首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Propofol reduces blood pressure by decreasing left ventricular (LV) afterload and myocardial contractility. This investigation tested the hypothesis that propofol preserves LV-arterial coupling and mechanical efficiency because of these simultaneous hemodynamic actions.

Methods: Experiments were conducted in open-chest dogs (n = 8) instrumented for measurement of aortic and LV pressure, dP/dtmax, and LV volume. Myocardial contractility was assessed with the slope (E sub es) of the LV end systolic pressure-volume relationship. Effective arterial elastance (Ea; the ratio of end systolic arterial pressure to stroke volume), stroke work (SW), and pressure-volume area (PVA) were determined from the LV pressure-volume relationships. Dogs were studied 30 min after instrumentation and after 15-min intravenous infusions of propofol at 5, 10, 20, and 40 mg [center dot] kg sup -1 [center dot] h sup -1.

Results: Propofol caused dose-dependent decreases in Ees (4.7 +/- 0.9 during control to 2.7 +/- 0.5 mmHg/ml during the high dosage) and dP/dtmax, indicating a direct negative inotropic effect. Ea increased at the 10 mg [center dot] kg sup -1 [center dot] h sup -1 dose of propofol but decreased at higher dosages. Propofol decreased the ratio of Ees to Ea (0.88 +/- 0.13 during control to 0.56 +/- 0.10 during the high dosage), consistent with impairment of LV-arterial coupling. Propofol also reduced the ratio SW to PVA (0.54 +/- 0.03 during control to 0.45 +/- 0.03 during the 20 mg [center dot] kg sup -1 [center dot] h sup -1), suggesting a decline in LV mechanical efficiency. SW and PVA recovered toward baseline values at the 40 mg [center dot] kg sup -1 [center dot] h sup -1 dose.  相似文献   


2.
This study was designed to determine if coexisting metabolic acidosis or normovolaemic haemodilution, or both, modifies the acute cardiodepressant effect of i.v. sodium bicarbonate. Thirty-one mongrel dogs were anaesthetized with halothane, and the lungs ventilated mechanically; dogs were allocated randomly to one of four groups: control group (pHa 7.39 (SD 0.03), base excess -1.0 (1.6) mmol litre-1, haemoglobin 13.9 (2.5) g dl-1 (n = 8)), metabolic acidosis group (pHa 7.21 (0.05), base excess -11.2 (2.1) mmol litre1, haemoglobin 13.4 (2.6) g dl-1 (n = 8)), anaemia group (pHa 7.40 (0.04), base excess 0.1 (2.0) mmol litre-1, haemoglobin 7.2 (1.1) g dl-1 (n = 8)) or anaemia acidosis group (pHa 7.22 (0.04), base excess -11.0 (2.2) mmol litre-1, haemoglobin 7.4 (0.3) g dl-1 (n = 7)). Metabolic acidosis was induced by continuous i.v. infusion of hydrochloric acid 2 mol litre-1. Normovolaemic haemodilution was undertaken by phlebotomy and simultaneous exchange with lactated Ringer's solution at 37 degrees C. Mean arterial pressure (MAP), pulmonary artery pressure, right atrial pressure (RAP), maximum rate of change of pressure in the right ventricle (RV dP/dtmax) and pulmonary blood flow (PBF) were measured at 30 s, 1 and 3 min after administration of 7% sodium bicarbonate solution 1 mmol kg-1 given into the right atrium over 5 s. Sodium bicarbonate produced significant decreases in MAP and RV dP/dtmax at 30 s in all groups except for the anaemia acidosis group (P < 0.05). There was a significant decrease in right ventricular stroke volume in the metabolic acidosis group from baseline values (P < 0.05), and compared with the three other groups (P < 0.05). These results indicate that the cardiodepressant effect of sodium bicarbonate 1 mmol kg-1 i.v. during metabolic acidosis was more pronounced than without acidosis, but was attenuated in the presence of normovolaemic haemodilution.   相似文献   

3.
Background: Automated border detection (ABD) allows semiautomated measurement of left ventricular (LV) areas. They can be combined with left ventricular pressure signals to generate pressure-area loops and pressure-dimension indices of contractility. This study compared conventional indices of ventricular performance (fractional area change [FAC] and circumferential fiber shortening [Vcfc]) with pressure-dimension indices of contractility. A secondary aim was to compare the effects of volatile anesthetics on the indices.

Methods: Using transesophageal echocardiography with automated border detection, FAC and Vcfc were obtained in 23 patients after cardiopulmonary bypass. Left ventricular pressures were obtained with a left ventricular catheter. Preload reduction by inferior vena caval occlusion was used to obtain end-systolic elastance (Ees), preload recruitable stroke force (PRSF), and dP/dtmax [middle dot] EDA-1 (EDA = end-diastolic area). In 11 patients, the measurements were repeated at 1 end-tidal minimum alveolar concentration of halothane or isoflurane. The results are expressed as mean +/- SD.

