首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, CMC–LDH beads were prepared and characterized using SEM, FTIR and TG analysis. The beads were applied for the removal of Cr(vi) from aqueous solution. The effects of adsorbent dosage, initial pH and initial concentration of Cr(vi) solution on Cr(vi) uptake were investigated in detail. Moreover, adsorption isotherms and adsorption kinetic models were employed to analyze the adsorption process, and a preliminary study of the reusability of the adsorbent was performed. The experimental results showed that the CMC–LDH beads could remove Cr(vi) from aqueous solution efficiently. When the initial concentration of the Cr(vi) solution was 100 mg L−1 and the adsorbent dosage was 12 g L−1, the removal efficiency of Cr(vi) reached 96.2%. After the CMC–LDH beads were reused 10 times, the removal efficiency of Cr(vi) still remained at 89.6%.

CMC–LDH beads were prepared, characterized and applied for the removal of heavy metal ions in this study.  相似文献   

2.
Black soils have a significant retention effect on the migration of Cr(vi) towards groundwater, and Cr(vi) adsorption and reduction are both involved in this process. However, the adsorption and reduction of Cr(vi) were always investigated separately in previous studies resulting in an unclear relationship between them. In this study, the adsorption and reduction kinetic processes of Cr(vi) by a typical black soil were separately investigated under different initial Cr(vi) concentrations (40–400 mg L−1) and pH conditions (3.5–7.0) by the means of desorption treatment, and the equilibrium relationship between aqueous and adsorbed Cr(vi) was innovatively established based on the kinetic data. It was found that under pH 5.7 the adsorbed Cr(vi) content on soil particles was linearly correlated with the remaining Cr(vi) concentration in solution with time (R2 = 0.98), and the reduction rate of Cr(vi) in the reaction system was linearly correlated with the adsorbed Cr(vi) content on soil particles with time (R2 = 0.99). With pH decreasing from 7.0 to 3.5, the partition of Cr(vi) between solid and aqueous phases turned out to be of a non-linear nature, which can be fitted better by the Freundlich model. The retention of Cr(vi) by black soil was determined to follow the “adsorption–reduction” mechanism, where the Cr(vi) was first rapidly adsorbed onto the soil particles by a reversible adsorption reaction, and then the adsorbed Cr(vi) was gradually reduced into Cr(iii). A two-step kinetic model was developed accordingly, and the experimental data were fitted much better by the two-step adsorption–reduction kinetic model (R2 = 0.89 on average) compared with the traditional first-order and second-order kinetic models (R2 = 0.66 and 0.76 on average respectively). This paper highlights the novel two step kinetic model developed based on the proposed “adsorption–reduction” mechanism of Cr(vi) retention by a typical black soil.

A novel two-step kinetic model was developed based on the proposed “adsorption–reduction” mechanism of Cr(vi) retention by a typical black soil.  相似文献   

3.
In order to remove hexavalent chromium (Cr(vi)) efficiently and simplify the adsorbent preparation process, we employed a single step method to prepare a new biochar supported manganese sulfide material. The nanoscale MnS particles were highly soldered on the biochar support surface, and this adsorbent displayed the effective removal of Cr(vi) (98.15 mg L−1) via synergistic effect between adsorption and reduction/precipitation under weak acid conditions (pH = 5.0–6.0). The adsorption kinetic data were described well by the pseudo second-order kinetic model, suggesting that the reaction process was a chemisorption process. The adsorption isotherm data were described well by the Redlich–Peterson model, further suggesting that this reaction was a hybrid chemical reaction-sorption process. In addition, the Dubinin–Radushkevich isotherm model with 8.28, 8.57, and 12.91 kJ mol−1 adsorption energy also suggests that it was a chemisorption process. The simple and eco-friendly preparation process, low-cost, and the high removal efficiency could make it a promising material for the purification of Cr(vi)-contaminated wastewater.

