首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple method was developed for enhanced synergistic photocatalytic hydrogen evolution by in situ constructing of oxygen-vacancy-rich MoO3−x/porous g-C3N4 heterojunctions. Introduction of a MoO3−x precursor (Mo(OH)6) solution into g-C3N4 nanosheets helped to form a porous structure, and nano-sized oxygen-vacancy-rich MoO3−xin situ grew and formed a heterojunction with g-C3N4, favorable for charge separation and photocatalytic hydrogen evolution (HER). Optimizing the content of the MoO3−x precursor in the composite leads to a maximum photocatalytic H2 evolution rate of 4694.3 μmol g−1 h−1, which is approximately 4 times higher of that of pure g-C3N4 (1220.1 μmol g−1 h−1). The presence of oxygen vacancies (OVs) could give rise to electron-rich metal sites. High porosity induced more active sites on the pores'' edges. Both synergistically enhanced the photocatalytic HER performance. Our study not only presented a facile method to form nano-sized heterojunctions, but also to introduce more active sites by high porosity and efficient charge separation from OVs.

In situ growth method to construct a nano-sized oxygen-vacancy-rich MoO3−x/porous g-C3N4 heterojunction. MoO3−x derived OV traps and porous g-C3N4 nanosheet derived short migration distance and plentiful edge active sites.  相似文献   

2.
The performance of semiconductor photocatalysts has been limited by rapid electron–hole recombination. One strategy to overcome this problem is to construct a heterojunction structure to improve the survival rate of electrons. In this context, a novel g-C3N4/TiO2/CuO double-heterojunction photocatalyst was developed and characterized. Its photocatalytic activity for hydrogen production from water–methanol photocatalytic reforming was explored. Methanol is always used to eliminate semiconductor holes. The g-C3N4/TiO2/CuO double-heterojunction photocatalyst with a narrow bandgap of ∼1.38 eV presented excellent photocatalytic activity for hydrogen evolution (97.48 μmol (g h)−1) under visible light irradiation. Compared with g-C3N4/TiO2 and CuO/TiO2, the photocatalytic activity of g-C3N4/TiO2/CuO for hydrogen production was increased approximately 7.6 times and 1.8 times, respectively. Below 240 °C, the sensitivity of g-C3N4/TiO2/CuO to ammonia was approximately 90% and 46% higher than that of g-C3N4/TiO2 and CuO/TiO2, respectively. The enhancement of the photocatalytic activity and gas sensing properties of the g-C3N4/TiO2/CuO composite resulted from the close interface contact established by the double heterostructure. The trajectory of electrons in the double heterojunction conformed to the S-scheme. UV-vis, PL, and transient photocurrent characterization showed that the double heterostructure effectively inhibited the recombination of e/h+ pairs and enhanced the migration of photogenerated electrons.

The trajectory of electrons in the g-C3N4/TiO2/CuO double-heterojunction conforms to the S-scheme.  相似文献   

3.
Metal oxide dispersed graphitic carbon nitride hybrid nanocomposites (g-C3N4/CuO and g-C3N4/Co3O4) were prepared via a direct precipitation method. The materials were used as an electrode material in symmetric supercapacitors. The g-C3N4/Co3O4 electrode based device exhibited a specific capacitance of 201 F g−1 which is substantially higher than those using g-C3N4/CuO (95 F g−1) and bare g-C3N4 electrodes (72 F g−1). At a constant power density of 1 kW kg−1, the energy density given by g-C3N4/Co3O4 and g-C3N4/CuO devices is 27.9 W h kg−1 and 13.2 W h kg−1 respectively. The enhancement of the electrochemical performance in the hybrid material is attributed to the pseudo capacitive nature of the metal oxide nanoparticles incorporated in the g-C3N4 matrix.