Results: After cardiopulmonary bypass, FAC was 31.1 +/- 7.9%, Vcfc was 0.6 +/- 0.2 circ [middle dot] s-1, Ees was 25.8 +/- 11.6 mmHg [middle dot] cm-2, PRSF was 60.8 +/- 26.6 mmHg, and dP/dtmax [middle dot] -EDA-1 was 245 +/- 123.4 mmHg [middle dot] s-1 [middle dot] cm-2. At 1 minimum alveolar concentration of a volatile anesthetic agent, FAC, Vcfc, and dP/dtmax [middle dot] EDA-1 remained unchanged. Significant decreases in Ees (19%) and PRSF (28%) were observed.  相似文献   


4.
Background: Remifentanil hydrochloride is an ultra-short-acting, esterase-metabolized micro-opioid receptor agonist. This study compared the use of remifentanil or fentanyl during elective supratentorial craniotomy for space-occupying lesions.

Methods: Sixty-three adults gave written informed consent for this prospective, randomized, double-blind, multiple-center trial. Anesthesia was induced with thiopental, pancuronium, nitrous oxide/oxygen, and fentanyl (n = 32; 2 micro gram [center dot] kg [center dot] sup -1 min sup -1) or remifentanil (n = 31; 1 micro [center dot] kg sup -1 [center dot] min sup -1). After tracheal intubation, infusion rates were reduced to 0.03 micro gram [center dot] kg sup -1 [center dot] min sup -1 (fentanyl) or 0.2 micro gram [center dot] kg sup -1 [center dot] min sup -1 (remifentanil) and then adjusted to maintain anesthesia and stable hemodynamics. Isoflurane was given only after specified infusion rate increases had occurred. At the time of the first burr hole, intracranial pressure was measured in a subset of patients. At bone flap replacement either saline (fentanyl group) or remifentanil ([nearly equal] 0.2 micro gram [center dot] kg sup -1 [center dot] min sup -1) were infused until dressing completion. Hemodynamics and time to recovery were monitored for 60 min. Analgesic requirements and nausea and vomiting were observed for 24 h. Neurological examinations were performed before operation and on postoperative days 1 and 7.

Results: Induction hemodynamics were similar. Systolic blood pressure was greater in the patients receiving fentanyl after tracheal intubation (fentanyl = 127 +/- 18 mmHg; remifentanil = 113 +/- 18 mmHg; P = 0.004). Intracranial pressure (fentanyl = 14 +/- 13 mmHg; remifentanil = 13 +/- 10 mmHg) and cerebral perfusion pressure (fentanyl = 76 +/- 19 mmHg; remifentanil = 78 +/- 14 mmHg) were similar. Isoflurane use was greater in the patients who received fentanyl. Median time to tracheal extubation was similar (fentanyl = 4 min: range = -1 to 40 min; remifentanil = 5 min: range = 1 to 15 min). Seven patients receiving fentanyl and none receiving remifentanil required naloxone. Postoperative systolic blood pressure was greater (fentanyl = 134 +/- 16 mmHg; remifentanil = 147 +/- 15 mmHg; P = 0.001) and analgesics were required earlier in patients receiving remifentanil. Incidences of nausea and vomiting were similar.  相似文献   


5.
Background: PROLI/NO (C5 H7 N3 O4 Na2 [center dot] CH3 OH) is an ultrashort-acting nucleophile/NO adduct that generates NO (half-life 2 s at 37 [degree sign] Celsius and pH 7.4). Because of its short half-life, the authors hypothesized that intravenous administration of this compound would selectively dilate the pulmonary vasculature but cause little or no systemic hypotension.

Methods: In eight awake healthy sheep with pulmonary hypertension induced by 9,11-dideoxy-9 alpha,11 alpha-methanoepoxy prostaglandin F sub 2 alpha, the authors compared PROLI/NO with two reference drugs-inhaled NO, a well-studied selective pulmonary vasodilator, and intravenous sodium nitroprusside (SNP), a nonselective vasodilator. Sheep inhaled 10, 20, 40, and 80 parts per million NO or received intravenous infusions of 0.25, 0.5, 1, 2, and 4 micro gram [center dot] kg sup -1 [center dot] min sup -1 of SNP or 0.75, 1.5, 3, 6, and 12 micro gram [center dot] kg sup -1 [center dot] min sup -1 of PROLI/NO. The order of administration of the vasoactive drugs (NO, SNP, PROLI/NO) and their doses were randomized.

Results: Inhaled NO selectively dilated the pulmonary vasculature. Intravenous SNP induced nonselective vasodilation of the systemic and pulmonary circulation. Intravenous PROLI/NO selectively vasodilated the pulmonary circulation at doses up to 6 micro gram [center dot] kg sup -1 [center dot] min sup -1, which decreased pulmonary vascular resistance by 63% (P < 0.01) from pulmonary hypertensive baseline values without changing systemic vascular resistance. At 12 micro gram [center dot] kg sup -1 [center dot] min sup -1, PROLI/NO decreased systemic and pulmonary vascular resistance and pressure. Exhaled NO concentrations were higher during PROLI/NO infusion than during SNP infusion (P < 0.01 with all data pooled).  相似文献   


6.
Background: Opiate agonists have different analgesic effects in male and female patients. The authors describe the influence of sex on the respiratory pharmacology of the micro-receptor agonist morphine.