In order to remove hexavalent chromium (Cr(vi)) efficiently and simplify the adsorbent preparation process, we employed a single step method to prepare a new biochar supported manganese sulfide material.  相似文献   

4.
In the present work, leucoemeraldine-based hybrid porous polyanilines (LHPPs) have been synthesized by the Friedel–Crafts reaction of leucoemeraldine and octavinylsilsesquioxane (OVS) for Cr(vi) removal. The resulting LHPPs were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and N2 adsorption–desorption. The findings indiated that the LHPPs were amorphous, with apparent surface areas (SBET) in the range of 147 to 388 m2 g−1 and total volumes in the range of 0.13 to 0.44 cm3 g−1. Cr(vi) removal experiments displayed that the LHPPs exhibited highly efficient Cr(vi) removal performance. The maximum Cr(vi) removal capacity of LHPP-1 was 990.1 mg g−1 at 308 K and pH 1, which is higher than those of other reported polyaniline-based adsorbents. The adsorption process was a spontaneous, endothermic and chemical adsorption process. The adsorption behavior agreed well with Langmuir models and pseudo second-order equations. X-ray photoelectron spectroscopy and Fourier transformed infrared (FTIR) spectroscopy analysis revealed that the highly efficient Cr(vi) removal performance can be mainly attributed to the existence of numerous amine and imine groups on the surface of the LHPPs; these can function as adsorption active sites for Cr(vi) removal through electrostatic adsorption and reduction to Cr(iii) under acidic conditions. Moreover, the LHPPs exhibited excellent adsorption selectivity for Cr(vi) despite the presence of other metal ions (K+, Cu2+, Mn2+) and anions (NO3, SO42−). Therefore, the LHPPs have potential applications for Cr(vi) removal in industrial wastewater.

In the present work, leucoemeraldine-based hybrid porous polyanilines (LHPPs) have been synthesized by the Friedel–Crafts reaction of leucoemeraldine and octavinylsilsesquioxane (OVS) for Cr(vi) removal.  相似文献   

5.
In the current study, a new adsorbent that is insoluble in water and many acid solutions and has a high adsorption capacity for Cr(vi) metal ions was synthesized. In the synthesis process, 3-chloropropyl-trimethoxysilane (CPTS) was first modified on a silica gel (Si) surface. Secondly, 4-acetyl-3-hydroxyaniline (AHAP) was immobilized on the modified silica gel compound (Si-CPTS). As a result of the immobilization process, a new adsorbent compound named Si-CPTS-AHAP (silica gel-3-chloropropyltrimethoxy silane 4-acetyl-3-hydroxyaniline) was obtained, which was used to separate Cr(vi) ions from aqueous solution (K2Cr2O7) and industrial wastewater. The material was characterized using scanning electron microscopy and Fourier-transform infrared spectroscopy. The amount of chromium adsorbed was detected by ultraviolet-visible spectroscopy. The adsorption was evaluated using batch methods. The effects of temperature, pH, concentration, adsorbent amount and interaction time on the adsorption of Si-CPTS-AHAP were also investigated. The adsorption of Cr(vi) ions on Si-CPTS-AHAP was investigated via adsorption kinetics, isotherm and thermodynamic studies. The value of the isotherm parameters and the highest adsorption yields were calculated from the Dubinin–Radushkevich, Freundlich and Langmuir isotherm equations. Thermodynamic features such as entropy (ΔS), enthalpy (ΔH) and free energy (ΔG) were also calculated from the experimental results. The experimental results showed that the best recoveries of Cr(vi) metal ions are under the conditions of 180 min (interaction time), 0.05 g (adsorbent amount) and 323.15 K (temperature) at pH 2. Si-CPTS-AHAP can be used for the removal of poisonous pollutants in wastewater.

