首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zn/MnO2 batteries, one of the most widely studied rechargeable aqueous zinc-ion batteries, suffer from poor cyclability because the structure of MnO2 is labile with cycling. Herein, the structural stability of α-MnO2 is enhanced by simultaneous Al3+ doping and lignin coating during the formation of α-MnO2 crystals in a hydrothermal process. Al3+ enters the [MnO6] octahedron accompanied by producing oxygen vacancies, and lignin further stabilizes the doped Al3+via strong interaction in the prepared material, Al-doped α-MnO2 coated by lignin (L + Al@α-MnO2). Meanwhile, the conductivity of L + Al@α-MnO2 improves due to Al3+ doping, and the surface area of L + Al@α-MnO2 increases because of the production of nanorod structures after Al3+ doping and lignin coating. Compared with the reference α-MnO2 cathode, the L + Al@α-MnO2 cathode achieves superior performance with durably high reversible capacity (∼180 mA h g−1 at 1.5 A g−1) and good cycle stability. In addition, ex situ X-ray diffraction characterization of the cathode at different voltages in the first cycle is employed to study the related mechanism on improving battery performance. This study may provide ideas of designing advanced cathode materials for other aqueous metal-ion batteries.

Al3+ doping combined with lignin coating improves the structural stability and electrochemical performance of the modified α-MnO2, L + Al@α-MnO2.  相似文献   

2.
Joshua Fu  Xuan Luo 《RSC advances》2020,10(65):39895
An inexpensive and eco-friendly alternative energy storage solution is becoming more in demand as the world moves towards greener technology. We used first principles calculations to investigate α, β, and γ-MnO2 and their Al-ion intercalation mechanism in potential applications for aluminum batteries. We explored these complexes through investigating properties such as volume change, binding/diffusion energy, and band gap to gauge each material. α-MnO2 had almost no volume change. γ-MnO2 had the lowest binding energy and diffusion barrier. Our study gives insight into the feasibility of using MnO2 in aluminum batteries and guides investigation of the material within its different phases.

An inexpensive and eco-friendly alternative energy storage solution is becoming more in demand as the world moves towards greener technology.  相似文献   

3.
Zr4+ doped α-MnO2 nanowires were successfully synthesized by a hydrothermal method. XRD, SEM, TEM and XPS analyses indicated that Mn3+ ions, Mn4+ ions, Mn4+δ ions and Zr4+ ions co-existed in the crystal structure of synthesized Zr4+ doped α-MnO2 nanowires. Zr4+ ions occupied the positions originally belonging to elemental manganese in the crystal structure and resulted in a mutual action between Zr4+ ions and Mn3+ ions. The mutual action made Mn3+ ions tend to lose their electrons and Zr4+ ions tend to get electrons. Cathodic polarization analyses showed that the electrocatalytic activity of α-MnO2 for oxygen reduction reaction (ORR) was remarkably improved by Zr4+ doping and the Zr/Mn molar ratio notably affected the ORR performance of the air electrodes prepared by Zr4+ doped α-MnO2 nanowires. The highest ORR current density of the air electrodes prepared by Zr4+ doped α-MnO2 nanowires in alkaline solution appeared at Zr/Mn molar ratio of 1 : 110, which was 23% higher than those prepared by α-MnO2 nanowires. EIS analyses indicated that the adsorption process of O2 molecules on the surface of the air electrodes prepared by Zr4+ doped α-MnO2 nanowires was the rate-controlling step for ORR. The DFT calculations revealed that the mutual action between Zr4+ and Mn3+ in Zr4+ doped α-MnO2 nanowires enhanced the adsorption process of O2 molecules.

O2 adsorption was enhanced after doping Zr4+ into MnO2 nanowires subsequently led to the improvement of ORR catalytic performance.  相似文献   

4.
Reversible aqueous zinc-ion batteries (ZIBs) have great potential for large-scale energy storage owing to their low cost and safety. However, the lack of long-lifetime positive materials severely restricts the development of ZIBs. Herein, we report NaV6O15 microflowers as a cathode material for ZIBs with excellent electrochemical performance, including a high specific capacity of ∼300 mA h g−1 at 100 mA g−1 and 141 mA h g−1 maintained after 2000 cycles at 5 A g−1 with a capacity retention of ∼107%. The high diffusion coefficient and stable tunneled structure of NaV6O15 facilitate Zn2+ intercalation/extraction and long-term cycle stability.

NaV6O15 microflowers were synthesized as a stable cathode material for aqueous zinc ion batteries, which show a high specific capacity and excellent long-term cycling performance.  相似文献   

5.
Aqueous zinc-ion batteries offer a low-cost and high-safety alternative for next-generation electrochemical energy storage, whereas suitable cathode materials remain to be explored. Herein, rod-like anhydrous V2O5 derived from a vanadium-based metal–organic framework is investigated. Interestingly, this material is assembled by tiny nanosheets with a large surface area of 218 m2 g−1 and high pore volume of 0.96 cm3 g−1. Benefiting from morphological and structural merits, this material exhibits excellent performances, such as high reversible capacity (449.8 mA h g−1 at 0.1 A g−1), good rate capability (314.3 mA h g−1 at 2 A g−1), and great long-term cyclability (86.8% capacity retention after 2000 cycles at 2 A g−1), which are significantly superior to the control sample. Such great performances are found to derive from high Zn2+ ion diffusion coefficient, large contribution of intercalation pseudocapacitance, and fast electrochemical kinetics. The ex situ measurements unveil that the intercalation of Zn2+ ion is accompanied by the reversible V5+ reduction and H2O incorporation. This work discloses a direction for designing and fabricating high-performance cathode materials for zinc-ion batteries and other advanced energy storage systems.