Methods: The study was placebo-controlled, double-blind, and randomized. Steady-state ventilatory responses to carbon dioxide and responses to a step into hypoxia (duration, 3 min; oxygen saturation, [approximately] 82%; end-tidal carbon dioxide tension, 45 mmHg) were obtained before and during intravenous morphine or placebo administration (bolus dose of 100 micro gram/kg, followed by a continuous infusion of 30 micro gram [center dot] kg sup -1 [center dot] h sup -1) in 12 men and 12 women.

Results: In women, morphine reduced the slope of the ventilatory response to carbon dioxide from 1.8 +/- 0.9 to 1.3 +/- 0.7 l [center dot] min sup -1 [center dot] mmHg sup -1 (mean +/- SD; P < 0.05), whereas in men there was no significant effect (control = 2.0 +/- 0.4 vs. morphine = 1.8 +/- 0.4 l [center dot] min sup -1 [center dot] mmHg sup -1). Morphine had no effect on the apneic threshold in women (control = 33.8 +/- 3.8 vs. morphine = 35.3 +/- 5.3 mmHg), but caused an increase in men from 34.5 +/- 2.3 to 38.3 +/- 3 mmHg, P < 0.05). Morphine decreased hypoxic sensitivity in women from 1.0 +/- 0.5 l [center dot] min sup -1 [center dot] % sup -1 to 0.5 +/- 0.4 l [center dot] min sup -1 [center dot] % sup -1 (P < 0.05) but did not cause a decrease in men (control = 1.0 +/- 0.5 l [center dot] min sup -1 [center dot] % sup -1 vs. morphine = 0.9 +/- 0.5 l [center dot] min sup -1 [center dot] % sup -1). Weight, lean body mass, body surface area, and calculated fat mass differed between the sexes, but their inclusion in the analysis as a covariate revealed no influence on the differences between men and women in morphine-induced changes.  相似文献   


7.
Background: This study was designed to define the appropriate dose of remifentanil hydrochloride alone or combined with midazolam to provide satisfactory comfort and maintain adequate respiration for a monitored anesthesia care setting.

Methods: One hundred fifty-nine patients scheduled for outpatient surgery participated in this multicenter, double-blind study. Patients were randomly assigned to one of two groups: remifentanil, 1 micro gram/kg, given over 30 s followed by a continuous infusion of 0.1 micro gram [center dot] kg sup -1 [center dot] min sup -1 (remifentanil); remifentanil, 0.5 micro gram/kg, given over 30 s followed by a continuous infusion of 0.05 micro gram [center dot] kg sup -1 [center dot] min sup -1 (remifentanil + midazolam). Five minutes after the start of the infusion, patients received a loading dose of saline placebo (remifentanil) or midazolam, 1 mg, (remifentanil + midazolam). If patients were not oversedated, a second dose of placebo or midazolam, 1 mg, was given. Remifentanil was titrated (in increments of 50% from the initial rate) to limit patient discomfort or pain intraoperatively, and the infusion was terminated at the completion of skin closure.

Results: At the time of the local anesthetic, most patients in the remifentanil and remifentanil + midazolam groups experienced no pain (66% and 60%, respectively) and no discomfort (66% and 65%, respectively). The final mean (+/- SD) remifentanil infusion rates were 0.12 +/- 0.05 micro gram [center dot] kg sup -1 [center dot] min sup -1 (remifentanil) and 0.07 +/- 0.03 micro gram [center dot] kg sup -1 [center dot] min sup -1 (remifentanil + midazolam). Fewer patients in the remifentanil + midazolam group experienced nausea compared with the remifentanil group (16% vs. 36%, respectively; P < 0.05). Four patients (5%) in the remifentanil group and two patients (2%) in the remifentanil + midazolam group experienced brief periods of oxygen desaturation (SpO2 < 90%) and hypoventilation (< 8 breaths/min).  相似文献   


8.
Background: Meperidine administration is a more effective treatment for shivering than equianalgesic doses of other opioids. However, it remains unknown whether meperidine also profoundly impairs other thermoregulatory responses, such as sweating or vasoconstriction. Proportional inhibition of vasoconstriction and shivering suggests that the drug acts much like alfentanil and anesthetics but possesses greater thermoregulatory than analgesic potency. In contrast, disproportionate inhibition would imply a special antishivering mechanism. Accordingly, the authors tested the hypothesis that meperidine administration produces a far greater concentration-dependent reduction in the shivering than vasoconstriction threshold.

Methods: Nine volunteers were each studied on three days: 1) control (no opioid); 2) a target total plasma meperidine concentration of 0.6 micro gram/ml (40 mg/h); and 3) a target concentration of 1.8 micro gram/ml (120 mg/h). Each day, skin and core temperatures were increased to provoke sweating and then subsequently reduced to elicit vasoconstriction and shivering. Core-temperature thresholds (at a designated skin temperature of 34 degrees Celsius) were computed using established linear cutaneous contributions to control sweating (10%) and vasoconstriction and shivering (20%). The dose-dependent effects of unbound meperidine on thermoregulatory response thresholds was then determined using linear regression. Results are presented as means +/- SDs.