Use of a newly synthesized Si-CPTS-AHAP adsorbent in the removal of Cr(vi) ions in wastewater treatment systems may potentially lead to low cost and highly efficient heavy metal removal.  相似文献   

6.
The aim of this study is to develop a ternary nanocomposite (NC) of polyaniline (PANI)/2-acrylamido-2-methylpropanesulfonic acid (AMPSA)-capped silver nanoparticles (NPs)/graphene oxide quantum dots (PANI/Ag (AMPSA)/GO QDs) as an efficient adsorbent for the removal of the highly toxic hexavalent chromium (Cr(vi)) from polluted water. PANI/Ag (AMPSA)/GO QDs NC was synthesized via in situ oxidative polymerization. The effects of pH, adsorbent dose, initial concentration, temperature, contact time, ionic strength and co-existing ions on the removal of Cr(vi) by PANI/Ag (AMPSA)/GO QDs were investigated. The PANI/Ag (AMPSA)/GO QDs NC (25.0 mg) removed 99.9% of Cr(vi) from an aqueous solution containing 60 mg L−1 Cr(vi) ions at pH 2. Energy dispersive X-ray (EDX) and inductively coupled plasma spectrometry (ICP) studies confirmed the adsorption of Cr(vi) and that some of the adsorbed Cr(vi) was reduced to Cr(iii). Cr(vi) removal by the PANI/Ag (AMPSA)/GO QDs NC followed the pseudo-second order kinetic model, and the removal was highly selective for Cr(vi) in the presence of other co-existing ions. In summary, the PANI/Ag (AMPSA)/GO QDs NC has potential as a novel adsorbent for Cr(vi).

The aim is to develop a ternary nanocomposite of polyaniline/2-acrylamido-2-methylpropanesulfonic acid-capped silver nanoparticles/graphene oxide quantum dots as an efficient adsorbent for the removal of the highly toxic hexavalent chromium (Cr(vi)) from polluted water.  相似文献   

7.
Recently, research interest in the application of lignin is growing, especially as adsorbent material. However, single lignin shows unsatisfactory adsorption performance, and thus, construction of lignin-based nanocomposites is worth considering. Herein, we introduced graphene oxide (GO) into lignin to form lignin/GO (LGNs) composite nanospheres by a self-assembly method. FTIR and 1H NMR spectroscopy illustrated that lignin and GO are tightly connected by hydrogen bonds. The LGNs as an environmental friendly material, also exhibit excellent performance for Cr(vi) removal. The maximum sorption capacity of LGNs is 368.78 mg g−1, and the sorption efficiency is 1.5 times than that of lignin nanospheres (LNs). The removal process of Cr(vi) via LGNs mainly relies on electrostatic interaction, and it also involves the reduction of Cr(vi) to Cr(iii). Moreover, LGNs still have high adsorption performance after repeating five times with the sorption capacity of 150.4 mg g−1 in 200 mg g−1 Cr(vi) solution. Therefore, the prepared lignin–GO composite nanospheres have enormous potential as a low-cost, high-absorbent and recyclable adsorbent, and can be used in wastewater treatment.

Lignin/GO (LGNs) composite nanospheres were prepared by self-assembly method, which showed excellent adsorption performance for Cr(vi) removal.  相似文献   

