首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study, ultrahigh electrochemical performance for interconnected meso/macro-porous 2D C@α-Fe2O3 synthesized via sucrose-assisted microwave combustion is demonstrated. Hematite (α-Fe2O3) synthesized via the same approach gave an encouraging electrochemical performance close to its theoretical value, justifying its consideration as a potential supercapacitor electrode material; nonetheless, its specific capacitance was still low. The pore size distribution as well as the specific surface of bare α-Fe2O3 improved from 145 m2 g−1 to 297.3 m2 g−1 after it was coated with sucrose, which was endowed with ordered symmetric single-layer graphene (2D graphene). Accordingly, the optimized hematite material (2D C@α-Fe2O3) showed a specific capacitance of 1876.7 F g−1 at a current density of 1 A g−1 and capacity retention of 95.9% after 4000 cycles. Moreover, the material exhibited an ultrahigh energy density of 93.8 W h kg−1 at a power density of 150 W kg−1. The synergistic effect created by carbon-coating α-Fe2O3 resulted in modest electrochemical performance owing to extremely low charge transfer resistance at the electrode–electrolyte interface with many active sites for ionic reactions and efficient diffusion process. This 2D C@α-Fe2O3 electrode material has the capacity to develop into a cost-effective and stable electrode for future high-energy-capacity supercapacitors.

In this study, ultrahigh electrochemical performance for interconnected meso/macro-porous 2D C@α-Fe2O3 synthesized via sucrose-assisted microwave combustion is demonstrated.  相似文献   

2.
The use of low-cost photocatalysts to split water into H2 fuel via solar energy is highly desirable for the production of clean energy and a sustainable society. Here three-dimensional graphene oxide (3DG) porous materials were prepared by cross-linking graphene oxide (GO) sheets using aromatic diamines (benzidine, 2,2′-dimethyl-4,4′-biphenyldiamine, 4,4′-diaminodiphenylmethane) that reacted with the carboxyl groups of the GO sheets at room temperature. The prepared 3DG porous materials were used as efficient metal-free photocatalysts for the production of H2via water splitting under full-spectrum light, where the photocatalytic activity was highly dependent on the cross-linker and the 3DG reduction level. It was also found that the 3DG prepared with benzidine as the linker demonstrated a significantly higher H2 evolution rate than the 3DGs prepared using 2,2′-dimethyl-4,4′-biphenyldiamine and 4,4′-diaminodiphenylmethane as the cross-linkers. The photoactivity was further tuned by varying the mass ratio of GO to benzidine. Among the prepared 3DG materials, 3DG-3, with an intermediate C/O ratio of 1.84, exhibited the highest H2 production rate (690 μmol g−1 h−1), which was significantly higher than the two-dimensional GO (45 μmol g−1 h−1) and the noncovalent 3DG synthesized by a hydrothermal method (128 μmol g−1 h−1). Moreover, this study revealed that the 3DG photocatalytic performance was favored by effective charge separation, while it could be further tuned by changing the reduction level. In addition, these results could prompt the preparation of other 3D materials and the application of new types of photocatalysts for H2 evolution.

Three-dimensional graphene oxide covalently linked by benzidine works as an efficient metal-free photocatalyst for H2 evolution.  相似文献   

3.
Reduced graphene oxide (rGO) integrated with iron oxide nanoparticles (α-Fe2O3/rGO) composites with different morphologies were successfully obtained through the in situ synthesis and mechanical agitation methods. It was found that the α-Fe2O3 was densely and freely dispersed on the rGO layer. By comparing electrochemical properties, the sheet-like α-Fe2O3/rGO composites demonstrate excellent electrochemical performance: the highest specific capacitance, and excellent cycling stability and rate capacity. The specific capacitance is 970 F g−1 at a current density of 1 A g−1 and the capacitance retention is 75% after 2000 cycles with the current density reaching 5 A g−1. It is mainly due to the synergistic effect between the α-Fe2O3 and rGO, and the high conductivity of the rGO offers a fast channel for the movement of electrons.