Comparison of electrochemical performance of symmetric supercapacitors based on g-C3N4/CuO and g-C3N4/Co3O4 electrodes.  相似文献   

4.
We engineered high aspect ratio Fe2O3 nanorods (with an aspect ratio of 17 : 1) coated with g-C3N4 using a sequential solvothermal method at very low temperature followed by a thermal evaporation method. Here, the high aspect ratio Fe2O3 nanorods were directly grown onto the FTO substrate under relatively low pressure conditions. The g-C3N4 was coated onto a uniform Fe2O3 nanorod film as the heterostructure, exhibiting rational band conduction and a valence band that engaged in surface photoredox reactions by a direct z-scheme mechanism. The heterostructures, particularly 0.75g-C3N4@Fe2O3 nanorods, exhibited outstanding photocatalytic activities compared to those of bare Fe2O3 nanorods. In terms of 4-nitrophenol degradation, 0.75g-C3N4@Fe2O3 nanorods degraded all of the organic pollutant within 6 h under visible irradiation at a kinetic constant of 12.71 × 10−3 min−1, about 15-fold more rapidly than bare Fe2O3. Further, the hydrogen evolution rate was 37.06 μmol h−1 g−1, 39-fold higher than that of bare Fe2O3. We suggest that electron and hole pairs are efficiently separated in g-C3N4@Fe2O3 nanorods, thus accelerating surface photoreaction via a direct z-scheme under visible illumination.

The engineered high aspect ratio of Fe2O3 nanorods coated with g-C3N4 demonstrates z-scheme mechanism, showing the best performance in 4-nitrophenol photodegradation and H2 evolution.  相似文献   

5.
A surface heterojunction catalyst of g-C3N4–PEDOT/P3HT with P3HT and PEDOT as the polymer sensitizer and hole transport pathway is successfully prepared. The as constructed g-C3N4–PEDOT/P3HT composite exhibits a photocatalyst H2 evolution rate up to 427703.3 μmol h−1 g−1 which is 1059 times higher than that of g-C3N4, 118 times higher than that of g-C3N4–PEDOT with ascorbic acid as sacrificial reagents. What''s more, the g-C3N4–PEDOT/P3HT can even show an obviously enhanced photocatalytic H2 evolution rate which is 6.1 times higher than that of pure g-C3N4 in pure water without any sacrificial reagent. Combining the experimental results and molecular dynamic (MD) simulation results, a possible mechanism can be drawn that the existed PEDOT possesses relatively higher hole mobility and can be used as a hole conductor between g-C3N4 and P3HT. Then, the photogenerated holes migration can be accelerated by PEDOT from the VB of g-C3N4 to the VB of P3HT. All those factors may benefit the synergy among g-C3N4, PEDOT and P3HT, which finally facilitates the rapid migration of photoinduced electron–hole pairs and eventually improves the photocatalytic H2 activity process of g-C3N4–PEDOT/P3HT with visible light. The present work may provide useful insights for designing a surface heterojunction composite photocatalyst with high photocatalytic activity for H2 production.

A surface heterojunction catalyst of g-C3N4-PEDOT/P3HT with P3HT and PEDOT as the polymer sensitizer and hole transport pathway is successfully prepared. The as prepared photocatalyst with much improved photocatalytic activity for H2 production.  相似文献   

6.
Bi2O3/g-C3N4 nanoscale composites with a Z-scheme mechanism were successfully synthesized by high temperature calcination combined with a hydrothermal method. These synthesized composites exhibited excellent photocatalytic performance, especially the 40 wt% Bi2O3/g-C3N4 composite, which produced about 1.8 times the CO yield of pure g-C3N4. The obtained products were characterized by X-ray diffraction (XRD) patterns, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET), UV-vis diffuse reflectance spectroscopy (UV-vis DRS) and so on. Characterization results revealed that Bi ions had well covered the surface of g-C3N4, thus restraining the recombination of electron–hole pairs and resulting in a stronger visible-light response and higher CO yield. In addition, the electron transfer process through the Z-scheme mechanism also promoted the photocatalytic activity.

Bi2O3/g-C3N4 composites were synthesized and used in photocatalytic reduction of CO2 with a Z-scheme mechanism.  相似文献   