8.
Most recently, the continuous deterioration of the aquatic environment triggered by both heavy metals and synthetic organic dyes has imparted serious threats to the ecosphere and drinking water safety. However, it is still extremely challenging to treat complex wastewater containing these two classes of pollutants via a one-step method owing to the significant differences in their physicochemical properties. In the current work, versatile magnetic MWCNTs decorated with PEI (denoted as MWCNTs@Fe3O4/PEI) was fabricated by a facile, rapid and reproducible strategy and applied to as a robust adsorbent for simultaneously removing methyl orange (MO) and Cr(vi) from aqueous solutions. The physicochemical properties of the as-designed nanohybrid were investigated using various analytical techniques, i.e. XRD, FT-IR, SEM, TEM, VSM, zeta potential, etc. It was found that the surface charge properties of the MWCNTs as well as its dispersion in aqueous solution were greatly changed after the introduction of PEI molecules. The resulting nanohybrid exhibited attractive adsorption capabilities toward anionic MO and Cr(vi). In the perspective of a mono-pollutant system, the time-dependent adsorption process matched well with a pseudo-second-order kinetics equation, the adsorption isotherm data at r.t. were well fitted by a Langmuir model with maximum monolayer uptake capacity of 1727.6 mg g−1 for MO and 98.8 mg g−1 for Cr(vi), and the removal process of both pollutants was thermodynamically spontaneous and exothermic. In the MO-Cr(vi) binary system, the uptake of Cr(vi) by the as-prepared adsorbent was evidently enhanced by the presence of MO, while the coexisting Cr(vi) exerted a small negative effect on the sorption of MO; which was attributed to the different adsorption mechanisms of both pollutants on the as-recommend adsorbent. The much better adsorbing performance of the resulting MWCNTs@Fe3O4/PEI for MO and Cr(vi) than that of the pristine MWCNTs or the MWCNTs/Fe3O4 composite was mainly ascribed to the high surface area of the MWCNTs, the high density of protonated N-rich groups of PEI as well as the excellent dispersion and solubility of the resulting nanocomposites. Moreover, the obtained nanohybrids can be easily recovered after being used by a permanent magnet and still retained high stability and excellent reusability after consecutive adsorption–desorption cycles, implying its great potential in practical applications. Therefore, the as-fabricated MWCNTs@Fe3O4/PEI composite could be recommended as a promising candidate adsorbent for the simultaneous capture of MO and Cr(vi) from complex wastewater via multiple uptake mechanisms (e.g. electrostatic attraction, π–π stacking and hydrogen bonding).

An MWCNTs@Fe3O4/PEI composite was facilely fabricated as a robust adsorbent for simultaneously capturing methyl orange (MO) and Cr(vi) from complex wastewater.  相似文献   

9.
Spores of Aspergillus niger (denoted as A. niger) were used as a novel biosorbent to remove hexavalent chromium from aqueous solution. The effects of biosorbent dosage, pH, contact time, temperature and initial concentration of Cr(vi) on its adsorption removal were examined in batch mode. The Cr(vi) uptake capacity increased with an increase in Cr(vi) concentration until saturation, which was found to be about 97.1 mg g−1 at pH 2.0, temperature of 40 °C, adsorbent dose of 2.0 g L−1 and initial concentration of 300 mg L−1. Scanning electron microscopy, energy dispersive X-ray spectroscopy, field-emission transmission electron microscopy (FETEM), XPS and Fourier-transform infrared spectroscopy were applied to study the microstructure, composition and chemical bonding states of the biomass adsorbent before and after spore adsorption. The mechanisms of chromate anion removal from aqueous solution by the spores of A. niger were proposed, which included adsorption of Cr(vi) onto the spores followed by its reduction to Cr(iii). The reduced Cr(iii) was rebound to the biomass mainly through complexation mechanisms, redox reaction and electrostatic attraction. The removal of Cr(vi) by spores of A. niger followed pseudo-second-order adsorption kinetics. Monolayer adsorption of Cr(vi) was revealed by the better fitting of the Langmuir model isotherm rather than multilayer adsorption for the Freundlich model. The results indicated that A. niger spores can be used as a highly efficient biosorbent to remove Cr(vi) from contaminated water.

Spores of Aspergillus niger (denoted as A. niger) were used as a novel biosorbent to remove hexavalent chromium from aqueous solution.  相似文献   

