首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The postjunctional alpha(2)-adrenoceptor-mediated contractility was characterized in human saphenous vein derived from coronary artery bypass graft surgery. Human saphenous vein contracted to alpha(2)-adrenoceptor selective agonists BHT-920 (5,6,7,8-Tetrahydro-6-(2-propenyl)-4H-thiazolo[4,5-d]azepin-2-amine dihydrochloride; pD(2)=6.7+/-0.1) and UK 14,304 (5-Bromo-6-(2-imidazolin-2-ylamino)quinoxaline; pD(2)=7.2+/-0.1). BHT-920-induced contractions were inhibited by the alpha(2)-adrenoceptor antagonist yohimbine (17-Hydroxy-yohimban-16-carboxylic acid methyl ester hydrochloride; pA(2)=8.7+/-0.5), but not by the alpha(1)-adrenoceptor antagonist prazosin (1-[4-Amino-6,7-dimethoxy-2-quinazolinyl]-4-[2-furanylcarbonyl]-piperazine hydrochloride; 300 nM). In contrast, prazosin (pK(b)=7.9+/-0.2) potently antagonized contractions elicited by the alpha(1)-adrenoceptor agonist phenylephrine ((R)-3-Hydroxy-alpha-[(methylamino)methyl] benzenemethanol hydrochloride; pD(2)=4.9+/-0.1), indicating that both alpha(2)- and alpha(1)-adrenoceptor evoke human saphenous vein contractions. Functional antagonist activity estimates (pA(2) or pK(b)) obtained for the alpha-adrenoceptor antagonists ARC 239 (2-[2-(4-(2-Methoxyphenyl)piperazin-1-yl)ethyl]-4,4-dimethyl-1,3-(2H,4H)-isoquinolindione dihydrochloride), WB 4101 (2-(2,6-Dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane hydrochloride) and HV 723 (alpha-ethyl-3,4,5-trimethoxy-alpha-(3-((2-(2-methoxyphenoxy) ethyl)amino)propyl)benzeneacetonitrile) against BHT-920-induced human saphenous vein contractions were 7.0+/-0.6, 8.3+/-0.6 and 7.7+/-0.3, respectively. The alpha(2)-adrenoceptor subtype affinities (pK(i)) obtained in recombinant human alpha(2A)-, alpha(2B)- and alpha(2C)-adrenoceptor competition binding assays were 8.6, 8.3 and 8.6 for yohimbine; 6.3, 8.4 and 7.0 for ARC 239; 8.4, 7.5 and 8.4 for WB 4101 and 7.5, 7.4 and 7.9 for HV 723, respectively. Taken together, the binding and functional antagonist activity estimates obtained in these investigations indicate that alpha(2C)-adrenoceptor is the predominant postjunctional alpha(2)-adrenoceptor subtype in human saphenous vein.  相似文献   

2.
N-[3-(1H-Imidazol-4-ylmethyl)phenyl]ethanesulfonamide (ABT-866, 1) is a novel alpha(1) agent having the unique profile of alpha(1A) (rabbit urethra, EC(50) = 0.60 microM) agonism with alpha(1B) (rat spleen, pA(2) = 5.4) and alpha(1D) (rat aorta, pA(2) = 6.2) antagonism. An in vivo dog model showed 1 to be more selective for the urethra over the vasculature than A-61603 (2), ST-1059 (3, the active metabolite of midodrine), and phenylpropanolamine (4).  相似文献   