V2O5 with intriguing micro/nano-hierarchical structure is fabricated via the pyrolysis of MIL-47 (a MOF material) and displays great performances as the cathode material for aqueous zinc-ion batteries.  相似文献   

6.
As a non-active material component, the binder can effectively maintain the integrity of battery electrodes. In this work, based on the inspired structure of fishing nets, a three-dimensional mesh adhesive using widely sourced raw materials CMC and β-CD was designed. These cross-linked cyclodextrins have the advantage of dispersing the stress at the anchor point and moderating the significant volume changes of the Si anode. The Si/β-CD-CMC electrode maintains a reversible capacity of 1702 mA h g−1 even after 200 cycles at a high current of 0.5C. This work represents a significant step forward in Si anode binders and enables the cross-linked cyclodextrins to have potential applications in energy storage systems.

A three-dimensional mesh β-CD-CMC adhesive was designed based on the structure of fishing nets. This cross-linked binder has the ability to disperse the stress at the anchor point and moderate the significant volume changes of the Si anode.  相似文献   

7.
γ-MnO2, which is commercially used as an electrode material in batteries, is produced using large amounts of energy and leads to the production of high pollution as a secondary product. Ideally, this material should be fabricated by energy efficient, non-polluting methods at a reasonable cost. This study reports the green fabrication of γ-MnO2 into a gas diffusion electrode with Pt-free catalysts in acid solution. Cobalt oxide nanoparticles were deposited on few-layer graphene sheets produced via a simple sintering and ultrasonic mixing method, leading to the fabrication of cobalt oxide/few-layer graphene. Co3O4 nanoparticles are irregularly shaped and uniformly distributed on the surface of the few-layer graphene sheets. Characterization was conducted by X-ray diffraction, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy. Electrochemical characterization revealed the performance of cobalt oxide/few-layer graphene gas diffusion electrode in an electrolyte of 120 g L−1 manganese sulfate + 30 g L−1 sulfuric acid at 100 A m−2 at 80 °C. The cobalt oxide/few-layer graphene gas diffusion electrode exhibited a lower cell voltage of 0.9 V and higher electric energy savings of approximately 50% compared with traditional cathodes (copper and carbon).

Co3O4/FLG was used as a nanocatalyst to catalyze the ORR in the electrodeposition of MnO2. The proposed Co3O4/FLG nanocomposite GDE exhibited a high activity of 0.9 V at a current density of 100 A m−2.  相似文献   

8.
This work reports the layer-tunnel conversion of porous dehydrated synthetic alkali-free δ-MnO2 analogs prepared by exfoliation, flocculation, and heat treatment of nanosheets derived from highly crystalline potassium birnessite. High surface area porous solids result, with specific surface areas of 90–130 m2 g−1 and isotherms characteristic of both micro and macropores. The microstructures of the re-assembled floccules are reminiscent of crumpled paper where single and re-stacked nanosheets form the walls of interconnected macropores. The atomic and local structures of the floccules heat treated from 60–400 °C are tracked by Raman spectroscopy and synchrotron X-ray total scattering measurements. During heating, the nanosheets comprising the pore walls condense to form tunnel-structured fragments beginning at temperatures below 100 °C, while the microstructure with high surface area remains intact. The flocc microstructure remains largely unchanged in samples heated up to 400 °C while an increasing fraction of the sample is transformed, at least locally, to possess 1D tunnels characteristic of α-MnO2. Cyclic voltammetry in Na2SO4 aqueous electrolyte reflects the nanoscale structural evolution, where intercalative pseudocapacitance diminishes with the degree of transformation. Collectively, these results demonstrate that it is feasible to tailor the materials for applications incorporating nanoporous solids and nanofluidics, and specifically imply strategies to maintain a kinetically accessible interlayer contribute to Na intercalative pseudocapacitance.

This work reports the layer-tunnel conversion of porous dehydrated synthetic alkali-free δ-MnO2 analogs prepared by exfoliation, flocculation, and heat treatment of nanosheets derived from highly crystalline potassium birnessite.  相似文献   

9.
γ-MnO2 nanomaterials play an essential role in the development of advanced electrochemical energy storage and conversion devices with versatile industrial applications. Herein, novel dandelion-like hollow microspheres of γ-MnO2 mesocrystals have been fabricated for the first time by a one-pot biomineralization route. Recombinant collagen with unique rod-like structure has been demonstrated as a robust template to tune the morphologies of γ-MnO2 mesocrystals, and a very low concentration of collagen can alter the nanostructures of γ-MnO2 from nanorods to microspheres. The as-prepared γ-MnO2 mesocrystals formed well-ordered hollow microspheres composed of delicate nanoneedle-like units. Among all the reported γ-MnO2 with various nanostructures, the γ-MnO2 microspheres showed the most prowess to maintain high discharge capacities after 100+ cycles. The superior electrochemical performance of γ-MnO2 likely results from its unique hierarchical micro-nano structure. Notably, the γ-MnO2 mesocrystals display high biocompatibility and cellular activity. Collagen plays a key dual role in mediating the morphology as well as endowing the biofunction of the γ-MnO2 mesocrystals. This environmentally friendly biomineralization approach using rod-like collagen as the template, provides unprecedented opportunity for the production of novel nanostructured metal oxides with superior biocompatibility and electrochemical performance, which have great potential in advanced implantable and wearable health-care electronic devices.

Recombinant collagen with unique rod-like structure has been demonstrated as a robust template to create novel dandelion-like hollow microspheres of γ-MnO2 mesocrystals, which display superior biocompatibility and electrochemical performance.  相似文献   

10.
This work is primarily focused on indium sulfide (β-In2S3) and cobalt (Co)-doped β-In2S3 nanoflakes as photoanodes for water oxidation. The incorporation of cobalt introduces new dopant energy levels increasing visible light absorption and leading to improved photo-activity. In addition, cobalt ion centers in β-In2S3 act as potential catalytic sites to promote electro-activity. 5 mol% Co-doped β-In2S3 nanoflakes when tested for photoelectrochemical water splitting exhibited a photocurrent density of 0.69 mA cm−2 at 1.23 V, much higher than that of pure β-In2S3.