10.
In the present work, porous carbon was made from sewage sludge and hybrid liriodendron leaves, and modified with iron ions (Fe@LS-BC) carried out on Cr(vi) in aqueous solution from a single-component system and in competitive biosorption with methyl orange (MO) from a binary-component system. The iron ion-modified porous carbon (Fe@LS-BC) showed higher efficiency in the removal of Cr(vi) compared to porous carbon prepared by the co-pyrolysis of sludge and hybrid liriodendron leaves. The incorporation of the Fe element improved the ability of the material to redox Cr(vi), while imparting magnetic characteristics to the porous carbon and improving the reusability of the porous carbon. On the other hand, Fe@LS-BC exhibited a better pore volume, facilitating the contact of the material with Cr(vi) ions. The highest adsorption capacity was 0.33 mmol g−1, and the adsorption experimental results for the single-component and binary-component systems of Cr(vi) matched well with the Langmuir–Freundlich models. When the concentration of MO was 0.2 and 0.8 mmol L−1, respectively, the highest adsorption capacity of Cr(vi) was 0.35 and 0.46 mmol g−1 in the binary system. The positively charged N–CH3+ on the MO molecule promoted the electrostatic adsorption between HCrO4, CrO42−, and Fe@LS-BC, and increased the adsorption potential of Cr(vi).

Mechanism for the adsorption of hexavalent chromium and methyl orange in a binary system.  相似文献   

11.
Using Cr(vi) as the imprinted ions and 2-allyl-1,3-diphenyl-1,3-propanedione (ADPD) (a compound synthesized by independent design) as the functional monomer, a series of chromium ion-imprinted composite membranes (Cr(vi)-IICMs) and corresponding non-imprinted composite membranes (NICMs) were synthesized and tested. The results showed that the Cr(vi)-IICM10 membrane prepared under optimal experimental conditions exhibited a high adsorption capacity towards Cr(vi) (Q = 30.35 mg g−1) and a high imprinting factor (α = 2.70). The structural characteristics of Cr(vi)-IICM10 and NICM10 were investigated using FE-SEM, ATR-FTIR, and BET techniques combined with UV-Vis photometry and inductively coupled plasma emission spectrometry (ICP-OES) to evaluate the adsorption performance and permeation selectivity, while the effect on adsorption permeance of varying the experimental conditions including the solvent type, pH, and temperature was also investigated. The results showed that Cr(vi)-IICM10 is a mesoporous material with excellent permeation selectivity, reusability, and favorable pH response, and that its adsorption behavior is in accordance with the Langmuir model and pseudo-first-order kinetics. Thus, Cr(vi)-IICM10 shows great potential towards utilization as a “smart membrane” to control the separation and removal of Cr(vi) in wastewater, and also proved a reasonable design of the new functional monomer ADPD.

Using Cr(vi) as the imprinted ions and 2-allyl-1,3-diphenyl-1,3-propanedione (a compound of independent design) as the functional monomer, a series of chromium ion-imprinted composite membranes and corresponding non-imprinted composite membranes were synthesized and tested.  相似文献   

12.
The present investigation involves synthesis and characterization of MCM-41–AEAPTMS–Fe(iii)Cl using coordinated Fe(iii) on MCM-41–AEAPTMS for efficient removal of hazardous Cr(vi) ions from aqueous solution. The adsorbent MCM-41–AEAPTMS–Fe(iii)Cl was characterized using small-angle X-ray diffraction (SAX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier-transform infrared (FT-IR) and Brunauer–Emmett–Teller (BET) surface analyzer techniques. The BET surface area was found to be 87.598 m2 g−1. The MCM-41–AEAPTMS–Fe(iii)Cl effectively adsorbs Cr(vi) with an adsorption capacity acquiring the maximum value of 84.9 mg g−1 at pH 3 at 298 K. The data followed pseudo-second-order kinetics and obeyed the Langmuir isotherm model. The thermodynamic data proved the exothermic and spontaneous nature of Cr(vi) ion adsorption on MCM-41–AEAPTMS–Fe(iii). Further, the higher value of ΔH° (−64.339 kJ mol−1) indicated that the adsorption was chemisorption in nature.