3.
The present study examines the functional and binding affinities of the aporphine alkaloid, (+)-boldine, at different alpha(1)- and alpha(2)-adrenoceptor subtypes, namely, alpha(1A) (rat vas deferens and kidney) and its L-like state (rabbit spleen), alpha(1B) (guinea pig spleen, mouse spleen and rabbit aorta), alpha(1D) (rat aorta and pulmonary artery), at possible subtypes of prejunctional alpha(2)-adrenoceptors in rat and rabbit vas deferens and rat atrium, alpha(2D) in guinea pig ileum, cloned human alpha(1)-adrenoceptor subtypes A, B and D and alpha(2)-adrenoceptor subtypes A, B and C as well as rat alpha(2D)-adrenoceptors. Additionally, we investigated its Ca(2+) channel antagonism in vascular and cardiac preparations. (+)-Boldine had higher affinity at alpha(1)-adrenoceptor subtype A (pA(2)=7.46, pK(i)=7.21) compared with its L-like state (pA(2)=5.63) or subtype B (pA(2)=5.98- 6.12, pK(i)=5.79) and subtype D (pA(2)=6.18-6.37, pK(i)=6.09). Its affinities at alpha(2)-adrenoceptors in rat and rabbit vas deferens and rat atrium (pA(2)=6.02, 6.36, 6.06, respectively) were identical, but lower at guinea pig ileum alpha(2D)-adrenoceptors (pA(2)=4.38). (+)-Boldine displayed nearly undistinguishable affinity at cloned human alpha(2)-adrenoceptor subtypes A, B and C (pK(i)=6.26, 5.79 and 6.35, respectively), whereas its affinity at rat alpha(2D)-adrenoceptors was low (pK(i)=4.70). In perfused rat kidney, (+)-boldine inhibited K(+)-evoked vasoconstriction at doses 70-fold higher than diltiazem. In guinea pig Langendorff heart, (+)-boldine (10(-5) - 2 x 10(-4) M) was equieffective in increasing coronary flow and in depressing cardiac force, while lower concentrations already depressed heart rate. In papillary muscles from guinea pig, (+)-boldine (10(-6) - 10(-5) M) mainly prolonged the duration of action potential at levels >30% of repolarization. These data reveal that (+)-boldine, except for its moderate selectivity (15 to 25-fold) for alpha(1A)-adrenoceptors, does not discriminate between the alpha(1)-adrenoceptor subtypes B and D and alpha(2)-adrenoceptor subtypes A, B and C, at which the drug consistently displays micromolar affinity. In vascular and cardiac preparations, (+)-boldine, although being at least 50-fold weaker than diltiazem, shows Ca(2+) channel antagonistic properties but no specificity for coronary dilatation relative to cardiodepression.  相似文献   

4.
In functional assays, A-315456, N-[3-(cyclohexylidene-(1H-imidazol-4-ylmethyl))phenyl]ethanesulfonamide, behaved as an alpha(1D)-adrenoceptor subtype selective antagonist (pA(2)=8.34) in the rat aorta. It was 83-fold less potent at the alpha(1B)-adrenoceptor subtype expressed in the rat spleen, and was inactive at the alpha(1A)-adrenoceptor subtype expressed in the rat vas deferens. Radioligand binding assays also revealed high affinity (pK(i)=8.71) for the alpha(1D)-adrenoceptor subtype and weaker affinities at the alpha(1A)-adrenoceptor (pK(i)=6.23) and alpha(1B)-adrenoceptor (pK(i)=7.86). In comparison to its potent affinity at the alpha(1D)-adrenoceptor subtype, A-315456 was 3020-, 794- and 38-fold weaker at the dopamine D(2)-, 5-HT(1A)-, and alpha(2a)-adrenoceptors, respectively. These studies indicate that A-315456 is a potent and selective alpha(1D)-antagonist that may serve as a useful pharmacological ligand to probe the physiological role of the alpha(1D)-adrenoceptor subtype in normal and disease states.  相似文献   