7.
A novel magnetic heterogeneous g-C3N4/α-Fe2O3/Fe3O4 catalyst was successfully synthesized through a simple hydrothermal method. The structure, morphology, and optical properties of the catalyst were characterized. The photocatalytic activity of the heterogeneous g-C3N4/α-Fe2O3/Fe3O4 catalyst for the photo-Fenton degradation of Orange II in the presence of H2O2 irradiated with visible light (λ > 420 nm) at neutral pH was evaluated. The g-C3N4/α-Fe2O3/Fe3O4 photocatalyst was found to be an excellent catalyst for the degradation of Orange II and offers great advantages over the traditional Fenton system (Fe(ii/iii)/H2O2). The results indicated that successfully combining monodispersed Fe3O4 nanoparticles and g-C3N4/α-Fe2O3 enhanced light harvesting, retarded photogenerated electron–hole recombination, and significantly enhanced the photocatalytic activity of the system. The g-C3N4/α-Fe2O3/Fe3O4 (30%) sample gave the highest degradation rate constant, 0.091 min−1, which was almost 4.01 times higher than the degradation rate constant for α-Fe2O3 and 2.65 times higher than the degradation rate constant for g-C3N4/α-Fe2O3 under the same conditions. A reasonable mechanism for catalysis by the g-C3N4/α-Fe2O3/Fe3O4 composite was developed. The g-C3N4/α-Fe2O3/Fe3O4 composite was found to be stable and recyclable, meaning it has great potential for use as a photo-Fenton catalyst for effectively degrading organic pollutants in wastewater.

A novel magnetic heterogeneous g-C3N4/α-Fe2O3/Fe3O4 catalyst was firstly synthesized and exhibited very effective visible-light-Fenton degradation of Orange II at neutral pH.  相似文献   

8.
In our study, Zr-based UiO-66 (Zr) was synthesized using terephthalic acid obtained from waste plastic. Thereafter, UiO-66/g-C3N4 composites were prepared by the solvothermal method, and their photocatalytic activity in the photodegradation of the chemical warfare agent simulant, dimethyl 4-nitrophenyl phosphate (DMNP), was evaluated. The as-synthesized UiO-66/g-C3N4 exhibited a high surface area (1440 m2 g−1) and a high capillary volume (1.49 cm3 g−1). The UiO-66/g-C3N4 samples absorbed a visible light band with bandgap energies of 2.13–2.88 eV. The as-synthesized UiO-66/g-C3N4 composites exhibited highly efficient degradation of DMNP with a short half-life (t1/2 of 2.17 min) at pH 7 under visible light irradiation. The trapping experiments confirmed that the h+ and ˙O2 radicals played an important role in the photocatalytic degradation of DMNP. The UiO-66/g-C3N4 catalyst simultaneously performed two processes: the hydrolysis and photocatalytic oxidation of DMNP in water. During irradiation, a p–n heterojunction between UiO-66 and g-C3N4 restricted the recombination of photogenerated electrons and holes, resulting in the enhancement in the degradation rate of DMNP.

UiO-66/g-C3N4 with a high surface area (1440 m2 g−1) and a high capillary volume (1.49 cm3 g−1) exhibited highly efficient degradation of dimethyl 4-nitrophenyl phosphate with t1/2 = 2.17 min.  相似文献   

9.
A rapid recombination of photo-generated electrons and holes, as well as a narrow visible light adsorption range are two intrinsic defects in graphitic carbon nitride (g-C3N4)-based photocatalysts. Inspired by natural photosynthesis, an artificially synthesized Z-scheme photocatalyst can efficaciously restrain the recombination of photogenerated electron–hole pairs and enhance the photoabsorption ability. Hence, to figure out the above problems, BiOBr/g-C3N4 composite photocatalysts with different mass ratios of BiOBr were successfully synthesized via a facile template-assisted hydrothermal method which enabled the BiOBr microspheres to in situ grow on the surface of g-C3N4 flakes. Furthermore, to explore the origin of the enhanced photocatalytic activity of BiOBr/g-C3N4 composites, the microstructure, photoabsorption ability and electrochemical property of BiOBr/g-C3N4 composites were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS) and photocurrent (PC) response measurements. As a result, the introduction of BiOBr on g-C3N4 to constitute a direct Z-scheme heterojunction system can effectively broaden the light absorption range and promote the separation of photo-generated electron–hole pairs. Hence, compared with pure g-C3N4 and BiOBr, the resultant BiOBr/g-C3N4 composites exhibit the remarkable activity of photodegradated rhodamine B (RhB) and tetracycline hydrochloride (TC-HCl) under visible light irradiation. Simultaneously, the optimal BiOBr content of the BiOBr/g-C3N4 composites was obtained. The BiOBr/g-C3N4 composites exhibit an excellent photostability and reusability after four recycling runs for degradation RhB. Moreover, the active-group-trapping experiment confirmed that ·OH, ·O2 and h+ were the primary active groups in the degradation process. Based on the above research results, a rational direct Z-scheme heterojunction system is contrastively analyzed and proposed to account for the photocatalytic degradation process of BiOBr/g-C3N4 composites.