Results: The unbound meperidine fraction was [nearly equal] 35%. Meperidine administration slightly increased the sweating threshold (0.5 +/- 0.8 degrees Celsius [center dot] micro gram sup -1 [center dot] ml; r2 = 0.51 +/- 0.37) and markedly decreased the vasoconstriction threshold (-3.3 +/- 1.5 degrees Celsius [center dot] micro gram sup -1 [center dot] ml; r sup 2 = 0.92 +/- 0.08). However, meperidine reduced the shivering threshold nearly twice as much as the vasoconstriction threshold (-6.1 +/- 3.0 degrees Celsius [center dot] micro gram sup -1 [center dot] ml; r2 = 0.97 +/- 0.05; P = 0.001).  相似文献   


9.
Background: The transition from remifentanil intraoperative anesthesia to postoperative analgesia must be planned carefully due to the short duration of action (3-10 min) of remifentanil hydrochloride, a potent, esterase-metabolized micro-opioid agonist. This study compared the efficacy and safety of transition regimens using remifentanil or morphine sulfate for immediate postoperative pain relief in patients who had surgery under general anesthesia with remifentanil/propofol.

Methods: One hundred fifty patients who had received open-label remifentanil and propofol for intraoperative anesthesia participated in this multicenter, double-blind, double-dummy study and were randomly assigned to either the remifentanil (R) group or the morphine sulfate (M) group. Twenty minutes before the anticipated end of surgery, the propofol infusion was decreased by 50%, and patients received either a placebo bolus (R group) or a bolus of 0.15 mg/kg morphine (M group). At the end of surgery, the propofol and remifentanil maintenance infusions were discontinued and the analgesic infusion was started: either 0.1 micro gram [center dot] kg sup -1 [center dot] min sup -1 remifentanil (R group) or placebo analgesic infusion (M group). During the 25 min after tracheal extubation, remifentanil titrations in increments of 0.025 micro gram [center dot] kg sup -1 [center dot] min sup -1 and placebo boluses (R group), or 2 mg intravenous morphine boluses and placebo rate increases (M group) were administered as necessary at 5-min intervals to control pain. Patients received the 0.075 mg/kg intravenous morphine bolus (R group) or placebo (M group) at 25 and 30 min after extubation, and the analgesic infusion was discontinued at 35 min. From 35 to 65 minutes after extubation, both groups received 2-6 mg open-label morphine analgesia every 5 min as needed.

Results: Successful analgesia, defined as no or mild pain with adequate respiration (respiratory rate [RR] >or= to 8 breaths/min and pulse oximetry >or= to 90%), was achieved in more patients in the R group than in the M group (58% vs. 33%, respectively) at 25 min after extubation (P < 0.05). The median remifentanil rate for successful analgesia was 0.125 micro gram [center dot] kg sup -1 [center dot] min sup -1 (range, 0.05-0.23 micro gram [center dot] kg sup -1 [center dot] min sup -1), and the median number of 2-mg morphine boluses used was 2 (range, 0-5 boluses). At 35 min after extubation, >or= to 74% of patients in both groups experienced moderate to severe pain. Median recovery times from the end of surgery were similar between groups. Transient respiratory depression, apnea, or both were the most frequent adverse events (14% for the R group vs. 6% for the M group; P > 0.05).  相似文献   


10.
Background: Hemodilution with diaspirin crosslinked hemoglobin (DCLHb) ameliorates occlusive cerebral ischemia. However, subarachnoid hemoglobin has been implicated as a cause of cerebral hypoperfusion. The effect of intravenous DCLHb on cerebral perfusion and neuronal death after experimental subarachnoid hemorrhage was evaluated.

Methods: Rats (n = 48) were anesthetized with isoflurane and subarachnoid hemorrhage was induced by injecting 0.3 ml of autologous blood into the cistema magna. Each animal received one of the following regimens: Control, no hematocrit manipulation; DCLHb, hematocrit concentration decreased to 30% with DCLHb; or Alb, hematocrit concentration decreased to 30% with human serum albumin. The experiments had two parts, A and B. In part A, after 20 min, cerebral blood flow (CBF) was assessed with14 C-iodoantipyrine autoradiography. In part B, after 96 h, in separate animals, the number of dead neurons was determined in predetermined coronal sections by hematoxylin and eosin staining.

Results: Cerebral blood flow was greater for the DCLHb group than for the control group; and CBF was greater for the Alb group than the other two groups (P < 0.05). In one section, CBF was 45.5 +/- 10.9 ml [center dot] 100 g sup -1 [center dot] min sup -1 (mean +/- SD) for the control group, 95.3 +/- 16.6 ml [center dot] 100 g sup -1 [center dot] min sup -1 for the DCLHb group, and 138.1 +/- 18.7 ml [center dot] 100 g sup -1 [center dot] min sup -1 for the Alb group. The number of dead neurons was less in the Alb group (611 +/- 84) than in the control group (1,097 +/- 211), and was less in the DCLHb group (305 +/- 38) than in the other two groups (P < 0.05).  相似文献   


11.
Background: Because patients may be taking clonidine chronically or may be receiving it as a premedication before surgery, the authors investigated its effect on cerebral hemodynamics.