5.
The affinity for functional alpha1-adrenoceptor subtypes of buspirone in comparison with its close structural analogs and selective alpha1D-adrenoceptor antagonists, BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]dec ane-7,9-dione) and MDL 73005EF (8-[2-(1,4-benzodioxan-2-ylmethylamino)ethyl]-8-azaspiro+ ++[4.5]decane-7,9-dione), was determined, namely at subtype A in rat vas deferens and perfused kidney, at subtype B in guinea-pig and mouse spleen, at subtype L in rabbit spleen, and at subtype D in rat aorta and pulmonary artery against noradrenaline-evoked contractions. BMY 7378 and MDL 73005EF were confirmed as 30- and 20-fold selective antagonists, respectively, for alpha1D- over both alpha1A- and alpha1B-adrenoceptors. Buspirone was a weak antagonist without intrinsic activity at alpha1A-adrenoceptors in rat vas deferens (pA2 = 6.12), at alpha1B-adrenoceptors in guinea-pig and mouse spleen (pA2 = 5.54 and 5.59) and at alpha1L-adrenoceptors in rabbit spleen (pA2 = 4.99), but caused partial vasoconstriction in rat kidney that was attenuable by the subtype D-selective adrenoceptor antagonist BMY 7378, but hardly by the subtype A-selective adrenoceptor antagonist B8805-033 ((+/-)-1,3,5-trimethyl-6-[[3-[4-((2,3-dihydro-2-hydroxymethyl)-1,4-be nzodioxin-5-yl)-1-piperazinyl]propyl]amino]-2,4(1H,3H)-pyrimidinedion e), confirming the additional presence of alpha1D-adrenoceptors mediating rat renal vasoconstriction. Buspirone behaved as a partial agonist at alpha1D-adrenoceptors in rat aorta (pD2 = 6.77, intrinsic activity (i.a.)= 0.40) and pulmonary artery (pD2 = 7.16, i.a. = 0.59). With buspirone as agonist in these tissues, the pA2 values of subtype-discriminating antagonists were consistent with their alpha1D-adrenoceptor affinity determined in rat aorta against noradrenaline and with published binding data on cloned alpha1d-adrenoceptors. The results provide pharmacological evidence that (1) in functional preparations for the A subtype, like rat vas deferens and perfused kidney, for the B subtype, like guinea-pig and mouse spleen, and for the L subtype, like rabbit spleen, buspirone is a weak antagonist without intrinsic activity, but (2) behaves as a partial agonist in rat aorta and pulmonary artery as models for the D subtype and (3) detects an additional vasoconstrictor alpha1D-adrenoceptor in rat kidney. Buspirone, like its close analogs BMY 7378 and MDL 73005EF, thus might also be a useful tool for functionally discriminating alpha1D- from alpha1A-, alpha1B- and alpha1L-adrenoceptors in various tissues.  相似文献   

6.
In the mouse thoracic aorta, noradrenaline, adrenaline, phenylephrine and methoxamine behaved as full agonists. The pA(2) values for 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4,5]decane-7,9-dione dihydrochloride (BMY 7378) against each agonist were in good agreement with the generally accepted affinity value of alpha(1D)-adrenoceptors. 5-Methylurapidil, 2-[2,6-dimethoxyphenoxyethyl]aminomethyl-1,4-benzodioxane hydrochloride (WB 4101) and prazosin inhibited the contraction in response to noradrenaline. A significant correlation was obtained between the antagonist affinities in mouse thoracic aorta and those of native alpha(1D)-adrenoceptors in rat thoracic aorta or with those of cloned alpha(1d)-adrenoceptors, but not with those for either alpha(1a)- or alpha(1b)-adrenoceptors. Buspirone behaved as a partial agonist in mouse thoracic aorta, the contraction of which was antagonized by BMY 7378 with a pA(2) value (8.49) consistent with that found against noradrenaline (8.43). Clonidine acted as a partial agonist (pD(2)=5.94). The pK(p) value for clonidine against noradrenaline was similar to the pD(2) value for clonidine. The apparent pK(B) value for BMY 7378 against clonidine was similar to the pA(2) value against other full agonists used in the present study. These results suggest that the alpha(1D)-adrenoceptor subtype exists, and that the full agonists and the partial agonists evoke the contraction mediated through the alpha(1D)-adrenoceptor in mouse thoracic aorta.  相似文献   