Preparation of α-Fe2O3/rGO composites for supercapacitor application using in situ synthesis and a mechanical agitation method.  相似文献   

4.
Selective photocatalytic reduction of CO2 has been regarded as one of the most amazing ways for re-using CO2. However, its application is still limited by the low CO2 conversion efficiency. This work developed a novel Pt/In2O3/g-C3N4 multifunctional catalyst, which exhibited high activity and selectivity to HCOOH during photocatalytic CO2 reduction under visible light irradiation owing to the synergistic effect between photocatalyst, thermocatalyst, and heterojunctions. Both In2O3 and g-C3N4 acted as visible photocatalysts, in which porous g-C3N4 facilitated H2 production from water splitting while the In2O3 nanosheets embedded in g-C3N4 pores favored CO2 fixation and H adsorption onto the Lewis acid sites. Besides, the In2O3/g-C3N4 heterojunctions could efficiently inhibit the photoelectron–hole recombination, leading to enhanced quantum efficiency. The Pt could act as a co-catalyst in H2 production from photocatalytic water splitting and also accelerated electron transfer to inhibit electron–hole recombination and generated a plasma effect. More importantly, the Pt could activate H atoms and CO2 molecules toward the formation of HCOOH. At normal pressure and room temperature, the TON of HCOOH in CO2 conversion was 63.1 μmol g−1 h−1 and could reach up to 736.3 μmol g−1 h−1 at 40 atm.

A multifunctional Pt/In2O3/g-C3N4 catalyst exhibited high activity and selectivity to HCOOH during CO2 reduction owing to the synergy between visible-light harvesting, CO2 activation, HER, and photoelectron–hole separation via heterojunctions.  相似文献   

5.
Graphitic carbon nitride (g-C3N4) has been considered to be a promising metal-free photocatalyst, although the high recombination rate of charge carriers and poor absorption of visible light have limited its applications. In order to overcome these problems, an interlayer composite photocatalyst that comprised β-cyclodextrin (β-CD), oxygen-doped C3N4 (O-C3N4) and molybdenum disulfide (MoS2) was successfully constructed for the highly enhanced photodegradation of glyphosate in this study. The structure and morphology, optical properties, and photoelectrochemical properties of the prepared photocatalyst were characterized via a series of characterization techniques. The average fluorescence lifetime of the composite photocatalyst was extended from 6.67 ns to 7.30 ns in comparison with that of g-C3N4, which indicated that the composite photocatalyst enhanced the absorption of visible light and also inhibited the recombination of electron–hole pairs. The mass ratio of MoS2 that corresponded to O-C3N4/MoS2-5 enabled the highest removal rate under simulated sunlight irradiation, which was almost twice that achieved using pure g-C3N4. Relative species scavenging experiments revealed that ·O2 was the main species during the process of photodegradation. Besides, a toxicity test indicated that glyphosate became less toxic or non-toxic after photodegradation. This study provided an effective, feasible and stable photocatalyst driven by simulated sunlight irradiation for the highly enhanced photodegradation of glyphosate.

The fabrication of an interlayer β-CD/g-C3N4@MoS2 composite photocatalyst for highly enhanced photodegradation of glyphosate and a toxicity test.  相似文献   

6.
Semiconductor heterostructures are regarded as an efficient way to improve the photocurrent in photoelectrochemical cell-type (PEC) photodetectors. To better utilize solar energy, TiO2@Sn3O4 arrays vertically aligned on carbon fiber papers were synthesized via a hydrothermal route with a two-step method and used as photoanodes in a self-powered photoelectrochemical cell-type (PEC) photodetector under visible light. TiO2@Sn3O4 heterostructures exhibit a stable photocurrent of 180 μA, which is a 4-fold increase with respect to that of the Sn3O4 nanoflakes on carbon paper, and a two-order increase with respect to that of the TiO2 NRs arrays. The evolution of hydrogen according to the photo-catalytic water-splitting process showed that Sn3O4/TiO2 heterostructures have a good photocatalytic hydrogen evolution activity with the rate of 5.23 μmol h−1, which is significantly larger than that of Sn3O4 nanoflakes (0.40 μmol h−1) and TiO2 nanorods (1.13 μmol h−1). Furthermore, the mechanism behind this was discussed. The detector has reproducible and flexible properties, as well as an enhanced photosensitive performance.