Methods: In nine volunteers, middle cerebral artery mean blood flow velocity (Vm) was measured using transcranial Doppler ultrasonography (TCD). CO2 vasoreactivity was measured before clonidine administration (preclonidine), 90 min after clonidine, 5 micro gram/kg yorally, then following restoration of mean arterial pressure (MAP) to the preclonidine level. In addition, Vm was measured after a phenylephrine-induced 30-mmHg increase in MAP.

Results: After clonidine administration, Vm decreased from 62 +/- 9 to 48 +/- 8 cm/s (P < 0.01), and MAP decreased from 86 +/- 10 to 63 +/- 5 mmHg (P < 0.01; mean +/- SD). Clonidine decreased the CO2 vasoreactivity slope from 2.2 +/- 0.4 to 1.2 +/- 0.5 cm [center dot] s sup -1 [center dot] mmHg sup -1 (P < 0.05); restoring MAP to the preclonidine level increased the slope to 1.60 +/- 0.5 cm [center dot] s sup -1 [center dot] mmHg [center dot] sup -1, still less than the preclonidine slope (P < 0.05). CO2 vasoreactivity expressed as a percentage change in Vm, decreased after clonidine, 3.5 +/- 0.8 versus 2.4 +/- 0.8%/mmHg (P < 0.05); this difference disappeared after restoration of MAP, 3.1 +/- 1.2%/mmHg. With a 30-mmHg increase in MAP, Vm increased by 13% before and after clonidine (P < 0.05).  相似文献   


12.
Background: Remifentanil is an opioid analgesic for use in anesthesia. An ester linkage renders it susceptible to rapid metabolism by blood and tissue esterases. Thus it was hypothesized that remifentanil elimination would be independent of renal function. Because its principal metabolite (GR90291) is eliminated renally, it would depend on renal function. This study was designed to evaluate the pharmacokinetics and pharmacodynamics of remifentanil and its metabolite in persons with and without renal failure.

Methods: Two groups of volunteers received two-stage infusions of remifentanil: low dose with 0.0125 micro gram [center dot] kg sup -1 [center dot] min sup -1 for 1 h followed by 0.025 micro gram kg sup -1 [center dot] min sup -1 for 3 h; and high dose with 0.025 micro gram [center dot] kg sup -1 [center dot] min sup -1 for 1 h followed by 0.05 micro gram [center dot] kg sup -1 [center dot] min sup -1 for 3 h. Blood samples were collected for analysis of remifentanil and GR90291 concentrations. The pharmacokinetics of remifentanil were fit using a one-compartment pharmacokinetic model. Remifentanil's effect was determined intermittently using minute ventilation during a hypercapnic (7.5% CO2) challenge.

Results: Fifteen patients with renal failure and eight control participants were enrolled. The clearance and volume of distribution of remifentanil were not different between those with renal failure and the controls. Patients with renal failure showed a marked reduction in the elimination of GR90291; the half-life of the metabolite increased from 1.5 h in the controls to more than 26 h in patients with renal failure. The steady-state concentration of GR90291 is likely to be more than 25 times higher in persons with renal failure. There were no obvious differences in opioid effects on minute ventilation in the controls and in patients with renal failure.  相似文献   


13.
Background: Sevoflurane has been shown to protect against myocardial ischemia and reperfusion injury in animals. The present study investigated whether these effects were clinically relevant and would protect left ventricular (LV) function during coronary surgery.

Methods: Twenty coronary surgery patients were randomly assigned to receive either target-controlled infusion of propofol or inhalational anesthesia with sevoflurane. Except for this, anesthetic and surgical management was the same in all patients. A high-fidelity pressure catheter was positioned in the left ventricle and the left atrium. LV response to increased cardiac load, obtained by leg elevation, was assessed before and after cardiopulmonary bypass (CPB). Effects on contraction were evaluated by analysis of changes in dP/dtmax. Effects on relaxation were assessed by analysis of the load dependence of myocardial relaxation (R = slope of the relation between time constant [tau] of isovolumic relaxation and end-systolic pressure). Postoperative concentrations of cardiac troponin I were followed during 36 h.

Results: Before CPB, leg elevation slightly increased dP/dtmax in the sevoflurane group (5 +/- 3%), whereas it remained unchanged in the propofol group (1 +/- 6%). After CPB, leg elevation resulted in a decrease in dP/dtmax in the propofol group (-5 +/- 4%), whereas the response in the sevoflurane group was comparable to the response before CPB (5 +/- 4%). Load dependence of LV pressure fall (R) was similar in both groups before CPB. After CPB, R was increased in the propofol group but not in the sevoflurane group. Troponin I concentrations were significantly lower in the sevoflurane than in the propofol group.  相似文献   


14.
Background: A naloxone infusion is effective in reducing epidural and intrathecal opioid-related side effects. The use of naloxone infusion concomitant with intravenous morphine patient-controlled analgesia (PCA) has not been evaluated, probably because of an expected direct antagonism of the systemic opioid effect. The authors compared the incidence of morphine-related side effects and the quality of analgesia from two small doses of naloxone infusion.