7.
It is now clear that alpha(1)-adrenoceptors comprise a heterogeneous family. In the present study, we characterized the alpha(1)-adrenoceptor subtype in the nasal mucosa vasculature of guinea pigs. A rectangular strip of guinea pig nasal mucosa was suspended in an organ bath containing Krebs' bicarbonate solution. Changes in tension were recorded isometrically. Concentration-response curves for agonists were obtained in a cumulative manner. Noradrenaline produced the greatest contraction of the nasal mucosa vasculature. NS-49 ((R)-(-)-3'-(2-amino-1-hydroxyethyl)-4'-fluoromethane sulfonanilide hydrochloride) and oxymetazoline worked as partial agonists. The intrinsic activities of NS-49 and oxymetazoline were 0.50+/-0.22 and 0.29+/-0.17, respectively, compared with noradrenaline (=1.00). Prazosin and the putative alpha(1A)-adrenoceptor antagonists WB-4101 (2-(2,6-dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane) and 5-methylurapidil antagonized the response to noradrenaline competitively (pA(2) for prazosin<9.0). Conversely, putative alpha(1B) and alpha(1D)-adrenoceptor antagonists (spiperone and BMY7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4, 5]decane-7,9-dione), respectively) did not antagonize competitively. These results suggest that the alpha(1A)-subtype is predominant and that the alpha(1L) (or alpha(1N)) subtype may also be present in the guinea pig nasal mucosa vasculature. Furthermore, NS-49 might prove to be a nasal mucosa vasoconstrictor, which will improve nasal obstruction.  相似文献   

8.
1. The present study attempted to characterize pharmacologically the subtypes of alpha-adrenoceptors mediating contractions in human umbilical vein (HUV). 2. HUV rings were mounted in isolated organ baths and cumulative concentration-response curves were constructed for the alpha-adrenoceptor agonists phenylephrine and adrenaline. Adrenaline was more potent than phenylephrine (pD2=7.29 and 6.04 respectively). 3. Isoproterenol exhibited no agonism on KCl pre-contracted HUV rings. Propranolol (1 microM) and rauwolscine (0.1 microM) did not affect the concentration-response curves to adrenaline. These results demonstrate the lack of involvement of functional beta-or alpha2-adrenoceptors in adrenaline-induced vasoconstriction. 4. The non subtype selective alpha1-adrenoceptor antagonist prazosin was evaluated on phenylephrine and adrenaline concentration-response curves. The effects of the competitive alpha1A and alpha1D-adrenoceptor antagonists, 5-methyl urapidil and BMY 7378 and the irreversible alpha1B selective compound chloroethylclonidine (CEC) were also evaluated on adrenaline concentration-response curves. 5. The potencies of prazosin against responses mediated by adrenaline (pA2= 10.87) and phenylephrine (pA2= 10.70) indicate the involvement of prazosin-sensitive functional alpha1-adrenoceptor subtype in vasoconstriction of the HUV. 6. The potencies of 5-methyl urapidil (pA2 = 6.70) and BMY 7378 (pA2= 7.34) were not consistent with the activation of an alpha1A- or alpha1D-adrenoceptor population. 7. Exposure to a relatively low CEC concentration (3 microM) abolished the maximum response to adrenaline suggesting that this response was mediated by an alpha1B-adrenoceptor subtype. 8. We conclude that HUV express a prazosin-sensitive functional alpha1-adrenoceptor resembling the alpha1B-subtype according with the low pA2 values for both 5-methyl urapidil and BMY 7378 and the high sensitivity to CEC.  相似文献   

9.
10.
1. The subtype of alpha 1-adrenoceptor mediating contractions of human prostate to noradrenaline was characterized by use of a range of competitive and non-competitive antagonists. 2. Contractions of the prostate to either noradrenaline (pD2 5.5), phenylephrine (pD2 5.1) or methoxamine (pD2 4.4) were unaltered by the presence of neuronal and extraneuronal uptake blockers. Noradrenaline was about 3 and 10 times more potent than phenylephrine and methoxamine respectively. Phenylephrine and methoxamine were partial agonists. 3. Pretreatment with the alkylating agent, chlorethylclonidine (10(-4M) shifted the noradrenaline concentration-contraction curve about 3 fold to the right and depressed the maximum response by 31%. This shift is 100 fold less than that previously shown to be produced by chlorethylclonidine under the same conditions on alpha 1B-adrenoceptor-mediated contractions. 4. Cumulative concentration-contraction curves for noradrenaline were competitively antagonized by WB 4101 (pA2 9.0), 5-methyl-urapidil (pA2 8.6), phentolamine (pA2 7.6), benoxathian (pA2 8.5), spiperone (pA2 7.3), indoramin (pA2 8.2) and BMY 7378 (pA2 6.6). These values correlated best with published pKi values for their displacement of [3H]-prazosin binding on membranes expressing cloned alpha 1c-adrenoceptors and poorly with values from cloned alpha 1b- and alpha 1d-adrenoceptors. 5. The good correlation between the functional data on the prostate and the binding data on the expressed alpha 1c-subtype clone for the affinities of the competitive antagonists suggests that they are the same subtype. As the expressed alpha 1c-adrenoceptor clone corresponds to the alpha 1A-adrenoceptor expressed in tissues, contraction of the human prostate to noradrenaline is therefore mediated by an alpha 1A-adrenoceptor.  相似文献   