Semiconductor heterostructures are regarded as an efficient way to improve the photocurrent in photoelectrochemical cell-type (PEC) photodetectors.  相似文献   

7.
Single crystalline strontium titanate (SrTiO3) submicron cubes have been synthesized based on a molten salt method. The submicron cubes showed superior photocatalytic activity towards both water splitting and carbon dioxide reduction, in which methane (CH4) and hydrogen (H2) were simultaneously produced. The average production rate of methane up to 8 h is 4.39 μmol g−1 h−1 but drops to 0.46 μmol g−1 h−1. However, the average production rate of hydrogen is 14.52 before 8 h but then increases to 120.23 μmol g−1 h−1 after 8 h. The rate change of the two processes confirms the competition between the H2O splitting and CO2 reduction reactions. Band structure and surface characteristics of the SrTiO3 submicron cubes were characterized by diffuse reflective UV-Vis spectroscopy, Mott–Schottky analysis, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The results reveal that the simultaneous and competitive production of methane and hydrogen is due to a thermodynamics factor, as well as the competition between the adsorption of carbon dioxide and water molecules on the surface of the faceted SrTiO3. This work demonstrates that SrTiO3 photocatalysts are efficient in producing sustainable fuels via water splitting and carbon dioxide reduction reactions.

There is a clear competitive relationship between water splitting and photocatalytic reduction of carbon dioxide in the whole process of photocatalytic reduction of carbon dioxide with the prepared cubic SrTiO3 as a photocatalyst.  相似文献   

8.
It''s highly desired to design and fabricate an effective Z-scheme photo-catalyst with excellent charge transfer and separation, and a more negative conduction band edge (ECB) than O2/·O2 (−0.33 eV) and a more positive valence band edge (EVB) than ·OH/OH (+2.27 eV) which provides high-energy redox radicals. Herein, we firstly designed and synthesized a core–shell-heterojunction-structured Z-scheme system BaTiO3@In2S3 (BT@IS, labelled as BTIS) through a hydrothermal method, where commercial BT was used as the core and In(NO3)3·xH2O together with thioacetamide as the precursor of IS was utilized as the shell material. In this system, the shell IS possesses a ECB of −0.76 eV and visible-light-response Eg of 1.92 eV, while the core BT possesses a EVB of 3.38 eV, which is well suited for a Z-scheme. It was found that the as-prepared BTIS possesses a higher photocatalytic degradation ability for methyl orange (MO) than commercial BT and the as-prepared IS fabricated by the same processing parameters as those of BTIS. Holes (h+) and superoxide radicals (·O2) were found to be the dominant active species for BTIS. In this work, the core–shell structure has inhibited the production of ·OH because the shell IS has shielded the OH from h+. It is assumed that if the structure of BTIS is a composite, not a core–shell structure, ·OH could be produced during photocatalysis, and therefore a higher photocatalytic efficiency would be obtained. This current work opens a new pathway for designing Z-scheme photocatalysts and offers new insight into the Z-scheme mechanism for applications in the field of photocatalysis.

It''s highly desired to design an effective Z-scheme photocatalyst with excellent charge transfer and separation, a more negative conduction band edge (ECB) than O2/·O2 (−0.33 eV) and a more positive valence band edge (EVB) than ·OH/OH (+2.27 eV).  相似文献   

9.
Herein, we report Sn3O4 and Sn3O4 nanoflake/graphene for photocatalytic hydrogen generation from H2O and H2S under natural “sunlight” irradiation. The Sn3O4/graphene composites were prepared by a simple hydrothermal method at relatively low temperatures (150 °C). The incorporation of graphene in Sn3O4 exhibits remarkable improvement in solar light absorption, with improved photoinduced charge separation due to formation of the heterostructure. The highest photocatalytic hydrogen production rate for the Sn3O4/graphene nanoheterostructure was observed as 4687 μmol h−1 g−1 from H2O and 7887 μmol h−1 g−1 from H2S under natural sunlight. The observed hydrogen evolution is much higher than that for pure Sn3O4 (5.7 times that from H2O, and 2.2 times from H2S). The improved photocatalytic activity is due to the presence of graphene, which acts as an electron collector and transporter in the heterostructure. More significantly, the Sn3O4 nanoflakes are uniformly and parallel grown on the graphene surface, which accelerates the fast transport of electrons due to the short diffusion distance. Such a unique morphology for the Sn3O4 along with the graphene provides more adsorption sites, which are effective for photocatalytic reactions under solar light. This work suggests an effective strategy towards designing the surfaces of various oxides with graphene nanoheterostructures for high performance of energy-conversion devices.