Methods: Sixty patients classified as American Society of Anesthesiologists physical status 1, 2, or 3 who were scheduled for total abdominal hysterectomies were enrolled in the study. Patients received a standardized general anesthetic. In the postanesthetic care unit, patients received morphine as a PCA. They were randomized to receive either 0.25 micro gram [center dot] kg sup -1 [center dot] h sup -1 naloxone (low dose), 1 micro gram [center dot] kg sup -1 [center dot] h sup -1 (high dose), or saline (placebo) as a continuous infusion. Verbal rating scores for pain, nausea, vomiting, and pruritus; sedation scores; requests for antiemetic; and morphine use were recorded for 24 h. Blood pressure, respiratory rate, and oxyhemoglobin saturation were also monitored.

Results: Sixty patients completed the study. Both naloxone doses were equally effective in reducing the incidence of nausea, vomiting, and pruritus compared with placebo (P < 0.05 by the chi-squared test). There was no difference in the verbal rating scores for pain between the groups. The cumulative morphine use was the lowest in the low-dose group (42.3 +/- 24.1 mg; means +/- SD) compared with the placebo (59.1 +/- 27.4 mg) and high-dose groups (64.7 +/- 33.0 mg) at 24 h (P < 0.05 by analysis of variance). There was no incidence of respiratory depression (< 8 breaths/min) and no difference in sedation scores, antiemetic use, respiratory rate, and hemodynamic parameters among the groups.  相似文献   


15.
Background: The aim of this study was to determine whether progressive levels of hypothermia (37, 34, 31, or 28 [degree sign] Celsius) during cardiopulmonary bypass (CPB) in pigs reduce the physiologic and metabolic consequences of global cerebral ischemia.

Methods: Sagittal sinus and cortical microdialysis catheters were inserted into anesthetized pigs. Animals were placed on CPB and randomly assigned to 37 [degree sign] Celsius (n = 10), 34 [degree sign] Celsius (n = 10), 31 [degree sign] Celsius (n = 11), or 28 [degree sign] Celsius (n = 10) management. Next 20 min of global cerebral ischemia was produced by temporarily ligating the innominate and left subclavian arteries, followed by reperfusion, rewarming, and termination of CPB. Cerebral oxygen metabolism (CMRO2) was calculated by cerebral blood flow (radioactive microspheres) and arteriovenous oxygen content gradient. Cortical excitatory amino acids (EAA) by microdialysis were measured using high-performance liquid chromatography. Electroencephalographic (EEG) signals were graded by observers blinded to the protocol. After CPB, cerebrospinal fluid was sampled to test for S-100 protein and the cerebral cortex was biopsied.

Results: Cerebral oxygen metabolism increased after rewarming from 28 [degree sign] Celsius, 31 [degree sign] Celsius, and 34 [degree sign] Celsius CPB but not in the 37 [degree sign] animals; CMRO2, remained lower with 37 [degree sign] Celsius (1.8 +/- 0.2 ml [center dot] min sup -1 [center dot] 100 g sup -1) than with 28 [degree sign] Celsius (3.1 +/- 0.1 ml [center dot] min sup -1 [center dot] 100 g sup -1; P < 0.05). The EEG scores after CPB were depressed in all groups and remained significantly lower in the 37 [degree sign] Celsius animals. With 28 [degree sign] Celsius and 31 [degree sign] Celsius CPB, EAA concentrations did not change. In contrast, glutamate increased by sixfold during ischemia at 37 [degree sign] Celsius and remained significantly greater during reperfusion in the 34 [degree sign] Celsius and 37 [degree sign] Celsius groups. Cortical biopsy specimens showed no intergroup differences in energy metabolites except two to three times greater brain lactate in the 37 [degree sign] Celsius animals. S-100 protein in cerebrospinal fluid was greater in the 37 [degree sign] Celsius (6 +/- 0.9 micro gram/l) and 34 [degree sign] Celsius (3.5 +/- 0.5 micro gram/l) groups than the 31 [degree sign] Celsius (1.9 +/- 0.1 micro gram/l) and 28 [degree sign] Celsius (1.7 +/- 0.2 micro gram/l) animals.  相似文献   


16.
Background: Dependence of left ventricular (LV) relaxation on cardiac systolic load is a function of myocardial contractility. The authors hypothesized that, if a tight coupling would exist between LV contraction and relaxation, the changes in relaxation rate with an increase in cardiac systolic load would be related to the changes in LV contraction.

Methods: Coronary surgery patients (n = 120) with preoperative ejection fraction > 40% were included. High-fidelity LV pressure tracings (n = 120) and transgastric transesophageal echocardiographic data (n = 40) were obtained. Hearts were paced at a fixed rate of 90 beats/min. Effects on contraction were evaluated by analysis of changes in dP/dtmax and stroke area. Effects on relaxation were assessed by analysis of R (slope of the relation between [small tau, Greek] and end-systolic pressure). Correlations were calculated with linear regression analysis using Pearson's coefficient r.