11.
The potency of the putatively alpha(1B)-adrenoceptor selective drug, 1-[biphenyl-2-yloxy]-4-imino-4-piperidin-1-yl-butan-2-ol (AH11110A), to antagonize contraction upon stimulation of alpha(1A)-adrenoceptors in rat vas deferens and rat perfused kidney, alpha(1B)-adrenoceptors in guinea-pig spleen, mouse spleen and rabbit aorta, and alpha(1D)-adrenoceptors in rat aorta and pulmonary artery was evaluated and compared to that of a number of subtype-discriminating antagonists. N-[3-[4-(2-Methoxyphenyl)-1-piperazinyl]propyl]-3-methyl-4-oxo-2-phenyl-4H-1-benzopyran-8-carboxamide (Rec 15/2739) and (+/-)-1,3,5-trimethyl-6-[[3-[4-((2,3-dihydro-2-hydroxymethyl)-1,4-benzodioxin-5-yl)-1-piperazinyl]propyl]amino]-2,4(1H,3H)-pyrimidinedione (B8805-033) were confirmed as selective for alpha(1A)-adrenoceptors, 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione (BMY 7378), 8-[2-(1,4-benzodioxan-2-ylmethylamino)ethyl]-8-azaspiro[4.5]decane-7,9-dione (MDL 73005EF), and cystazosin were found to be selective for alpha(1D)-adrenoceptors, whereas spiperone was weakly selective for alpha(1B)-over alpha(1A)-adrenoceptors. However, from the functional affinity profile obtained for AH11110A at alpha(1A)-adrenoceptors (pA(2)=6.41 in rat vas deferens), alpha(1B)-adrenoceptors (pA(2)=5.40-6.54) and alpha(1D)-adrenoceptors (pA(2)=5.47-5.48), the affinity and presumed selectivity previously obtained for AH11110A in radioligand binding studies at native alpha(1B)- and cloned alpha(1b)-adrenoceptors (pK(i)=7.10-7.73) could not be confirmed. Additionally, AH11110A enhanced the general contractility of rat vas deferens, produced a bell-shaped dose-response curve of vasodilation in perfused rat kidney, and its antagonism in most other tissues was not simply competitive. The affinity of AH11110A for prejunctional alpha(2)-adrenoceptors in rabbit vas deferens (pA(2)=5.44) was not much lower than that displayed for alpha(1)-adrenoceptor subtypes, revealing that AH11110A, besides alpha(1)-adrenoceptors, also interacts with alpha(2)-adrenoceptors, and thus may be unsuitable for alpha-adrenoceptor subtype characterization, at least in smooth muscle containing functional studies.  相似文献   