Herein, we have demonstrated the synthesis of the two-dimensional hierarchical Sn3O4/graphene nanostructure by a facile solvothermal method. The nanostructure has been used as a photocatalyst for hydrogen production under solar light.  相似文献   

10.
Photocatalytic reduction of CO2 using solar energy to decrease CO2 emission is a promising clean renewable fuel production technology. Recently, Bi-based semiconductors with excellent photocatalytic activity and carbon-based carriers with large specific surface areas and strong CO2 adsorption capacity have attracted extensive attention. In this study, activated carbon spheres (ACSs) were obtained via carbonization and steam activation of phenolic resin-based carbon spheres at 850 °C synthesized by suspension polymerization. Then, the BiOBr/ACSs sample was successfully prepared via a simple impregnation method. The as-prepared samples were characterized by XRD, SEM, EDX, DRS, PL, EIS, XPS, BET, CO2 adsorption isotherm and CO2-TPD. The BiOBr and BiOBr/ACSs samples exhibited high CO selectivity for photocatalytic CO2 reduction, and BiOBr/ACSs achieved a rather higher photocatalytic activity (23.74 μmol g−1 h−1) than BiOBr (2.39 μmol g−1 h−1) under simulated sunlight irradiation. Moreover, the analysis of the obtained results indicates that in this photocatalyst system, due to their higher micropore surface area and larger micropore volume, ACSs provide enough physical adsorption sites for CO2 adsorption, and the intrinsic structure of ACSs can offer effective electron transfer ability for a fast and efficient separation of photo-induced electron–hole pairs. Finally, a possible enhanced photocatalytic mechanism of BiOBr/ACSs was investigated and proposed. Our findings should provide new and important research ideas for the construction of highly efficient photocatalyst systems for the reduction of CO2 to solar fuels and chemicals.

Photocatalytic reduction of CO2 using solar energy to decrease CO2 emission is a promising clean renewable fuel production technology.  相似文献   

11.
With the expansion of industrialization, dye pollution has become a significant hazard to humans and aquatic ecosystems. In this study, α-Fe2O3/g-C3N4-R (where R is the relative percentage of α-Fe2O3) composites were fabricated by a one-step method. The as-prepared α-Fe2O3/g-C3N4-0.5 composites showed excellent adsorption capacities for methyl orange (MO, 69.91 mg g−1) and methylene blue (MB, 29.46 mg g−1), surpassing those of g-C3N4 and many other materials. Moreover, the ionic strength and initial pH influenced the adsorption process. Relatively, the adsorption isotherms best fitted the Freundlich model, and the pseudo-second-order kinetic model could accurately describe the kinetics for the adsorption of MO and MB by α-Fe2O3/g-C3N4-0.5. Electrostatic interaction and π–π electron donor–acceptor interaction were the major mechanisms for MO/MB adsorption. In addition, the photocatalytic experiment results showed that more than 79% of the added MO/MB was removed within 150 min. The experimental results of free-radical capture revealed that holes (h+) were the major reaction species for the photodegradation of MO, whereas MB was reduced by the synergistic effect of hydroxyl radicals (·OH) and holes (h+). This study suggests that the α-Fe2O3/g-C3N4 composites have an application potential for the removal of dyes from wastewater.

Simple one-step hydrothermal synthesis of α-Fe2O3/g-C3N4 composites for the synergistic adsorption and photodegradation of dyes  相似文献   

12.
In this work, an MoSx/g-C3N4 composite photocatalyst was successfully fabricated by a sonochemical approach, where amorphous MoSx was synthesized using a hydrothermal method with Na2MoO4·H2O, H4SiO4(W3O9)4 and CH3CSNH2 as precursors, and g-C3N4 nanosheets were produced using a two-step thermal polycondensation method. The hydrogen-evolution performance of the MoSx/g-C3N4 composite was tested under visible light. The results show that the H2-evolution rate of the MoSx/g-C3N4 (7 wt%) photocatalyst reaches a maximum value of 1586 μmol g−1 h−1, which is about 70 times that of pure g-C3N4 nanosheets. The main reason is that amorphous MoSx forms intimate heterojunctions with g-C3N4 nanosheets, and the introduction of MoSx into g-C3N4 nanosheets not only enhances the ability to convert H+ into H2, but also promotes the separation of photoinduced electron–hole pairs for the photocatalyst. BET analysis shows that the specific surface area and pore volume of g-C3N4 are decreased in the presence of MoSx. XPS analysis manifests that MoSx provides a number of active sites. Mott–Schottky plots show that the conduction band of MoSx (−0.18 V vs. EAg/AgCl, pH = 7) is more negative than that of g-C3N4 nanosheets.