Results: Baseline LV end-diastolic pressure was 10 +/- 3 mmHg (mean +/- SD). During leg raising, systolic LV pressure increased from 93 +/- 9 to 107 +/- 11 mmHg. The change in dP/dtmax was variable and ranged from -181 to +254 mmHg/s. A similar variability was observed with the changes in stroke area, which ranged from -2.0 to +5.5 cm2. Changes in dP/dtmax and in stroke area were closely related to individual R values (r = 0.87, P < 0.001; and r = 0.81, P < 0.001, respectively) and to corresponding changes in LV end-diastolic pressure (r = 0.81, P < 0.001; and r = 0.74, P < 0.001, respectively).  相似文献   


17.
Background: Anesthetic induction and maintenance with propofol are associated with decreased blood pressure that is, in part, due to decreased peripheral resistance. Several possible mechanisms whereby propofol could reduce peripheral resistance include a direct action of propofol on vascular smooth muscle, an inhibition of sympathetic activity to the vasculature, or both. This study examined these two possibilities in humans by measuring the forearm vascular responses to infusions of propofol into the brachial artery (study 1) and by determining the forearm arterial and venous responses to systemic (intravenous) infusions of propofol after sympathetic denervation of the forearm by stellate blockade (study 2).

Methods: Bilateral forearm venous occlusion piethysmography was used to examine forearm vascular resistance (FVR) and forearm vein compliance (FVC). Study 1 used infusion of intralipid (time control) and propofol at rates between 83 and 664 micro gram/min into the brachial artery of 11 conscious persons and compared responses to arterial infusions of sodium nitroprusside (SNP) at 0.3, 3.0, and 10 micro gram/min. Venous blood from the infusion arm was assayed for plasma propofol concentrations. In study 2, after left stellate block (12 ml 0.25% bupivacaine + 1% lidocaine), six participants were anesthetized and maintained with propofol infusions of 125 and 200 micro gram [centered dot] kg sup -1 [centered dot] min sup -1. Simultaneous right forearm (unblocked) blood flow dynamics served as the time control. In three additional conscious participants, intrabrachial artery infusions of SNP and nitroglycerin, both at 10 micro gram/min, were performed before and after stellate blockade of the left forearm to determine whether the sympathetically denervated forearm vessels could dilate beyond the level produced by denervation alone.

Results: In study 1, infusion of intralipid or propofol into the brachial artery did not change FVR or FVC. Sodium nitroprusside significantly decreased FVR in a dose-dependent manner by 22 +/- 5%, 65 +/- 3%, and 78 +/- 2% (mean +/- SEM) but did not change FVC. During the incremental propofol infusions, plasma propofol concentrations increased from 0.2 to 10.1 micro gram/ml and averaged 7.4 +/- 1.1 micro gram/ml during the highest infusion rate. In study 2, stellate ganglion blockade decreased FVR by 50 +/- 6% and increased FVC by 58 +/- 10%. Propofol anesthesia at 125 and 200 micro gram [centered dot] kg sup -1 [centered dot] min sup -1 progressively reduced mean arterial pressure. In the arm with sympathetic denervation, FVR and FVC showed no further changes during propofol anesthesia, whereas in the control arm FVR significantly decreased by 41 +/- 9% and 42 +/- 7%, and FVC increased significantly by 89 +/- 27% and 85 +/- 32% during 125 and 200 micro gram [centered dot] kg sup -1 [centered dot] min sup -1 infusions of propofol, respectively. In the three additional conscious participants, intraarterial infusion of SNP and nitroglycerin (TNG) after the stellate blockade resulted in a further decrease of FVR and a further increase of FVC.  相似文献   


18.
Background: Septic shock leads to increased splanchnic blood flow (Qspl) and oxygen consumption (VO2 spl). The increased Qspl, however, may not match the splanchnic oxygen demand, resulting in hepatic dysfunction. This concept of ongoing tissue hypoxia that can be relieved by increasing splanchnic oxygen delivery (DO2 spl), however, was challenged because most of the elevated VO2 spl was attributed to increased hepatic glucose production (HGP) resulting from increased substrate delivery. Therefore the authors tested the hypothesis that a dobutamine-induced increase in Qspl and DO2 spl leads to increased VO sub 2 spl associated with accelerated HGP in patients with septic shock.

Methods: Twelve patients with hyperdynamic septic shock in whom blood pressure had been stabilized (mean arterial pressure greater or equal to 70 mmHg) with volume resuscitation and norepinephrine received dobutamine to obtain a 20% increase in cardiac index (CI). Qspl, DO2 spl, and VO sub 2 spl were assessed using the steady-state indocyanine green clearance technique with correction for hepatic dye extraction, and HGP was determined from the plasma appearance rate of stable, non-radioactive-labeled glucose using a primed-constant infusion approach.