The morphology, electrochemical property, photoabsorption ability and photocatalytic activity of BiOBr/g-C3N4 composites are discussed. A rational photocatalytic mechanism is proposed.  相似文献   

10.
In this work, a two-component modified AgBr–Br–g-C3N4 composite catalyst with outstanding photocatalytic H2O2 production ability is synthesized. XRD, UV-Vis, N2 adsorption, TEM, XPS, EPR and PL were used to characterize the obtained catalysts. The as-prepared AgBr–Br–g-C3N4 composite catalyst shows the highest H2O2 equilibrium concentration of 3.9 mmol L−1, which is 7.8 and 19.5 times higher than that of GCN and AgBr. A “two channel pathway” is proposed for this reaction system which causes the remarkably promoted H2O2 production ability. In addition, compared with another two-component modified catalyst, Ag–AgBr–g-C3N4, AgBr–Br–g-C3N4 composite catalyst displays the higher photocatalytic H2O2 production ability and stability.

In this work, a two-component modified AgBr–Br–g-C3N4 composite catalyst with outstanding photocatalytic H2O2 production ability is synthesized.  相似文献   

11.
Constructing a 0D/3D p–n heterojunction is a feasible strategy for accelerating photo-induced charge separation and promoting photocatalytic H2 production. In this study, a 0D/3D MoS2/g-C3N4 (0D/3D-MCN) photocatalyst with a p–n heterojunction was prepared via a facile light-assisted deposition procedure, and the 3D spongy-like g-C3N4 (3D-CN) was synthesized through simple thermolysis of NH4Cl and melamine mixture. For comparison, 2D-MoS2 nanosheets were also embedded in 3D-CN by a solution impregnation method to synthesize a 2D/3D-MCN photocatalyst. As a result, the as-prepared 0D/3D-MCN-3.5% composite containing 3.5 wt% 0D-MoS2 QDs exhibited the highest photocatalytic H2 evolution rate of 817.1 μmol h−1 g−1, which was 1.9 and 19.4 times higher than that of 2D/3D-MCN-5% (containing 5 wt% 2D-MoS2 nanosheets) and 3D-CN, respectively. The results of XPS and electrochemical tests confirmed that a p–n heterojunction was formed in the 0D/3D-MCN-3.5% composite, which could accelerate the electron and hole movement in the opposite direction and retard their recombination; however, it was not found in 2D/3D-MCN-5%. This study revealed the relationship among the morphologies of MoS2 using g-C3N4 as a substrate, the formation of a p–n heterojunction, and the H2 evolution activity; and provided further insights into fabricating a 3D g-C3N4-based photocatalyst with a p–n heterojunction for photocatalytic H2 evolution.

A 0D/3D p–n heterojunction was formed in the MoS2/g-C3N4 composite, which could promote the separation of electrons and holes efficiently.  相似文献   

12.
With the expansion of industrialization, dye pollution has become a significant hazard to humans and aquatic ecosystems. In this study, α-Fe2O3/g-C3N4-R (where R is the relative percentage of α-Fe2O3) composites were fabricated by a one-step method. The as-prepared α-Fe2O3/g-C3N4-0.5 composites showed excellent adsorption capacities for methyl orange (MO, 69.91 mg g−1) and methylene blue (MB, 29.46 mg g−1), surpassing those of g-C3N4 and many other materials. Moreover, the ionic strength and initial pH influenced the adsorption process. Relatively, the adsorption isotherms best fitted the Freundlich model, and the pseudo-second-order kinetic model could accurately describe the kinetics for the adsorption of MO and MB by α-Fe2O3/g-C3N4-0.5. Electrostatic interaction and π–π electron donor–acceptor interaction were the major mechanisms for MO/MB adsorption. In addition, the photocatalytic experiment results showed that more than 79% of the added MO/MB was removed within 150 min. The experimental results of free-radical capture revealed that holes (h+) were the major reaction species for the photodegradation of MO, whereas MB was reduced by the synergistic effect of hydroxyl radicals (·OH) and holes (h+). This study suggests that the α-Fe2O3/g-C3N4 composites have an application potential for the removal of dyes from wastewater.

