniline molecules act as both the intercalator for the exfoliation of graphite and the monomer for mechanochemical polymerization into polyaniline clusters on the in situ exfoliated graphene sheets. The graphene/polyaniline composite electrode delivered a large specific capacitance of 886 F g−1 at 5 mV s−1 with a high retention of 73.4% at 100 mV s−1. The high capacitance and rate capability of the graphene/polyaniline composite can contribute to the fast electron/ion transfer and dominantly capacitive contribution because of the synergistic effects between the conductive graphene and pseudocapacitive polyaniline. In addition, a high energy density of 40.9 W h kg−1 was achieved by the graphene/polyaniline-based symmetric supercapacitor at a power density of 0.25 kW kg−1, and the supercapacitor also maintained 89.1% of the initial capacitance over 10 000 cycles.

Efficient ball-milling production of graphene/polyaniline composites as supercapacitor electrodes with enhanced capacitive contribution, rate capability, and specific capacitance.  相似文献   

18.
High performance supercapacitor without binders has attracted wide attention as an energy storage device. In this work, novel NH4V4O10 nanobelts were successfully synthesized and decorated into TiN nanotube arrays by a simple hydrothermal method. The as-prepared no-binder electrode hybrids exhibited excellent electrochemical performances with a specific capacitance of 749.0 F g−1 at 5 mV s−1 and a capacity retention of 85.7% after 200 cycles, which makes it an appealing candidate for electrode materials of supercapacitors.

NH4V4O10 nanobelts were synthesized and decorated into TiN nanotube arrays as supercapacitor electrode with a specific capacitance of 749.0 F g−1 at 5 mV s−1 and a capacity retention of 85.7% after 200 cycles.  相似文献   

19.
It is a considerable challenge to produce a supercapacitor with inexpensive raw materials and employ a simple process to obtain carbon materials with a high specific surface area, rich pore structure, and appropriate doping of heterogeneous elements. In the current study, yam waste-derived porous carbon was synthesized for the first time by a two-step carbonization and KOH chemical activation process. An ultra-high specific surface area of 2382 m2 g−1 with a pore volume of 1.11 cm3 g−1 and simultaneous co-doping of O–N was achieved for the optimized sample. Because of these distinct features, the optimized material exhibits a high gravimetric capacitance of 423.23 F g−1 at 0.5 A g−1 with an impressive rate capability at 10 A g−1, and prominent cycling durability with a capacity retention of 96.4% at a high current density of 10 A g−1 after 10 000 cycles in 6 M KOH in a three-electrode system. Moreover, in 6 M KOH electrolyte, the assembled symmetrical supercapacitor provides a large C of 387.3 F g−1 at 0.5 A g−1. It also presents high specific energy of 34.6 W h kg−1 when the specific power is 200.1 W kg−1 and a praiseworthy specific energy of 8.3 W h kg−1 when the specific power is 4000.0 W kg−1 in 1 M Na2SO4 electrolyte. Thus, this study provides reference and guidance for developing high-performance electrode materials for supercapacitors.

3D porous carbon with ultra-high specific surface area and excellent electrochemical performance is synthesized by a simple activation and carbonization process through adopting biomass yam waste as raw material.  相似文献   

20.
A green method is designed to obtain hierarchical porous carbon nanofibers from coal. In the work, deionized water, coal, polyvinyl alcohol and Pluronic F127 are used as the aqueous solution, carbon source, spinning assistant and soft template for spinning, respectively. As electrode materials for supercapacitors, the obtained hierarchical porous carbon nanofibers exhibit a high specific capacitance of 265.2 F g−1 at 1.0 A g−1 in 6 M KOH, a good rate performance with a capacitance of 220.3 F g−1 at 20.0 A g−1 with the retention of 83.1% and a superior cycle stability without capacitance loss after 20 000 charge/discharge cycles at 10.0 A g−1. Compared with the carbon nanofibers constructed without Pluronic F127, the enhanced electrochemical performance of the sample benefits from a larger contact surface area and the mesoporous structure formed by decomposition of Pluronic F127 and good structural stability. This work not only provides a green route for high-value utilization of coal in energy storage, but also paves a new way to make hierarchical porous carbon nanofibers from coal for supercapacitor electrodes with high specific capacitance and long cycle life.

A green method is designed to obtain hierarchical porous carbon nanofibers from coal for supercapacitor electrodes with high specific capacitance and long cycle life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号