An MoSx/g-C3N4 composite photocatalyst was successfully fabricated by a sonochemical approach, where amorphous MoSx was synthesized using a hydrothermal method, and g-C3N4 nanosheets were produced using a two-step thermal polycondensation method.  相似文献   

13.
The leading challenge towards environmental protection is untreated textile dyes. Tailoring photocatalytic materials is one of the sustainable remediation strategies for dye treatment. Hematite (α-Fe2O3), due to its favorable visible light active band gap (i.e. 2.1 eV), has turned out to be a robust material of interest. However, impoverished photocatalytic efficiency of α-Fe2O3 is ascribable to the short life span of the charge carriers. Consequently, the former synthesized heterostructures possess low degradation efficiency. The aim of the proposed endeavor is the synthesis of a novel zinc telluride-modified hematite (α-Fe2O3/ZnTe) heterostructure, its characterization and demonstration of its enhanced photocatalytic response. The promising heterostructure as well as bare photocatalysts were synthesized via a hydrothermal approach. All photocatalysts were characterized by the X-ray diffraction technique (XRD), scanning electron microscopy (SEM), and electron diffraction spectroscopy (EDX). Moreover, the selectivity and activity of the photocatalyst are closely related to the alignment of its band energy levels, which were estimated by UV-Vis diffuse reflectance spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS). Nanomaterials, specifically α-Fe2O3 and α-Fe2O3/ZnTe, were used for the degradation of Congo red (97.9%), methyl orange (84%) and methylene blue (73%) under light irradiation (>200 nm) for 60 min. The results suggested that with the aforementioned optimized fabricated heterostructure, the degradation efficiency was improved in comparison to bare hematite (α-Fe2O3). The key rationale towards such improved photocatalytic response is the establishment of a type-II configuration in the α-Fe2O3/ZnTe heterostructure.

Effective generation and transportation of electron–hole pairs in the presence of light leads to efficient degradation of textile pollutants over an α-Fe2O3/ZnTe nanocomposite compared to the individual components.  相似文献   

14.
A three dimensional (3D) nanostructured composite based on the self-assembly of MoS2 nanospheres and polyaniline (PANI) loaded on reduced graphene oxide (denoted by 3D MoS2-PANI/rGO) was prepared via a feasible one-pot hydrothermal process. The 3D MoS2-PANI/rGO nanocomposite not only exhibits good functionality and bioaffinity but also displays high electrochemical catalytic activity. As such, the developed 3D MoS2-PANI/rGO nanocomposite can be employed as the sensing platform for simultaneously detecting small biomolecules, i.e., ascorbic acid (AA), dopamine (DA), and uric acid (UA). The peak currents obtained from the differential pulse voltammetry (DPV) measurements depended linearly on the concentrations in the wide range from 50 μM to 8.0 mM, 5.0 to 500 μM, and 1.0 to 500 μM, giving low detection limits of 22.20, 0.70, and 0.36 μM for AA, DA, and UA, respectively. Furthermore, the 3D MoS2-PANI/rGO-based electrochemical sensor also exhibited high selectivity, good reproducibility and stability toward small molecule detection. The present sensing strategy based on 3D MoS2-PANI/rGO suggests a good reliability in the trace determination of electroactive biomolecules.