Simple one-step hydrothermal synthesis of α-Fe2O3/g-C3N4 composites for the synergistic adsorption and photodegradation of dyes  相似文献   

13.
The generation of hydrogen-based energy and environmental remediation using sunlight is an emerging topic of great significance for meeting the ever-growing global need. However, the actual photocatalytic performance is still far below expectations because of the relatively slack charge-carrier separation and migration as well as insufficient spectral absorption in semiconductors. Therefore, the rational construction of heterojunctions is considered as an effective approach to solving the above issues. In this context, we have, for the first time, designed and synthesized a two-dimensional 2D-on-2D heterostructure, based on 2D Ag-doped ZnIn2S4 nanoplates deposited on 2D g-C3N4 nanosheets (denoted as g-C3N4/Ag:ZnIn2S4). This construct benefits from improved visible-light absorption by unveiling a greater number of catalytically active sites, effectively enhancing charge-carrier separation and relocation. Detailed analysis has proved that under visible-light irradiation, the optimized g-C3N4/20 wt% Ag:ZnIn2S4 nanocomposite has substantially upgraded photocatalytic activity in hydrogen formation by water splitting (hydrogen evolution rate of up to 597.47 μmol h−1 g−1) and in residual dyestuff degradation (methyl orange, MO; degradation rate constant of 0.1406 min−1). Noteworthily, these two exceptionally high values respectively represent 30.73 and 5.42 times enhancements vs. results obtained with bare g-C3N4. Another strong point of our g-C3N4/Ag:ZnIn2S4 is its impressive recyclability for 20 runs, with no relevant metal release in the aqueous solution following photocatalysis. This work introduces new, superior access to highly efficient photocatalysts founded on 2D/2D nanocomposites serving both the production of hydrogen as an energy carrier and environmental remediation.

The generation of hydrogen-based energy and environmental remediation using sunlight is an emerging topic of great significance for meeting the ever-growing global need.  相似文献   

14.
The electronic properties of the g-C3N4/β-As and g-C3N4/β-Sb heterojunctions are investigated via density functional theory. We find that both heterostructures are indirect band gap semiconductors that, when applied to a photocatalytic device, will suffer from inefficient light emission. Fortunately, the band gap of the two junctions can be adjusted by external biaxial strain. As strain increases from compression to extensive, both compounds undergo a transition from metals, indirect semiconductors to direct semiconductors. Moreover, due to the charge transfer, each junction forms a large built-in electric field, which helps to prevent the recombination of electrons and holes. Our results are expected to widen the potential applications of these heterojunctions in nanodevices.

The electronic properties of the g-C3N4/β-As and g-C3N4/β-Sb heterojunctions are investigated via density functional theory.  相似文献   

15.
A heterogeneous WS2/g-C3N4 composite photocatalyst was prepared by a facile ultrasound-assisted hydrothermal method. The WS2/g-C3N4 composite was used for photocatalytic regeneration of NAD+ to NADH, which were coupled with dehydrogenases for sustainable bioconversion of CO2 to methanol under visible light irradiation. Compared with pristine g-C3N4 and the physical mixture of WS2 and g-C3N4, the fabricated WS2/g-C3N4 composite catalyst with 5 wt% of WS2 showed the highest activity for methanol synthesis. The methanol productivity reached 372.1 μmol h−1 gcat−1, which is approximately 7.5 times higher than that obtained using pure g-C3N4. For further application demonstration, the activity of the WS2/g-C3N4 composite catalyst toward photodegradation of Rhodamine B (RhB) was evaluated. RhB removal ratio approaching 100% was achieved in 1 hour by using the WS2/g-C3N4 composite catalyst with 5 wt% of WS2, at an apparent degradation rate approximately 2.6 times higher than that of pure g-C3N4. Based on detailed investigations on physiochemical properties of the photocatalysts, the significantly enhanced reaction efficiency of the WS2/g-C3N4 composite was considered to be mainly benefiting from the formation of a heterojunction interface between WS2 and g-C3N4. Upon visible-light irradiation, the photo-induced electrons can transfer from the conduction band of g-C3N4 to WS2, thus recombination of electrons and holes was decreased and the photo-harvesting efficiency was enhanced.