Doped indium sulfide as an efficient photocatalyst for water oxidation.  相似文献   

11.
An efficient [4 + 2] benzannulation of α-cyano-β-methylenones and α,β-unsaturated aldehydes was achieved under metal-free reaction conditions selectively delivering a wide range of polyfunctional benzenes in high yields respectively (up to 94% yield).

An efficient [4 + 2] benzannulation of α-cyano-β-methylenones and α,β-unsaturated aldehydes was achieved under metal-free reaction conditions selectively delivering a wide range of polyfunctional benzenes in high yields respectively (up to 94% yield).

Multi-substituted benzenes are privileged structural units ubiquitous in pharmaceuticals,1 natural products2 and advanced functional materials.3 Various excellent methodologies have been investigated for the construction of functionalized aromatics including nucleophilic or electrophilic substitution,4 transition metal-catalyzed coupling reactions5 and directed metalation.6 However, the widespread application of these strategies established thus far suffer from the limitations of functional groups introduced on the pre-existing benzene and regioselectivity issues. Among various synthetic methods, tandem benzannulation reactions arguably represent an attractive alternative to classical methods for rapid construction of polysubstituted benzenes in an atom-economical fashion.7 This protocol featuring an efficient transformation of acyclic building blocks into structurally valuable benzene skeletons. In this context, α-cyano-β-methylenones has been employed as substrates to format six-membered ring in tandem cyclization reactions due to the activation of the pronucleophile methyl group. In 2015, Tong and co-workers developed a phosphine-catalyzed addition/cycloaddition domino reactions of β′-acetoxy allenoate with 2-acyl-3-methyl-acrylonitriles to give 2-oxabicyclo[3.3.1]nonanes (Scheme 1a).8 Soon after that, the construction of benzonitrile derivatives and 1,3,5-trisubstituted benzenes via N-heterocyclic carbene catalysis has been reported by the groups of Wang and Ye independently (Scheme 1b).9 Then the synthesis of 1,3,5-trisubstituted benzenes by 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)-mediated annulation of α-cyano-β-methylenones and α,β-unsaturated carboxylic acids was also developed by Ye and co-workers (Scheme 1c).10 Shi et al. reported a base-promoted tandem cyclization reaction of α-cyano-β-methylenones and α,β-unsaturated enones, which have electron-withdrawing group (EWG), accessing to a wide range of benzonitriles in a different C–C bond formation process (Scheme 1d).11 As part of our ongoing interest in harnessing enones for developing new methodologies for the construction of functionalized benzenes, we have recently demonstrated NHC-catalyzed convenient benzonitrile assembly in the presence of oxidant.9a While the same reaction of enals and α-cyano-β-methylenones was conducted in the basic condition without NHC, a novel polyfunctionalized benzene product was obtained (Scheme 1e). The result inspired us to extend the synthetic potential of benzannulation strategy to access diverse benzonitriles, particularly from simpler, abundantly available starting materials.Open in a separate windowScheme 1α-Cyano-β-methylenones in cycloaddition domino reactions.At the outset, model reaction of 2-benzoyl-3-phenylbut-2-enenitrile 1a and cinnamaldehyde 2a was used to evaluate reaction parameters. Key results of condition optimization are summarized in 12 The configuration of products were assigned unambiguously by X-ray analysis of the product 3a. A quick solvent screening demonstrated that chloroform is the best choice to produce the benzannulation product 3a in a desirable yield (entries 10–13, ). Reducing the loading of the cinnamaldehyde or NaOH to 1.2 equivalence led to dramatical loss of the yield (entries 14 &15,
EntryBaseSolventTime (h)Yieldb (%)
1Cs2CO3Toluene2470
2Na2CO3Toluene2442
3K2CO3Toluene2438
4NaOHToluene1278
5NaOAcToluene2452
6KOHToluene1274
7K3PO4Toluene2458
8DBUToluene2433
9Et3NToluene4846
10NaOHDCM1288
11 NaOH CHCI 3 12 94
12NaOHDCE1284
13NaOHH2O480
14cNaOHCHCI31285
15dNaOHCHCI31284
16eNaOHCHCI31280
Open in a separate windowaReaction conditions: 1a (0.1 mmol, 1.0 equiv.), 2a (0.15 mmol, 1.5 equiv.), base (0.2 mmol, 2.0 equiv.), and solvent (1 mL) for 12 h.bIsolated yields.c1a : 2a = 1 : 1.2.dNaOH used 1.2 equiv.e50 °C.Finally, the standard reaction conditions for the base-promoted synthesis of the multi-functionalized benzene derivatives identified as follows: 1.5 equivalence of NaOH and CHCl3 as the solvent under an atmosphere of air for 12 hours at room temperature.With the optimized reaction conditions in hand, we explored the scope of the reaction. A series of enones were examined, variation of the electronic nature of the aromatic ring (R1, including the substituted phenyl or thienyl) has little influence on the reaction efficiency (3b–f, 86–93% yields, Open in a separate windowaReaction conditions: 1a (0.1 mmol, 1.0 equiv.), 2a (0.15 mmol, 1.5 equiv.), NaOH (0.2 mmol, 2.0 equiv.), and CHCl3 (1 mL) for 12 h.We next turned our attention to examine the scope of enals. Different substituents on the phenyl ring of cinnamaldehydes were tolerated even disregarding the position and properties, giving 4a–g in satisfying yields (82–92% yields, Open in a separate windowaReaction conditions: 1a (0.1 mmol, 1.0 equiv.), 2a (0.15 mmol, 1.5 equiv.), NaOH (0.2 mmol, 2.0 equiv.), and CHCl3 (1 mL) for 12 h.To highlight the practicality of this mild and efficient method, the reaction of 2-benzoyl-3-phenylbut-2-enenitrile 1a at 4.0 mmol scale proceed well under the standard conditions to generate the desired product in 88% yield (Scheme 2).Open in a separate windowScheme 2Gram-Scale Synthesis of 3a.The formyl group could be easily reduced by using LiAlH4 in THF at reflux, leading to the formation of the benzyl alcohol product 5 in 95% yield while keeping the CN group intact. Suzuki coupling of 3o with phenylboronic acid furnished derivative 6 in 90% yield13 (Scheme 3).Open in a separate windowScheme 3Synthetic transformation.To gain insight into the role of air in this reaction, a control experiment was designed and investigated (Scheme 4). When the reaction of 1a and 2a was carried out under an argon atmosphere, the desired product 3a was obtained in 10% yield and product 7 could be isolated in 82% yield. The results indicate that oxygen is necessary for the oxidation process and played a key role in this reaction.Open in a separate windowScheme 4Control experiment.A postulated reaction course is illustrated in Scheme 5. Briefly, α-deprotonation of enone 1a in the presence of bases, subsequent 1,4-addition of deprotonated enone I to enal 2a generates intermediate II, which undergoes an intramolecular aldol reaction to yield the adduct 7.14 Lastly, dehydration of 7 followed by spontaneous oxidative aromatization affords the polysubstituted benzonitrile 3a.Open in a separate windowScheme 5The proposed mechanism.  相似文献   