The present investigation involves synthesis and characterization of MCM-41–AEAPTMS–Fe(iii)Cl using coordinated Fe(iii) on MCM-41–AEAPTMS for efficient removal of hazardous Cr(vi) ions from aqueous solution.  相似文献   

13.
Hexavalent chromium Cr(vi), one of the most toxic contaminants, is released in the environment due to various anthropogenic activities. This study presents a novel sandwiched nanocomposite synthesized using graphene oxide (GO), manganese dioxide (MnO2) nanowires, iron oxide (Fe3O4) nanoparticles and polypyrrole (PPy) to remove hexavalent chromium ion Cr(vi) from water by an adsorption–reduction mechanism. In the sandwiched nanocomposites, GO provided enough surface area, functional groups, and hydrophilic surface for efficient absorption. Fe3O4 nanoparticles with excellent magnetic properties make it easy to separate and recover from water. Under acidic conditions, MnO2 nanowires act as both template and oxidant to initiate the polymerization of pyrrole monomers on its freshly activated surface to obtain GO/MnO2/Fe3O4/PPy (designated as GMFP) nanocomposite. GMFP could effectively adsorb Cr(vi) through electrostatic attraction, and the adsorbed Cr(vi) ions were partly reduced to trivalent chromium Cr(iii) (62%), resulting in the efficient adsorption and high removal of Cr(vi) from water. Hexavalent chromium adsorption by GMFP is strongly pH dependent and the adsorption kinetics followed the pseudo-second-order model. The Langmuir isothermal model described the adsorption isotherm data well and the maximum adsorption capacity was up to 374.53 mg g−1 at pH 2.0. These experimental results suggested that GMFP had great potential as an economic and efficient adsorbent of hexavalent chromium from wastewater, which has huge application potential.

A sandwiched nanocomposite has been developed to remove hexavalent chromium ion Cr(vi) from water by an adsorption–reduction mechanism.  相似文献   

14.
Excessive Cr(vi) emissions have been and continue to be a major contributor to heavy-metal pollution; recently, the development of a low-cost, safe and efficient method for the removal of Cr has attracted significant attention. In the present study, a two-step method involving oxalic acid reduction and modified fly ash adsorption was developed. The experimental results showed that this methodology exhibited high Cr(vi) removal efficiency under the following conditions: 1.5 g L−1 of oxalic acid, modification of fly ash (FA) by 20 wt% KOH, a contact time of 2 h and a mass of 0.3 g of modified fly ash (MFA) at room temperature (15–25 °C). The influencing factors of the adsorbent were discussed by characterized for their elemental composition, functional groups, surface area and surface morphology. According to the characteristic parameters and qe, the isothermal adsorption process could be well-described by the Langmuir model. The adsorption process resembles more closely to the pseudo-second-order kinetic model. In conclusion, this two-step method of oxalic acid reduction-modified fly ash adsorption is promising for Cr(vi) removal.

Removal of Cr(vi) from wastewater using a two-step method.  相似文献   

15.
In this study, Fe/Ni nanoparticles supported by a novel fly ash-based porous adsorbent (FBA-Fe/Ni) for Cr(vi) and Pb(ii) removal were investigated. In order to enhance the reactivity of zero-valent iron (ZVI), ZVI particles were deposited on the surface or in the inner pores of FBA as a support material and Ni nanoparticles were introduced. FBA was prepared with the solid waste such as Enteromorpha prolifera, bentonite and fly ash. FBA-Fe/Ni was characterized via Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and the Brunauer–Emmett–Teller model and energy-dispersive spectrometry. The effects of various parameters on Cr(vi) and Pb(ii) removal by FBA-Fe/Ni, such as FBA-Fe/Ni dosage, pH of the solution, reaction temperature, Cr(vi) and Pb(ii) concentrations, co-existing ions and ionic strength were discussed. The possible removal mechanisms were proposed and the results indicated that there was a three-step reaction including the adsorption of Cr(vi) and Pb(ii) on the surface of FBA-Fe/Ni, the subsequent reduction and precipitation. The removal capacity of Cr(vi) and Pb(ii) by FBA-Fe/Ni was 25.07 mg g−1 and 164.19 mg g−1 at 303 K with an initial concentration of 1000 mg L−1 and FBA-Fe/Ni dosage of 0.20 g. In conclusion, this work demonstrated that FBA-Fe/Ni was a promising alternative material for Cr(vi) and Pb(ii) removal.