A three dimensional (3D) nanostructured composite based on the self-assembly of MoS2 nanospheres and polyaniline (PANI) loaded on reduced graphene oxide (denoted by 3D MoS2-PANI/rGO) was prepared via a feasible one-pot hydrothermal process.  相似文献   

15.
A novel magnetic heterogeneous g-C3N4/α-Fe2O3/Fe3O4 catalyst was successfully synthesized through a simple hydrothermal method. The structure, morphology, and optical properties of the catalyst were characterized. The photocatalytic activity of the heterogeneous g-C3N4/α-Fe2O3/Fe3O4 catalyst for the photo-Fenton degradation of Orange II in the presence of H2O2 irradiated with visible light (λ > 420 nm) at neutral pH was evaluated. The g-C3N4/α-Fe2O3/Fe3O4 photocatalyst was found to be an excellent catalyst for the degradation of Orange II and offers great advantages over the traditional Fenton system (Fe(ii/iii)/H2O2). The results indicated that successfully combining monodispersed Fe3O4 nanoparticles and g-C3N4/α-Fe2O3 enhanced light harvesting, retarded photogenerated electron–hole recombination, and significantly enhanced the photocatalytic activity of the system. The g-C3N4/α-Fe2O3/Fe3O4 (30%) sample gave the highest degradation rate constant, 0.091 min−1, which was almost 4.01 times higher than the degradation rate constant for α-Fe2O3 and 2.65 times higher than the degradation rate constant for g-C3N4/α-Fe2O3 under the same conditions. A reasonable mechanism for catalysis by the g-C3N4/α-Fe2O3/Fe3O4 composite was developed. The g-C3N4/α-Fe2O3/Fe3O4 composite was found to be stable and recyclable, meaning it has great potential for use as a photo-Fenton catalyst for effectively degrading organic pollutants in wastewater.

A novel magnetic heterogeneous g-C3N4/α-Fe2O3/Fe3O4 catalyst was firstly synthesized and exhibited very effective visible-light-Fenton degradation of Orange II at neutral pH.  相似文献   

16.
Constructing a 0D/3D p–n heterojunction is a feasible strategy for accelerating photo-induced charge separation and promoting photocatalytic H2 production. In this study, a 0D/3D MoS2/g-C3N4 (0D/3D-MCN) photocatalyst with a p–n heterojunction was prepared via a facile light-assisted deposition procedure, and the 3D spongy-like g-C3N4 (3D-CN) was synthesized through simple thermolysis of NH4Cl and melamine mixture. For comparison, 2D-MoS2 nanosheets were also embedded in 3D-CN by a solution impregnation method to synthesize a 2D/3D-MCN photocatalyst. As a result, the as-prepared 0D/3D-MCN-3.5% composite containing 3.5 wt% 0D-MoS2 QDs exhibited the highest photocatalytic H2 evolution rate of 817.1 μmol h−1 g−1, which was 1.9 and 19.4 times higher than that of 2D/3D-MCN-5% (containing 5 wt% 2D-MoS2 nanosheets) and 3D-CN, respectively. The results of XPS and electrochemical tests confirmed that a p–n heterojunction was formed in the 0D/3D-MCN-3.5% composite, which could accelerate the electron and hole movement in the opposite direction and retard their recombination; however, it was not found in 2D/3D-MCN-5%. This study revealed the relationship among the morphologies of MoS2 using g-C3N4 as a substrate, the formation of a p–n heterojunction, and the H2 evolution activity; and provided further insights into fabricating a 3D g-C3N4-based photocatalyst with a p–n heterojunction for photocatalytic H2 evolution.

A 0D/3D p–n heterojunction was formed in the MoS2/g-C3N4 composite, which could promote the separation of electrons and holes efficiently.  相似文献   

17.
Novel Z-scheme structured Sr0.8La0.2(Ti1−δ4+Tiδ3+)O3/Bi2MoO6 (LSTBM) composites were prepared via a facile two-step solvothermal method. Several characterization techniques were employed to investigate the phases, microstructures, compositions, valence states, oxygen vacancies, surface oxygen absorption, energy band structures and lifetime of photoproduced carriers. It was found that the lifetime and transfer of the photoproduced carriers of LSTBM were better than those of Bi2MoO6 (BMO) and Sr0.8La0.2(Ti1−δ4+Tiδ3+)O3 (LSTO). The LSTBM with a molar ratio of BMO/(LSTO + BMO) = 0.07 (denoted as LSTBM7) showed 1.9 and 3.1 times removal rates than those for BMO and LSTO, respectively. Importantly, the built-in electric field in the heterojunction of LSTBM and Ov-s, especially in Ov-s on the higher-Fermi-level side of the heterojunction, had co-played roles in prolonging the lifetime and improving the transfer of photogenerated carriers. The photoproduced e played a dominant role in reducing Cr(vi) to Cr(iii) and the produced Cr(iii) tends to form Cr(OH)3 and adsorb onto the surface of the photocatalyst to decrease the nucleation energy. The possible reduction route for Cr(vi) to Cr(iii) over LSTBM7 was figured out. This study implies that inducing Ov-s on the higher-Fermi-level side of the Z-scheme heterojunction is a more effective route for separating the photogenerated electrons and holes and improving the transfer of photogenerated carriers.