12.
Catalyst-free chemoselective α-sulfenylation/β-thiolation for α,β-unsaturated carbonyl compounds     
Xi Huang  Juan Li  Xiang Li  Jiayi Wang  Yanqing Peng  Gonghua Song 《RSC advances》2019,9(45):26419
A novel, efficient, catalyst-free and product-controllable strategy has been developed for the chemoselective α-sulfenylation/β-thiolation of α,β-unsaturated carbonyl compounds. An aromatic sulfur group could be chemoselectively introduced at α- or β-position of carbonyls with different sulfur reagents under slightly changed reaction conditions. A series of desired products were obtained in moderate to excellent yields. Mechanistic studies revealed that B2pin2 played the key role in activating the transformation towards the β-thiolation of α,β-unsaturated carbonyl compounds. This transition-metal-catalyst-free method provides a convenient and efficient tool for the highly chemoselective preparation of α-thiolation or β-sulfenylation products of α,β-unsaturated carbonyl compounds.

This catalyst-free method provides a useful and efficient tool for the highly chemoselective preparation of α-thiolation or β-sulfenylation products of α,β-unsaturated carbonyl compounds.  相似文献   

13.
Hemoglobin NYU, a delta chain variant, α2δ212Lys          下载免费PDF全文
Helen M. Ranney  Alan S. Jacobs  Bracha Ramot    Thomas B. Bradley  Jr. 《The Journal of clinical investigation》1969,48(11):2057-2062
A minor hemoglobin (Hb) component with the electrophoretic properties of the delta-chain variant Hb A(2') was encountered in two unrelated families of Russian-Jewish ancestry. This minor component, designated Hb NYU, was shown to result from the substitution of lysine for asparagine at delta(12). We have confirmed studies of others that hemoglobin A(2') isolated from the hemoglobin of some African subjects, results from the replacement of the normal glycine at delta(16) by arginine. Thus for interpretations of the incidence of delta-chain variants in different populations, electrophoretic data are not sufficient.In members of one of the families in the present study, the visual estimations of normal Hb A(2) and of Hb NYU on starch-gel electrophoretic patterns suggested the presence of delta-thalassemia. In hemolysates of one of the heterozygotes for Hb NYU, hemoglobin A(2) was not demonstrable with starch-gel electrophoretic methods but was readily recovered by column chromatography in approximately the amounts expected for delta-chain heterozygotes.  相似文献   

14.
Phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones with trans-α-cyano-α,β-unsaturated ketones for the synthesis of highly substituted pyrrolidines     
Zhenzhen Gao  Lei Xie  Lusha Ji  Xin Ma  Xiaojing Li  Honglei Liu  Hongchao Guo 《RSC advances》2021,11(63):40136
To synthesize highly substituted pyrrolidines, we developed a phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones with trans-α-cyano-α,β-unsaturated ketones. We prepared a series of pyrrolidines under mild conditions with high yields and moderate-to-good diastereoselectivities. A catalytic mechanism for this reaction is suggested.

To synthesize highly substituted pyrrolidines, we developed a phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones with trans-α-cyano-α,β-unsaturated ketones.