12.
1. Effects of aging on alpha 1-adrenoceptor and S2-serotonin receptor mechanisms in rat aorta were studied. 2. In rat aorta, the potency (pD2 value) of norepinephrine or phenylephrine increased with age from 3 to 10 weeks, but decreased thereafter with age from 10 to 80 weeks. The affinity (pKA value) of norepinephrine or phenylephrine and of prazosin (pA2 value) did not alter with aging. 3. In rat vas deferens, the efficacy of norepinephrine and the maximum binding sites of [3H]prazosin increased with age from 3 to 18 weeks, but decreased thereafter with age from 18 to 60 weeks. The affinity (pKA value) of norepinephrine and the dissociation constant (KD value) of prazosin did not alter with aging. 4. In rat aorta, the potency (pD2 value) and affinity (pKA value) of serotonin, and affinity (pA2 value) of ketanserin did not alter with aging. 5. There is no significant difference between slopes of regression lines between a cytosolic free Ca2+ level [( Ca2+]i) and tension in the presence of phenylephrine in aorta strips from 10- and 60-week-old rats. 6. These results suggest that changes in alpha 1-adrenoceptor mechanisms with aging are due to changes in receptor density or receptor reserve, but not to changes in affinity of drugs to alpha 1-adrenoceptor or sensitivity of contractile system to Ca2+ mediated through alpha 1-adrenoceptor, and that S2-serotonin receptor mechanisms in rat aorta do not alter with aging.  相似文献   

13.
1 We have investigated the actions of the alpha(1D)-adrenoceptor selective antagonist BMY 7378 in comparison with yohimbine at alpha(1)- and alpha(2)-adrenoceptors. 2 In rat aorta (alpha(1D)-adrenoceptor), BMY 7378 (pA(2) of 8.67) was about 100 times more potent than yohimbine (pA(2) of 6.62) at antagonizing the contractile response to noradrenaline. 3 In human saphenous vein (alpha(2C)-adrenoceptor), BMY 7378 (pA(2) of 6.48) was approximately 10 times less potent than yohimbine (pA(2) of 7.56) at antagonizing the contractile response to noradrenaline. 4 In prostatic portions of rat vas deferens, BMY 7378 (10 mum) did not significantly affect the concentration-dependent inhibition of single pulse nerve stimulation-evoked contractions by xylazine (an action at prejunctional alpha(2D)-adrenoceptors). 5 In ligand-binding studies, BMY 7378 showed 10-fold selectivity for alpha(2C)-adrenoceptors (pK(i) of 6.54) over other alpha(2)-adrenoceptors. 6 It is concluded that BMY 7378, in addition to alpha(1D)-adrenoceptor selectivity in terms of alpha(1)-adrenoceptors, shows selectivity for alpha(2C)-adrenoceptors in terms of alpha(2)-adrenoceptors.  相似文献   

14.
In this work, we studied the in vivo and in vitro pharmacological effects of the novel compound QF0301B (2-[2-(N-4-o-methoxyphenyl-N-1-piperazinyl)ethyl]-1-tetralone) and compared with those of prazosin. In anaesthetized normotensive rats, both QF0301B and prazosin (0.1-0.2 mg/kg iv) caused a pronounced and prolonged fall in mean arterial blood pressure accompanied by bradycardia. Neither QF0301B nor prazosin (0.2 mg/kg iv) significantly modified the cardiovascular effects of either 5-hydroxytryptamine (serotonin, 5-HT, 75 microg/kg iv) or the selective alpha(2)-adrenoceptor agonist B-HT 920 (0.2 mg/kg iv), but both markedly inhibited the hypertensive effect of noradrenaline (5 microg/kg iv), a nonselective alpha-adrenergic receptor agonist. In isolated rubbed rat aorta rings, QF0301B and prazosin showed marked alpha(1)-adrenoceptor blocking activity, with pA(2) values of 9.00+/-0.12 and 9.75+/-0.14, respectively. In addition, QF0301B reversed and competitively antagonized the inhibitory action produced by clonidine in electrically stimulated rat vas deferens and inhibited the force and rate of contraction in rat isolated atria (pA(2)=5.91+/-0.43), competitively antagonized the contractile effect of 5-HT in rat aorta (pA(2)=6.75+/-0.06) and in rat stomach fundus (pA(2)=7.13+/-0.48) and the contractions induced by histamine in isolated guinea pig longitudinal ileal muscle (pA(2)=7.40+/-0.40). QF0301B showed noncompetitive low action in 5-HT(3), muscarinic and nicotinic receptors, or as Ca(2+) antagonist. These results indicate that a alpha(1)-adrenoceptor blocking lead has been obtained with a new chemical structure and interesting pharmacological properties, which only alpha(1)-adrenoceptor blocking activity seems to be responsible for its cardiovascular effects.  相似文献   