In this study, Fe/Ni nanoparticles supported by a novel fly ash-based porous adsorbent (FBA-Fe/Ni) for Cr(vi) and Pb(ii) removal were investigated.  相似文献   

16.
An “on–off–on” fluorescent phosphorus/nitrogen co-doped carbon dot (PNCD) probe was explored for the determination of Cr(vi) and dopamine resulting from the inner filter effect (IFE). The blue-emitting carbon dots with high quantum yields of 25.47% as well as a narrow size distribution were synthesized by a rapid, convenient route using H3PO4 and ethylenediamine as the precursors without any surface passivation. A wide linear region in the range of 7–70 μM with a detection limit of 0.71 μM was achieved for Cr(vi). Moreover, the proper reductants can weaken the inner filter effect to recover the PNCD fluorescence by converting Cr(vi) into Cr(iii). Therefore, the PNCDs/Cr(vi) hybrid could also be used as an “off–on” fluorescent probe for detecting dopamine (DA) with a detection limit of 0.49 μM. Consequently, the PNCDs could serve as a powerful fluorescent bi-sensor for detection of both Cr(vi) and DA in practical applications.

An “on–off–on” fluorescent phosphorus/nitrogen co-doped carbon dot (PNCD) probe was explored for the determination of Cr(vi) and dopamine resulting from the inner filter effect (IFE).  相似文献   

17.
Polypyrrole-based (PPy) composite are promising candidates for the treatment of water pollution. Adsorption selectivity as well as a large adsorption capacity are two key factors for treating wastewater containing multiple ions. The structure and morphology of the prepared composites were characterized by the FT-IR, XRD and SEM examinations. The results indicate that the Fe3O4 and PPy nanosphere coats attapulgite (ATP) closely and evenly. Herein, a novel Fe3O4 and ATP doped three-dimensional network structure PPy/Fe3O4/ATP composite was demonstrated as an excellent adsorbent to effectively remove Cr(vi). The as-synthesized PPy/Fe3O4/ATP composite is suitable for Cr(vi) adsorption in a wide pH range (pH 2–6). Up to a 96.44% removal rate was found with 400 mg L−1 Cr(vi) aqueous solution in 30 min for 0.2 g PPy/Fe3O4/ATP adsorbent. Adsorption results showed that Cr(vi) removal efficiency by PPy/Fe3O4/ATP decreased with an increase in pH. The removal rate of Cr(vi) had already reached 93.63% in 15 min contact time. Co-existing ions studies exhibit inorganic oxyacid anion and transition metal cation showed negative effects on Cr(vi) removal rate. A chemical rather than a physical adsorption occurred for these adsorbents as revealed by a pseudo-second-order kinetic study. The results of the adsorption isotherms showed that the adsorption process was similar to the Langmuir isotherm adsorption. Furthermore, the PPy/Fe3O4/ATP composite exhibited a high stability for Cr(vi) adsorption during recycling tests process. This work may provide some useful guidelines for designing adsorbents with selectivity toward specific heavy metal ions.

Polypyrrole-based (PPy) composite are promising candidates for the treatment of water pollution.  相似文献   

18.
Based on an “assembling–fission” principle, stable sulfur quantum dots (SQDs) were synthesized using sublimed sulfur as a precursor and PEG-400 as a passivator. The fluorescence intensities (FIs) of SQDs were efficiently quenched by Cr(vi) due to formation of SQD/Cr(vi) complexes through the inner-filter effect. When ascorbic acid (AA) was introduced into the SQD/Cr(vi) system, SQD fluorescence was restored due to AA-induced reduction of Cr(vi) to Cr(iii). Consequently, a SQD-based “ON–OFF–ON” platform was constructed for sequential detection of Cr(vi) and AA. Under optimized conditions, the FIs of SQDs were linearly dependent on the concentrations of Cr(vi) and AA, yielding linear ranges of 0.005–1.5 and 0.01–5.5 mM with detection limits of 1.5 and 3 μM, respectively, in waters, serum and tablet samples. After a 24 h incubation, the SQDs displayed strong, quenched and recovered blue fluorescence, respectively, in the SQD, SQD/AAO/Cr(vi) and SQD/Cr(vi) systems in live HeLa cells and zebrafish embryos/larvae. A blue fluorescence was displayed in the yolk of zebrafish embryos, and yolk and head of larvae. This study demonstrates the efficacy of SQD systems for environmental and biological applications in complex matrices, and for direct observation of Cr bioaccumulation in organisms by bioimaging.