A heterogeneous WS2/g-C3N4 composite photocatalyst was prepared by a facile ultrasound-assisted hydrothermal method.  相似文献   

16.
Herein, we fabricated a ternary photocatalyst composed of CaFe2O4, multiwalled carbon nanotubes (CNTs) and graphitic carbon nitride (g-C3N4) via a simple hydrothermal route. CaFe2O4 acted as a photosensitizer medium and the CNT acted as a co-catalyst, which remarkably enhanced the photocatalytic performances of g-C3N4 towards the degradation of hexavalent chromium (Cr(vi)) and the antibiotic tetracycline (TC) under visible light irradiation. To investigate the morphological and topological features of the photocatalyst, field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) analyses were performed. The surface properties and oxidation state of the CaFe2O4/g-C3N4/CNT composite were determined by X-ray photoelectron spectroscopy (XPS). The recombination rate of the charge carriers and the band gap values of the as-synthesized catalysts were analyzed by photoluminescence spectroscopy (PL) and diffused reflectance spectroscopy (UV/Vis DRS) studies, respectively. Besides the degradation reactions, the high hydrogen production rate of 1050 μmol h−1 under visible light using the CaFe2O4/g-C3N4/CNT composite loaded with 5 wt% CNT was observed. The superior photocatalytic performances of the CaFe2O4/g-C3N4/CNT composite can be ascribed to the effective heterojunction formed between g-C3N4 and the CaFe2O4 matrix, in which the CNT act as a conducting bridge in the system, promoting the production of photoinduced charge carriers in the semiconductor system. Finally, the plausible photocatalytic mechanism towards the degradation of pollutants and hydrogen production was discussed carefully.

Herein, we fabricated a ternary photocatalyst composed of CaFe2O4, multiwalled carbon nanotubes (CNTs) and graphitic carbon nitride (g-C3N4) via a simple hydrothermal route.  相似文献   

17.
An isotropic bubble-propelled graphitic carbon nitride coated carbon microsphere (g-C3N4@CMS) micromotor that displays efficient self-propulsion powered by visible light irradiation and offers effective dynamic removal of organic pollutants for environmental applications is described. Its morphology, structure, and composition were systematically characterized, confirming the successful coating of g-C3N4 on the CMS surface and a core–shell structure. The photocatalytic-induced bubble propulsion of g-C3N4@CMS micromotors essentially stems from the asymmetrical photocatalytic redox reactions of g-C3N4 on the symmetrical surface of micromotors under visible light illumination. The stacking effect of g-C3N4 on the CMS surface results in a microporous structure that provides a highly reactive photocatalytic layer, which also leads to effective bubble evolution and propulsion at remarkable speeds of over 167.97 μm s−1 under 250 mW cm−2 visible light in the presence of 30% H2O2 fuel. The velocity can be easily and effectively adjusted by H2O2 fuel and the intensity of visible light. Furthermore, the motion state can be reversibly and wirelessly controlled by “switching on/off” light. Such coupling of the high photocatalytic activity of the porous g-C3N4 shell with the rapid movement of these light-driven micromotors, along with the corresponding fluid dynamics and mixing, result in greatly accelerated organic pollutant degradation. The adsorption kinetics have also been investigated and shown to follow pseudo-second-order kinetics. The strategy proposed here would inspire the designing of light-driven symmetrical micromotors because of the low cost, single component, and simple structure as well as facile and large-scale fabrication, which make them suitable for practical applications.

An isotropic bubble-propelled g-C3N4@CMS micromotor that displays efficient self-propulsion powered by visible light irradiation and offers effective dynamic removal of organic pollutants for environmental applications is described.  相似文献   