15.
16.
1. Pig nasal mucosal strips were incubated with alpha-adrenoceptor antagonists followed by alpha2-adrenoceptor agonist concentration-response curves. 2. Contractions elicited by the alpha2-adrenoceptor agonists BHT-920 (pD2 = 6.16 +/- 0.07), UK 14,304 (pD2 = 6.89 +/- 0.13) and PGE-6201204 (pD2 = 7.12 +/- 0.21) were blocked by the alpha2-adrenoceptor antagonist yohimbine (0.1 microm). In contrast, the alpha1-adrenoceptor antagonist prazosin (0.03 microm) had no effect on the BHT-920-, UK 14,304- and PGE-6201204-induced contractions, but blocked the contractile response to the alpha(1)-adrenoceptor agonist phenylephrine (pD2 = 5.38 +/- 0.04) and the mixed alpha1- and alpha2-adrenoceptor agonist oxymetazoline (pD(2) = 6.30 +/- 0.22). 3. The alpha2-adrenoceptor antagonist yohimbine (0.01-0.1 microm, pA2 = 8.04), alpha2B/C-adrenoceptor antagonist ARC 239 (10 microm, pK(b) = 6.33 +/- 0.21), alpha2A/C-adrenoceptor antagonist WB 4101 (0.3 microm, pK(b) = 8.01 +/- 0.24), alpha2A-adrenoceptor antagonists BRL44408 (0.1 microm, pK(b) = 6.82 +/- 0.34) and RX 821002 (0.1 microm, pKb = 8.31 +/- 0.35), alpha2C-adrenoceptor antagonists spiroxatrine (1 microm, pKb = 7.32 +/- 0.32), rauwolscine (0.1 microm, pKb = 8.16 +/- 0.14) and HV 723 (0.3 microm, pKb = 7.68 +/- 0.14) inhibited BHT-920-induced contractions in pig nasal mucosa. 4. The present antagonist potencies showed correlations with binding affinity estimates (pKi) obtained for these antagonists at the human recombinant alpha2A- and alpha2C-adrenoceptors (r = 0.78 and 0.83, respectively) and with binding affinity estimates (pKd) obtained in pig native alpha2A- and alpha2C-monoreceptor assays (r = 0.85 and 0.78, respectively). No correlation was observed for the alpha2B-subtype. 5. In conclusion, contractile responses to phenylephrine, BHT-920, UK 14,304, PGE-6201204 and oxymetazoline indicate that alpha1- and alpha2-adrenoceptors are present and mediate vasoconstriction in pig nasal mucosa. Furthermore, correlation analysis comparing antagonist potency in pig nasal mucosa with affinities for human recombinant alpha2-adrenoceptors and native pig alpha2-adrenoceptors suggest that alpha2A- and alpha2C-adrenoceptor subtypes constrict pig nasal mucosa vasculature.  相似文献   