A SQDs-based “ON–OFF–ON” platform is constructed for detection of Cr(vi) and AA. SQDs are feasible for bioimaging of zebrafish embryos/larvae and HeLa cells.  相似文献   

19.
A series of micro–mesoporous activated carbons (ACs) were prepared from sugar beet residue by a two-step method including KOH chemical activation and were used for Cr(vi) removal from aqueous solutions. Several characterization techniques, including SEM, TEM, N2 adsorption, XRD, FTIR, and Raman spectroscopy, were used to determine the chemical and physical characteristics of the ACs, and the adsorption properties of the ACs were tested. The results indicated that the high specific surface area of the ACs reached 2002.9 m2 g−1, and the micropore surface area accounts for 85% of the total area. The optimal conditions for achieving the maximum Cr(vi) adsorption capacity of 163.7 mg g−1 by the ACs were activation with a KOH/carbon ratio of 3.0, an initial Cr(vi) concentration of 400 mg L−1, an adsorbent dose of 2.0 g L−1 and pH of 4.5. Therefore, the ACs exhibit excellent adsorption performance for removing Cr(vi) from aqueous solutions. According to an investigation of the adsorption process, the adsorption isotherm is most consistent with the Langmuir isotherm model, and the adsorption kinetics were well described by the pseudo-second-order model.

A series of micro–mesoporous activated carbons (ACs) were prepared from sugar beet residue by a two-step method including KOH chemical activation and were used for Cr(vi) removal from aqueous solutions.  相似文献   

20.
A one-step carbothermal synthesis and characterization of biochar-supported nanoscale zero-valent iron (nZVI/BC) was performed for the removal of hexavalent chromium (Cr(vi)) from aqueous solution. High dispersions of nanoscale zero-valent iron supported on biochar were successfully synthesized by the pyrolysis of an iron-impregnated biomass (corn stover) as the carbon and iron source under nitrogen atmosphere. The effects of the pyrolytic temperature on the Fe mineralogies formed on the biochar are discussed. In general, the effects of the treatment time, initial solution pH, and nZVI/BC dosage on the Cr(vi) removal are presented. The results showed high crystallinity and purity, and nZVI/BC was obtained at a pyrolytic temperature of 800 °C. The batch experimental results determined that the adsorption capacity of Cr(vi) decreases with the increase in the initial pH value from 4.0 to 10.0. The Cr(vi) adsorption kinetics data effectively followed a pseudo-second-order kinetics with a calculated rate constant of 0.0.3396 g mg−1 min−1. The calculated thermodynamic parameters, such as ΔG°, ΔH°, and ΔS°, were evaluated, and the results indicated that the Cr(vi) reduction on nZVI/BC was a spontaneous and endothermic process. The adsorption mechanism of Cr(vi) was investigated by XRD and XPS analyses and the results demonstrated that Cr(vi) was reduced to Cr(iii) and the oxidation of nZVI occurred during the reaction process. These results prove that nZVI/BC synthesized by a one-step carbothermal method can be considered as a potential candidate for the removal of Cr(vi) from aqueous solutions.

A one-step carbothermal synthesis and characterization of biochar-supported nanoscale zero-valent iron (nZVI/BC) was performed for the removal of hexavalent chromium (Cr(vi)) from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号