Nucleophilic phosphine catalysis is a practical and powerful synthetic approach to obtain heterocyclic compounds using various annulation reactions, the advantages of which are it being mild and metal-free, ecologically friendly, and inexpensive.1 Phosphine-catalyzed intermolecular [3 + 2],2 [4 + 1],3 [2 + 2 + 1]4 and intramolecular annulations are often used to obtain pyrrole derivatives. Intermolecular [3 + 2] annulations of imines and phosphorus ylides formed in situ from allenoates, alkynes, or Morita–Baylis–Hillman carbonates under the presence of phosphine catalysts are especially the most widely used approach to synthesize pyrrolidine derivates. In these reactions, phosphorus ylides act as C–C–C synthons for the [3 + 2] annulations with a C Created by potrace 1.16, written by Peter Selinger 2001-2019 N bond converting to a pyrrolidine ring (Scheme 1). However, literature reports on exploring new activation modes, namely, phosphorus ylides acting as C–C–N synthons for the [3 + 2] annulations, are rare.Open in a separate windowScheme 1Pyrrolidine ring formation through reaction of phosphorus ylides act as C–C–C and C–C–N synthons.β-Sulfonamido-substituted enones could be used as C–C–N synthons to form various N-based heterocycles. Catalytically activated (by amines) β-sulfonamido-substituted enones act as nucleophiles towards electron-deficient olefins or imines during [3 + 2] annulation reactions. Du''s5 and Pan''s groups6 have made outstanding contributions to this field.7 In 2018, Guo''s group developed a Bu3P-catalyzed [5 + 1] annulation of γ-sulfonamido-substituted enones with N-sulfonyl-imines to obtain chiral 2,4-di-substituted imidazolidines. They also synthesized γ-sulfonamido-substituted enones attacked by phosphine catalyst and acting as C–C–C–C–N synthon (see Scheme 2).8 Recently, Guo et al.9 used β-sulfonamido-substituted enone as a phosphine acceptor as well as a C–C–N synthon for the [3 + 2] annulation with sulfamate-derived cyclic imines (see Scheme 2). Using of β-sulfonamido-substituted enone as a novel phosphine acceptor is very promising for phosphine-catalyzed reactions. Inspired by Guo''s work, we further extended the substrate scope of this reaction from sulfamate-derived cyclic imines to unsaturated ketones for the construction of pyrrolidine rings. Therefore, in this work, we report phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones and trans-α-cyano-α,β-unsaturated ketones, to synthesize highly substituted pyrrolidines (see Scheme 2), which are among the primary building blocks and the core structures of natural and bioactive compounds.10Open in a separate windowScheme 2Phosphine-catalyzed annulation of γ-sulfonamido-substituted enones and β-sulfonamido-substituted enones.We first used trans-α-cyano-α,β-unsaturated ketone 1a and β-sulfonamido-substituted enone 2a as model substrates to obtain optimum reaction conditions. Tertiary phosphine catalysts were screened with 1,2-dichloroethane (DCE) as solvent at room temperature (see Thus, the optimum reaction conditions were determined as follows: using 20 mol% of PMe3 as catalyst, CHCl3 as solvent at room temperature.Optimization of reaction conditionsa
EntryPR3Solvent t/hCon./mol L−1Yieldb (%)drc
1MePPh2DCE80.1855 : 1
2EtPPh2DCE80.1744 : 1
3 n-PrPPh2DCE80.1764 : 1
4Me2PPhDCE80.1823 : 1
5PBu3DCE80.1783 : 1
6PMe3DCE80.1846 : 1
7PMe3THF80.1857 : 1
8PMe3Toluene80.1757 : 1
9PMe3EtOAc80.1785 : 1
10PMe3CHCl380.1888 : 1
11dPMe3CHCl380.1848 : 1
12ePMe3CHCl380.1868 : 1
13PMe3CHCl3240.05859.5 : 1
14PMe3CHCl3480.0338511 : 1
15PMe3CHCl3240.026514 : 1
16PMe3CHCl3720.028614 : 1
Open in a separate windowaUnless otherwise indicated, all reactions were carried out at room temperature using 0.12 mmol of 1aa and 0.1 mmol of 2aa in a solvent containing 20 mol% of the catalyst.bIsolated yield.cDetermined by 1H NMR.d100 mg 3 Å molecular sieves were used.e100 mg 4 Å molecular sieves were used.Under the optimum conditions, the performance of various trans-α-cyano-α,β-unsaturated ketone 1 with β-sulfonamido-substituted enones 2a in the cycloaddition reactions was analyzed (see 11Screening of various trans-α-cyano-α,β-unsaturated ketones as substratesa
EntryR13Yieldb (%)drc
1Ph (1a)3aa8614 : 1
22-MeC6H4 (1b)3ba7510.5 : 1
33-MeC6H4(1c)3ca7712.5 : 1
44-MeC6H4 (1d)3da7810.5 : 1
54-OMeC6H4 (1e)3ea8014 : 1
64-CF3-C6H4 (1f)3fa6610.5 : 1
72-FC6H4 (1g)3ga729.5 : 1
83-FC6H4 (1h)3ha746 : 1
94-FC6H4 (1i)3ia765 : 1
102-ClC6H4 (1j)3ja748 : 1
113-ClC6H4(1k)3k7610 : 1
124-ClC6H4 (1l)3la825 : 1
134-BrC6H4 (1m)3ma856 : 1
141-Naphthyl (1n)3na8114 : 1
152-Naphthyl (1o)3oa808 : 1
162-thienyl (1p)3pa787 : 1
172-furyl (1q)3qa8014 : 1
Open in a separate windowaUnless otherwise indicated, all reactions were conducted at room temperature for 3 days using 0.12 mmol of compound 1 and 0.1 mmol of compound 2 in 5 ml CHCl3 in the presence of 20 mol% of PMe3.bIsolated yield.cDetermined by 1H NMR.We also tested various substituted enones containing different R groups under the optimal reaction conditions (see EntryR2/R33Yieldb (%)drc1Ph/Ts (2a)3aa8614 : 12Ph/Bs (2b)3ab8410 : 13Ph/Ns (2c)3ac814.5 : 142-FC6H4/Ts (2d)3ad778 : 153-FC6H4/Ts (2e)3ae799 : 162-ClC6H4/Ts (2f)3af828 : 173-BrC6H4/Ts(2g)3ag749 : 184-BrC6H4/Ts (2h)3ah858 : 193,4-Cl2C6H3/Ts (2i)3ai7410 : 1104-CNC6H4/Ts (2j)3aj8611 : 1113-OMeC6H4/Ts (2k)3ak7910 : 1124-OMeC6H4/Ts (2l)3al808.5 : 1134-PhC6H4/Ts (2m)3am8612.5 : 1142-naphthyl/Ts (2n)3an818 : 1Open in a separate windowaUnless otherwise noted, all reactions were performed at room temperature for 3 days using 0.12 mmol of compound 1 and 0.10 mmol of compound 2 in 5 ml CHCl3 under the presence of 20 mol% PMe3.bIsolated yield.cDetermined by 1H NMR.To demonstrate the synthetic potential of the cycloaddition reaction, a scale-up preparation of 3aa and the derivatization of 3am were performed (Scheme 3). The unsaturated ketone 1a (699 mg, 3.0 mmol) reacted with substituted enone 2a (788 mg, 2.5 mmol) under the standard condition to give 3aa in 81% yield with 13 : 1 dr. In comparison with the reaction at 0.1 mmol of scale, no significant loss of yield and diastereoselectivity was observed. Reduction of the carbonyl group of 3ma with NaBH4 in MeOH/CH2Cl2 led to the formation of compound 4 in 85% yield and 5.5 : 1 dr.Open in a separate windowScheme 3The reaction on the gram-scale and further transformations.The asymmetric variant of the present reaction had also been investigated ( EntryCatalyst t/hYieldb (%)drceec1P172Trace——2P27220>20 : 153P37250>20 : 1314P472NRd——5P572NRd——Open in a separate windowaUnless otherwise indicated, all reactions were carried out at room temperature using 0.06 mmol of 1aa and 0.05 mmol of 2aa in a solvent containing 20 mol% of the catalyst in 2.5 ml of CHCl3.bIsolated yield.cDetermined by HPLC on chiral column.dNo reaction.All these results allowed us to propose a catalytic cycle (see Scheme 4). Nucleophilic addition of the phosphine-based catalysts to β-sulfonamido-substituted enones yields phosphonium intermediate A, which converts into an intermediate B by proton transferation. The intermediate B undergoes intramolecular aza-Michael addition to an alkene yielding an intermediate compound C, followed by intramolecular nucleophilic substitution and the producing of product 3, during which the phosphine regenerates.Open in a separate windowScheme 4Proposed mechanism.In conclusion, we developed a synthesis method (under mild conditions) for highly substituted pyrrolidines through phosphine-catalyzed [3 + 2] annulation of β-sulfonamido-substituted enones with trans-α-cyano-α,β-unsaturated ketones. A series of pyrrolidine derivates were obtained in good yields with moderate-to-good diastereoselectivities. In this reactions, using of β-sulfonamido-substituted enone as a novel phosphine acceptor, the formed phosphorus ylides act as C–C–N synthons for annulations. Further investigations on the application of β-sulfonamido-substituted enones in the asymmetric phosphine-catalyzed reactions are in progress in our laboratory.  相似文献   