17.
1. The mechanism by which neuropeptide Y (NPY) potentiates the vasoconstriction induced by alpha 1-adrenoceptor agonists was investigated in 3rd generation mesenteric arterioles of the rat. 2. At a maximally active concentration, nitrendipine (10(-6) M) displaced to the right the concentration-response curves to noradrenaline (pD2 decreased from 6.2 +/- 0.06 to 5.7 +/- 0.03) and phenylephrine (pD2 decreased from 5.6 +/- 0.03 to 5.3 +/- 0.03). Diltiazem (10(-5) M) also shifted to the right the concentration-response curve to phenylephrine (pD2 decreased from 6.0 +/- 0.06 to 5.5 +/- 0.04). In addition, the maximal response to phenylephrine was significantly decreased in the presence of either nitrendipine or diltiazem. 3. In the absence of a calcium channel blocking agent, NPY (100 nM) produced a leftward shift of the concentration-response curves to noradrenaline (pD2 increased from 6.2 +/- 0.06 to 6.5 +/- 0.05) and phenylephrine (pD2 increased from 5.6 +/- 0.03 to 6.0 +/- 0.06 and from 6.0 +/- 0.06 to 6.3 +/- 0.11). In the presence of either nitrendipine (10(-6) M) or diltiazem (10(-5) M), NPY (100 nM) did not alter the concentration-response curves to either noradrenaline or phenylephrine. 4. NPY was added to arterioles brought to the same level of tension (40% of the maximal contraction) either by phenylephrine alone (1.5 x 10(-6) M) or by a higher concentration of phenylephrine (3 x 10(-6) M) followed by the addition of prazosin (1.3 x 10(-9) M; a concentration at which it partially blocks alpha 1-adrenoceptors).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
To examine age-related alteration of the role of alpha1L-adrenoceptor in the urethra, young non-parous and aged parous female dogs were used. In a functional study, we evaluated phenylephrine-induced contraction and antagonistic effects of JTH-601, a newly synthesized alpha1-adrenoceptor antagonist, and prazosin; in a localization survey using autoradiographic technique, we investigated specific [3H]JTH-601 and [3H]tamsulosin binding. Concentration-response curves were obtained for phenylephrine (pD2 = 5.0-5.3). JTH-601 and prazosin antagonized this contraction with pA2 values of 8.2-8.3 and 8.0-8.1, respectively. Specific binding of both [3H]JTH-601 and [3H]tamsulosin were observed in the bladder neck and proximal section of urethra. There were no significant differences of the pD2, pA2, and radio ligand binding between young non-parous and aged parous dogs.  相似文献   

19.
1. The alpha 1-adrenoceptor subtype mediating contraction of the rat epididymal vas deferens and rat spleen has been investigated by use of alpha 1-adrenoceptor antagonists that have shown selectivity between the different cloned receptor subtypes. 2. In the rat epididymal vas deferens the potency of noradrenaline and phenylephrine was increased in the presence of neuronal and extra-neuronal uptake blockers, cocaine and beta-oestradiol, but these did not alter that of methoxamine. The order of potency of the agonists in the presence or absence of uptake blockade was noradrenaline > phenylephrine > methoxamine. In the rat spleen the potency of these agonists was not altered in the presence of cocaine and beta-oestradiol, and their order of potency was the same as in the vas deferens. 3. The non subtype selective alpha 1-adrenoceptor antagonist prazosin (up to 1 x 10(-7) M) was found to antagonize contractions to noradrenaline in the vas deferens competitively (pA2 9.2), but only in a non competitive manner in the spleen. Contractions to phenylephrine in the spleen however were competitively antagonized by prazosin (up to 1 x 10(-7) M) with a pA2 of 9.2. This suggests that there is an alpha 1- and a non alpha 1-adrenoceptor response to noradrenaline in the rat spleen. 4. Pretreatment with chlorethylclonidine (10(-4) M for 30 min) did not alter the noradrenaline contractions in the vas deferens, but contractions to noradrenaline and phenylephrine in the spleen were shifted 30 and 300 fold to the right of the control curve, respectively. This suggests that only the contractions in the spleen were mediated by alpha 1B-adrenoceptors. 5.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We investigated the alpha(1)-adrenoceptor subtype(s) involved in contraction of the isolated rat mesenteric artery by the use of the agonists noradrenaline (NA), phenylephrine (PHE), oxymetazoline (OXY), and methoxamine (MET), the competitive antagonists 8-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-8-azaspiro(4.5)decane-7,9-dione dihydrochloride (BMY 7378) and 5-methylurapidil, and the alkylating agent chloroethylclonidine (CEC). Agonists showed the potency order NA> or =PHE>OXY>MET; pA(2) values for 5-methylurapidil and BMY 7378 were 7.74+/-0.11 and 8.72+/-0.28, respectively, while Schild slopes were not different than unity; alpha(1)-adrenoceptor alkylation with CEC showed a drastic decrease in maximal agonists-induced contraction and a shift to the right of about 46-, 122-, 2-, and 15-fold higher than controls for NA, PHE, OXY, and MET, respectively. Data suggest that alpha(1D)-adrenoceptors predominate for contraction in mesenteric artery of the Wistar rat, with a second population of alpha(1A)-adrenoceptors responding at high agonist concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号