Results: Although the increase in CI resulted in a similar increase in Qspl (from 0.91 +/- 0.21 to 1.21 +/- 0.34 l [center dot] min sup -1 [center dot] m2; P < 0.001) producing a parallel increase of DO2 spl (from 141 +/- 33 to 182 +/- 44 ml [center dot] min sup -1 [center dot] m2; P < 0.001), there was no effect on VO2 spl (73 +/- 16 and 82 +/- 21 ml [center dot] min sup -1 [center dot] m2, respectively). Hepatic glucose production decreased from 5.1 +/- 1.6 to 3.6 +/- 0.9 mg [center dot] kg sup -1 [center dot] min sup -1 (P < 0.001).  相似文献   


19.
Background: There is considerable unexplained variability in alfentanil pharmacokinetics, particularly systemic clearance. Alfentanil is extensively metabolized in vivo, and thus systemic clearance depends on hepatic biotransformation. Cytochrome P450 3A4 was previously shown to be the predominant P450 isoform responsible for human liver microsomal alfentanil metabolism in vitro. This investigation tested the hypothesis that P450 3A4 is responsible for human alfentanil metabolism and clearance in vivo.

Methods: Nine healthy male volunteers who provided institutionally approved written informed consent were studied in a three-way randomized crossover design. Each subject received alfentanil (20 micro gram/kg given intravenously) 30 min after midazolam (1 mg injected intravenously) on three occasions: control; high P450 3A4 activity (rifampin induction); and low P450 3A4 activity (selective inhibition by troleandomycin). Midazolam is a validated selective in vivo probe for P450 3A4 activity. Venous blood was sampled for 24 h and plasma concentrations of midazolam and alfentanil and their primary metabolites 1'-hydroxymidazolam and noralfentanil were measured by gas chromatography-mass spectrometry. Pharmacokinetic parameters were determined by two-stage analysis using both noncompartmental and three-compartment models.

Results: Plasma alfentanil concentration-time profiles depended significantly on P450 3A4 activity. Alfentanil noncompartmental clearance was 5.3 +/- 2.3, 14.6 +/- 3.8, and 1.1 +/- 0.5 ml kg sup -1 [center dot] min sup -1, and elimination half-life was 58 +/- 13, 35 +/- 7, and 630 +/- 374 min, respectively, in participants with normal (controls), high (rifampin), and low (troleandomycin) P450 3A4 activity (means +/- SD; P <0.05 compared with controls). Multicompartmental modeling suggested a time-dependent inhibition-resynthesis model for troleandomycin effects on P450 3A4 activity, characterized as k10 (t) = k10 [1 - phi e sup -alpha(t-t0)], where k10 (t) is the apparent time-dependent rate constant, k10 is the uninhibited rate constant, phi is the fraction of P450 3A4 inhibited, and alpha is the apparent P450 3A4 reactivation rate. Alfentanil clearance was calculated as V1 [center dot] k10 for controls and men receiving rifampin, and as V1 [center dot] average k10 (t) for men receiving troleandomycin. This clearance was 4.9 +/- 2.1, 13.2 +/- 3.6, and 1.5 +/- 0.8 ml [center dot] kg sup -1 [center dot] min sup -1, respectively, in controls and in men receiving rifampin or troleandomycin. There was a significant correlation (r = 0.97, P < 0.001) between alfentanil systemic clearance and P450 3A4 activity.  相似文献   


20.
Background: The effects of triiodothyronine (T3) on systemic hemodynamics, myocardial contractility (preload recruitable stroke work slope; Mw), and left ventricular (LV) isovolumic relaxation (time constant; tau) were examined before and after the development of pacing-induced cardiomyopathy in conscious dogs.

Methods: Dogs (n = 8) were chronically instrumented for measurement of aortic and LV pressure, dP/dtmax, subendocardial segment length, and cardiac output. Dogs received escalating doses (0.2, 2.0, and 20.0 mg/kg, intravenous) of T3 over 5 min at 1-h intervals, and peak hemodynamic effects were recorded 10 min after each dose and 24 h after the final dose. Dogs were then continuously paced at 220-240 beats/min for 21 + /- 2 days. Pacing was temporarily discontinued after the development of severe LV dysfunction, and administration of T3 was repeated.

Results: T3 produced immediate and sustained (24 h) increases (P < 0.05) in Mw and dP/dtmax in dogs before the initiation of pacing, consistent with a positive inotropic effect. No changes in tau occurred. Rapid ventricular pacing over 3 weeks increased baseline heart rate (sinus rhythm) and LV end-diastolic pressure, decreased mean arterial and LV systolic pressures, and caused LV systolic (decreases in Mw and dP/dtmax) and diastolic (increases in tau) dysfunction. T3 caused immediate and sustained increases in Mw (63 +/- 7 during control to 82 +/- 7 mmHg after the 2 mg/kg dose) and decreases in tau (65 +/- 8 during control to 57 +/- 6 ms after the 20 mg/kg dose), indicating that this hormone enhanced myocardial contractility and shortened LV relaxation, respectively, in the presence of chronic LV dysfunction. In contrast to the findings in dogs with normal LV function, T3 did not affect heart rate and calculated indices of myocardial oxygen consumption and reduced LV end-diastolic pressure (27 +/- 3 during control to 20 +/- 2 mmHg after the 2 mg/kg dose) in cardiomyopathic dogs.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号