15.
Coordinated β-globin expression and α2-globin reduction in a multiplex lentiviral gene therapy vector for β-thalassemia     
Tiwaporn Nualkaew  Karine Sii-Felice  Marie Giorgi  Bradley McColl  Julie Gouzil  Astrid Glaser  Hsiao P.J. Voon  Hsin Y. Tee  George Grigoriadis  Saovaros Svasti  Suthat Fucharoen  Suradej Hongeng  Philippe Leboulch  Emmanuel Payen  Jim Vadolas 《Molecular therapy》2021,29(9):2841
A primary challenge in lentiviral gene therapy of β-hemoglobinopathies is to maintain low vector copy numbers to avoid genotoxicity while being reliably therapeutic for all genotypes. We designed a high-titer lentiviral vector, LVβ-shα2, that allows coordinated expression of the therapeutic βA-T87Q-globin gene and of an intron-embedded miR-30-based short hairpin RNA (shRNA) selectively targeting the α2-globin mRNA. Our approach was guided by the knowledge that moderate reduction of α-globin chain synthesis ameliorates disease severity in β-thalassemia. We demonstrate that LVβ-shα2 reduces α2-globin mRNA expression in erythroid cells while keeping α1-globin mRNA levels unchanged and βA-T87Q-globin gene expression identical to the parent vector. Compared with the first βA-T87Q-globin lentiviral vector that has received conditional marketing authorization, BB305, LVβ-shα2 shows 1.7-fold greater potency to improve α/β ratios. It may thus result in greater therapeutic efficacy and reliability for the most severe types of β-thalassemia and provide an improved benefit/risk ratio regardless of the β-thalassemia genotype.  相似文献   

16.
Imbalance in α and β Globin Synthesis Associated with a Hemoglobinopathy          下载免费PDF全文
R. F. Rieder  G. W. James  III 《The Journal of clinical investigation》1974,54(4):948-956
In contrast to findings in the thalasemia syndromes, studies of globin synthesis in subjects with structurally abnormal hemoglobins have generally revealed equal production of alpha and beta polypeptide chains. However, in the present investigation of globin biosynthesis in vitro in blood and marrow from two subjects heterozygous for unstable hemoglobin Leiden, beta6 or 7 Glu --> O, a significant excess of alpha-chain production was revealed. A mother and daughter of northern European ancestry with mild compensated hemolytic anemia were found to have 25% hemoglobin Leiden. Increased hemolysis occurred after the ingestion of a sulfonamide and during infections. Normal levels of hemoglobin A2, 3.0 and 2.7%, and hemoglobin F, 0.8 and 0.6%, were found in the two subjects. Similar percentages of the minor hemoglobins were demonstrated in other family members without hemoglobin Leiden. After incubation of peripheral blood with [(3)H]-leucine, the beta(A)/beta(Leiden) synthesis ratio was 1.3, and the specific activity of beta(Leiden) was 1.3-2 times beta(A). These results indicate preferential destruction of the unstable hemoglobin Leiden. However, in contrast to previous studies of other unstable hemoglobins, there was excess synthesis of alpha-chains. The total beta/alpha synthesis ratio was 0.47-0.63 in peripheral blood and 0.82 in marrow. A pool of free alpha-chains was demonstrated by starch gel electrophoresis and DEAE column chromatography. The synthesis of globin chains was balanced in family members without hemoglobin Leiden. This degree of predominance of alpha-chain synthesis in subjects with hemoglobin Leiden resembles the findings in heterozygous beta-thalassemia. However, the relatively normal hemoglobin content of the cells with this abnormal hemoglobin suggests the possibility of an absolute excess alpha-chain production in the hemoglobin Leiden syndrome.  相似文献   

17.
Direct β-selectivity of α,β-unsaturated γ-butyrolactam for asymmetric conjugate additions in an organocatalytic manner     
Yuan Zhong  Sihua Hong  Zhengjun Cai  Shixiong Ma  Xianxing Jiang 《RSC advances》2018,8(51):28874
The β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by a bifunctional chiral tertiary amine has been developed, which provides an efficient access to optically active β-position functionalized pyrrolidin-2-one derivatives in both high yield and enantioselectivity (up to 78% yield and 95 : 5 er). This is the first catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach.

The asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by (DHQD)2AQN has been developed, which provides an access to β-position functionalized pyrrolidin-2-one derivatives in high levels yield and enantioselectivity.

Metal-free organocatalytic asymmetric transformations have successfully captured considerable enthusiasm of chemists as powerful methods for the synthesis of various kinds of useful chiral compounds ranging from the preparation of biologically important molecules through to novel materials.1 Chiral pyrrolidin-2-ones have been recognized as important structural motifs that are frequently encountered in a variety of biologically active natural and synthetic compounds.2 In particular, the β-position functionalized pyrrolidin-2-one backbones, which can serve as key synthetic precursors for inhibitory neurotransmitters γ-aminobutyric acids (GABA),3 selective GABAB receptor agonists4 as well as antidepressant rolipram analogues,5 have attracted a great deal of attention. Therefore, the development of highly efficient, environmentally friendly and convenient asymmetric synthetic methods to access these versatile frameworks is particularly appealing.As a direct precursor to pyrrolidin-2-one derivatives, recently, α,β-unsaturated γ-butyrolactam has emerged as the most attractive reactant in asymmetric organometallic or organocatalytic reactions for the synthesis of chiral γ-position functionalized pyrrolidin-2-ones (Scheme 1). These elegant developments have been achieved in the research area of catalytic asymmetric vinylogous aldol,6 Mannich,7 Michael8 and annulation reactions9 in the presence of either metal catalysts or organocatalysts (a, Scheme 1). These well-developed catalytic asymmetric methods have been related to the γ-functionalized α,β-unsaturated γ-butyrolactam to date. However, in sharp contrast, the approaches toward introducing C-3 chirality at the β-position of butyrolactam through a direct catalytic manner are underdeveloped (b, Scheme 1)10 in spite of the fact that β-selective chiral functionalization of butyrolactam can directly build up α,β-functionalized pyrrolidin-2-one frameworks.Open in a separate windowScheme 1Different reactive position of α,β-unsaturated γ-butyrolactam in catalytic asymmetric reactions.So far, only a few metal-catalytic enantioselective β-selective functionalized reactions have been reported. For examples, a rhodium/diene complex catalyzed efficient asymmetric β-selective arylation10a and alkenylation10b have been reported by Lin group (a, Scheme 2). Procter and co-workers reported an efficient Cu(i)–NHC-catalyzed asymmetric silylation of unsaturated lactams (b, Scheme 2).10c Despite these creative works, considerable challenges still exist in the catalytic asymmetric β-selective functionalization of γ-butyrolactam. First, the scope of nucleophiles is limited to arylboronic acids, potassium alkenyltrifluoroborates and PhMe2SiBpin reagents. Second, the catalytic system and activation mode is restricted to metal/chiral ligands. To our knowledge, an efficient catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach has not yet been established. Therefore, the development of organocatalytic asymmetric β-selective functionalization of γ-butyrolactam are highly desirable. In conjunction with our continuing efforts in building upon chiral precedents by using chiral tertiary amine catalytic system,11 we rationalized that the activated α,β-unsaturated γ-butyrolactam might serve as a β-position electron-deficient electrophile. This γ-butyrolactam may react with a properly designed electron-rich nucleophile to conduct an expected β-selective functionalized reaction of γ-butyrolactam under a bifunctional organocatalytic fashion, while avoiding the direct γ-selective vinylogous addition reaction or β,γ-selective annulation as outlined in Scheme 2. Herein we report the β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters12 catalyzed by a bifunctional chiral tertiary amine, which provides an efficient and facile access to optically active β-position functionalized pyrrolidin-2-one derivatives with both high diastereoselectivity and enantioselectivity.Open in a separate windowScheme 2β-Selective functionalization of γ-butyrolactam via metal- (previous work) or organo- (this work) catalytic approach.To begin our initial investigation, several bifunctional organocatalysts13 were firstly screened to evaluate their ability to promote the β-selective asymmetric addition of γ-butyrolactam 2a with cyclic imino ester 3a in the presence of 15 mol% of catalyst loading at room temperature in CH2Cl2 (entries 1–6, EntryCat.SolventYieldeerf11aCH2Cl270%40 : 6021bCH2Cl2<5%57 : 4331cCH2Cl270%65 : 3541dCH2Cl268%70 : 3051eCH2Cl258%63 : 4761fCH2Cl271%77 : 2371fDCE72%80 : 2081fCHCl370%80 : 2091fMTBE68%79 : 21101fToluene63%78 : 22111fTHF45%76 : 24121fMeOH32%62 : 3813b1fDCE : MTBE75%87 : 1314c1fDCE : MTBE72%87 : 1315d1fDCE : MTBE70%85 : 15Open in a separate windowaReaction conditions: unless specified, a mixture of 2a (0.2 mmol), 3a (0.3 mmol) and a catalyst (15 mmol%) in a solvent (2.0 mL) was stirred at rt. for 48 h.bThe reaction was carried out in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1).cThe reaction was carried out in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) for 24 h.dThe reaction was carried out in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) and 10 mol% of catalyst was used.eIsolated yields.fDetermined by chiral HPLC, the product was observed with >99 : 1 dr by 1H NMR and HPLC. Configuration was assigned by X-ray crystal data of 4a.The results of experiments under the optimized conditions that probed the scope of the reaction are summarized in Scheme 3. The catalytic β-selective asymmetric addition of γ-butyrolactam 2a with cyclic imino esters 3a in the presence of 15 mol% (DHQD)2AQN 1f was performed. A variety of phenyl-substituted cyclic imino esters including those bearing electron-withdrawing and electron-donating substituents on the aryl ring, heterocyclic were also examined. The electron-neutral, electron-rich, or electron-deficient groups on the para-position of phenyl ring of the cyclic imino esters afforded the products 4a–4m in 57–75% yields and 82 : 18 to 95 : 5 er values. It appears that either an electron-withdrawing or an electron-donating at the meta- or ortho-position of the aromatic ring had little influence on the yield and stereoselectivity. Similar results on the yield and enantioselectivities were obtained with 3,5-dimethoxyl substituted cyclic imino ester (71% yield and 91 : 9 er). It was notable that the system also demonstrated a good tolerance to naphthyl substituted imino ester (78% yield and 92 : 8 er value). The 2-thienyl substituted cyclic imino ester proceeded smoothly under standard conditions as well, which gave the desired product 4p in good enantioselectivity (88 : 12 er), although yield was slightly lower. However, attempts to extend this methodology to aliphatic-substituted product proved unsuccessful due to the low reactivity of the substrate 3q. It is worth noting that the replacement of Boc group with 9-fluorenylmethyl, tosyl or benzyl group as the protection, no reaction occurred. The absolute and relative configurations of the products were unambiguously determined by X-ray crystallography (4a, see the ESI).Open in a separate windowScheme 3Substrate scope of the asymmetric reaction of α,β-unsaturated γ-butyrolactam 2 to cyclic imino esters 3.a aReaction conditions: unless specified, a mixture of 2 (0.2 mmol), 3 (0.3 mmol) and 1f (15.0 mmol%) in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) was stirred at rt. bIsolated yields. cDetermined by chiral HPLC, all products were observed with >99 : 1 dr by 1H NMR and HPLC. Configuration was assigned by comparison of HPLC data and X-ray crystal data of 4a.We then examined the substrate scope of the imide derivatives (Scheme 4). Investigations with maleimides 4r–4u gave 48–61% yield of corresponding products as lower er and dr values than most of γ-butyrolactams. As for methyl substituted maleimides, the reaction failed to give any product.Open in a separate windowScheme 4Substrate scope of the asymmetric reaction of maleimides to cyclic imino esters.a aReaction conditions: unless specified, a mixture of 2 (0.2 mmol), 3 (0.3 mmol) and 1f (15.0 mmol%) in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) was stirred at rt. bIsolated yields. cDetermined by 1H NMR and chiral HPLC.The chloride product 4a ((R)-tert-butyl 4-((R)-3-((E)-(4-chlorobenzylidene)amino)-2-oxotetra hydrofuran-3-yl)-2-oxopyrrolidine-1-carboxylate) was recrystallized and the corresponding single crystal was subjected to X-ray analysis to determine the absolute structure. Based on this result and our previous work, a plausible catalytic mechanism involving multisite interactions was assumed to explain the high stereoselectivity of this process (Fig. 1). Similar to the conformation reported for the dihydroxylation and the asymmetric direct aldol reaction, the transition state structure of the substrate/catalyst complexes might be presumably in the open conformation. The acidic α-carbon atom of cyclic imino ester 3a could be activated by interaction between the tertiary amine moiety of the catalyst and the enol of 3avia a hydrogen bonding. Moreover, the enolate of 3a in the transition state might be in part stabilized through the π–π stacking between the phenyl ring of 3a and the quinoline moiety. Consequently, the Re-face of the enolate is blocked by the left half of the quinidine moiety. The steric hindrance between the Boc group of 2a and the right half of the quinidine moiety make the Re-face of 2a face to the enolate of 3a. Subsequently, the attack of the incoming nucleophiles forms the Si-face of enolate of 3a to Re-face of 2a takes place, which is consistent with the experimental results.Open in a separate windowFig. 1Proposed transition state for the reaction.In conclusion, we have disclosed the β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by a bifunctional chiral tertiary amine, which provides an efficient and facile access to optically active β-position functionalized pyrrolidin-2-one derivatives with high diastereoselectivity and enantioselectivity. To our knowledge, this is the first catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach. Current efforts are in progress to apply this new methodology to synthesize biologically active products.  相似文献   