Found an effective way to improve the lifetime and transfer of photogenerated carriers: extrinsic Ov-s in the higher-Fermi-level side of the heterojunction. Z-scheme mechanism and Ov-s have synergistic effect on improving photocatalytic performance.  相似文献   

18.
Although nanoparticles, nanorods, and nanosheets of α-Fe2O3 on graphene sheets have been synthesized, it remains a challenge to grow 3D α-Fe2O3 nanomaterials with more sophisticated compositions and structures on the graphene sheets. Herein, we demonstrate a facile solvothermal route under controlled conditions to successfully fabricate 3D α-Fe2O3 hollow meso–microspheres on the graphene sheets (α-Fe2O3/RGO HMM). Attributed to the combination of the catalytic features of α-Fe2O3 hollow meso–microspheres and the high conductivity of graphene, α-Fe2O3/RGO HMM exhibited promising electrocatalytic performance as a counter electrode in dye-sensitized solar cells (DSSCs). The DSSCs fabricated with α-Fe2O3 HMM displayed high power conversion efficiency of 7.28%, which is comparable with that of Pt (7.71%).

Although nanoparticles, nanorods, and nanosheets of α-Fe2O3 on graphene sheets have been synthesized, it remains a challenge to grow 3D α-Fe2O3 nanomaterials with more sophisticated compositions and structures on the graphene sheets.  相似文献   

19.
In this article, the catalyst Au/γ-Fe2O3@hydroxyapatite (Au/γ-Fe2O3@HAP) consisting of Au nanoparticles supported on the core–shell structure γ-Fe2O3@HAP was prepared through a deposition–precipitation method. The catalyst was characterized by transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, N2 adsorption–desorption and atomic absorption spectrometry. The as-prepared Au/γ-Fe2O3@HAP exhibited excellent performance for the reduction of 4-nitrophenolate (4-NP) to 4-aminophenolate (4-AP) in the presence of NaBH4 at room temperature. Thermodynamic and kinetic data on the reduction of 4-NP to 4-AP catalyzed by the as-prepared catalyst were studied. The as-prepared catalyst could be easily separated by a magnet and recycled 6 times with over 92% conversion of 4-NP to 4-AP. In addition, the as-prepared catalyst showed excellent catalytic performance on other nitrophenolates. The TOF value of this work on the reduction of 4-NP to 4-AP was 241.3 h−1. Au/γ-Fe2O3@HAP might have a promising potential application on the production of 4-AP and its derivatives.

In this article, the catalyst Au/γ-Fe2O3@hydroxyapatite (Au/γ-Fe2O3@HAP) consisting of Au nanoparticles supported on the core–shell structure γ-Fe2O3@HAP was prepared through a deposition–precipitation method.  相似文献   

20.
Heterojunction construction has been proved to be an effective way to enhance photocatalysis performance. In this work, Cl-doped carbon nitride nanofibers (Cl–CNF) with broadband light harvesting capacity were in situ grown on carbon nitride nanosheets (CNS) by a facile hydrothermal method to construct a type II heterojunction. Benefiting from the joint effect of the improved charge carriers separation efficiency and a broadened visible light absorption range, the optimal heterostructure of Cl–CNF/CNS exhibits a H2O2 evolution rate of 247.5 μmol g−1 h−1 under visible light irradiation, which is 3.4 and 3.1 times as much as those of Cl–CNF (72.2 μmol g−1 h−1) and CNS (80.2 μmol g−1 h−1), respectively. Particularly, the heterojunction nanostructure displays an apparent quantum efficiency of 23.67% at 420 nm. Photoluminescence spectra and photocurrent measurements both verified the enhanced charge carriers separation ability. Our work provides a green and environmentally friendly strategy for H2O2 production by elaborate nanostructure design.

The Cl-CNF/CNS heterostructure can efficiently boost the photocatalytic H2O2 generation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号