18.
ZnO and g-C3N4 provide excellent photocatalytic properties for degradation of antibiotics in pharmaceutical wastewater. In this work, 2D–2D ZnO/N doped g-C3N4 (NCN) composite photocatalysts were prepared for degradation of tetracycline (TC), ciprofloxacin (CIP) and ofloxacin (OFLX). The addition of ZnO resulted in higher separation efficiency and lower recombination rate of photogenerated charge under visible light. The composite photocatalyst showed better degradation performance compared to ZnO or NCN alone. The TC degradation reached 81.3% in 15 minutes by applying the prepared 20% ZnO/NCN composite photocatalyst, showing great competitiveness among literature reported g-C3N4 based photocatalysts. After 30 minutes, the degradation rate of TC, CIP and OFLX reached 82.4%, 64.4% and 78.2%, respectively. The TC degradation constant of the composite photocatalyst was 2.7 times and 6.4 times higher than NCN and CN, respectively. Radical trapping experiments indicated that ·O2 was the dominant active substance. The transference of excited electrons from the conduction band (CB) of NCN to ZnO enhanced the separation of photogenerated electron–hole pairs and simultaneously suppressed their recombination. This study provides a possibility for the design of high-performance photocatalysts for antibiotics degradation in wastewater.

2D–2D ZnO/N doped g-C3N4 (NCN) composite photocatalysts were prepared for degradation of antibiotics with high efficiency.  相似文献   

19.
By combining the plasmon resonance of Ag nanoparticles and orientation effects of ZIF-8, as well as the visible-light activity of g-C3N4, we constructed a direct Z-scheme heterojunction with a co-existing Ag+/Ag0 system by an in situ coprecipitation method. The presence of Ag+/Ag0 on the surface of ZIF-8 was confirmed by the exchange of Ag+ and Zn2+ ions. This promoted the reduction of the band gap of ZIF-8, according to X-ray diffraction (XRD) and X-ray photoelectron spectroscopy. The results reveal that the 12 wt% Ag@ZIF-8/g-C3N4 nanocomposite presented the best adsorptive–photocatalytic activity for the degradation of multi-residue antibiotics under visible light irradiation for 60 min. Its degradation efficiency reached 90%, and its average apparent reaction rate constant was 10.27 times that of pure g-C3N4. In the radical scavenger experiments, ˙O2 and ˙OH were shown to be important in the process of photocatalytic degradation. In addition, we proposed a possible direct Z-scheme photocatalytic mechanism, that is, an internal electric field was formed to compensate the mediators between the interfaces of Ag@ZIF-8 and g-C3N4. This improvement can be attributed to the direct Z-scheme heterojunction system fabricated between Ag@ZIF-8 and g-C3N4. This can accelerate photogenerated electron–hole separation and the redox capability of Ag@ZIF-8/g-C3N4. The integration of the adsorption and photocatalytic degradation of various antibiotics is a promising approach. ZIF-8 has been widely used in the integrated adsorptive–photocatalytic removal of various antibiotics due to its large surface area, high orientation adsorption capacity. Therefore, this study provides new insights into the design of enhanced redox capacity for the efficient degradation of multiple antibiotics under visible-light irradiation.

By combining the plasmon resonance of Ag nanoparticles and orientation effects of ZIF-8, as well as the visible-light activity of g-C3N4, we constructed a direct Z-scheme heterojunction with a co-existing Ag+/Ag0 system by an in situ coprecipitation method.  相似文献   

20.
Heterojunction formation and heteroatom doping could be viewed as promising strategies for constructing composite photocatalysts with high visible light catalytic activity. In this work, we fabricated a carbon, nitrogen and sulfur co-doped TiO2/g-C3N4 (CNS-TiO2/g-C3N4) Z-scheme heterojunction photocatalyst composite via one-step hydrothermal and calcination methods. Compared with pure TiO2 and g-C3N4, the CNS-TiO2/g-C3N4 Z-scheme heterojunction photocatalyst possessed excellent degradation performance under visible light irradiation. Due to the formation of the Z-scheme heterostructure, the utilization rate of the photogenerated electrons–holes generated by the catalyst was increased, which enhanced the catalytic activity. Moreover, the heteroatom doping (C, N and S) could efficiently tailor the band gap of TiO2 and facilitate electron transition, contributing to enhancing the degradation ability under visible light. The CNS-TiO2/g-C3N4-2 exhibited a superior photocatalytic degradation efficiency (k = 0.069 min−1) for methyl orange dye (MO), which is higher than those of pure TiO2 (k = 0.001 min−1) and g-C3N4 (k = 0.012 min−1), showing excellent photocatalytic activity against organic pollutants.

The CNS-TiO2/g-C3N4 photocatalyst with excellent visible light catalytic activity was successfully manufactured, benefiting from the construction of the Z-scheme heterojunction and the co-doping of heteroatoms (C, N and S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号