18.
These are the (β, α, δ) days of our lives     
P D Gopalan 《Southern African Journal of Critical Care》2021,37(2)
  相似文献   

19.
γδ TCR T lymphoblastic leukemia in a child presenting with marked hyperleukocytosis     
Jirong Mass  Bachir Alobeid 《Clinical Case Reports》2021,9(7)
γδ TCR T lymphoblastic leukemia is rare in children and should be differentiated mainly from hepatosplenic T‐cell lymphoma in this age group.  相似文献   

20.
Oxidative desulfurization of dibenzothiophene catalyzed by α-MnO2 nanosheets on palygorskite using hydrogen peroxide as oxidant     
Xingming Yu  Pingfang Han  Ya Li 《RSC advances》2018,8(32):17938
Palygorskite (Pal)-supported α-MnO2 nanosheets (Ns-MnPal) combine the adsorption features of Pal with the catalytic properties of α-MnO2 nanosheets. They were prepared and examined in the catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) from a model oil employing 30 wt% H2O2 as the oxidant under mild conditions. The supported catalyst was fabricated by the solvothermal method, and effective immobilization of α-MnO2 nanosheets was confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and N2 adsorption. The influence of various solvents, solvent volume, reaction temperature, reaction time, catalyst amount and H2O2/sulfur molar ratio on ODS was investigated. Using 20 mL of acetonitrile as a solvent, maximum sulfur removal of 97.7% was achieved for ODS of DBT in 1.5 h using a Ns-MnPal/oil ratio of 0.2 g L−1, reaction temperature of 50 °C and H2O2/sulfur molar ratio of 4. As solid catalysts, supported α-MnO2 nanosheets could be separated from the reaction readily. The catalyst was recycled seven times and showed no significant loss in activity.

Palygorskite (Pal)-supported α-MnO2 nanosheets (Ns-MnPal) combine the adsorption features of Pal with the catalytic properties of α-MnO2 nanosheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号