首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
With continued debate over the functional significance of adult neurogenesis, identifying an in vivo correlate of neurogenesis has become an important goal. Here we rely on the coupling between neurogenesis and angiogenesis and test whether MRI measurements of cerebral blood volume (CBV) provide an imaging correlate of neurogenesis. First, we used an MRI approach to generate CBV maps over time in the hippocampal formation of exercising mice. Among all hippocampal subregions, exercise was found to have a primary effect on dentate gyrus CBV, the only subregion that supports adult neurogenesis. Moreover, exercise-induced increases in dentate gyrus CBV were found to correlate with postmortem measurements of neurogenesis. Second, using similar MRI technologies, we generated CBV maps over time in the hippocampal formation of exercising humans. As in mice, exercise was found to have a primary effect on dentate gyrus CBV, and the CBV changes were found to selectively correlate with cardiopulmonary and cognitive function. Taken together, these findings show that dentate gyrus CBV provides an imaging correlate of exercise-induced neurogenesis and that exercise differentially targets the dentate gyrus, a hippocampal subregion important for memory and implicated in cognitive aging.  相似文献   

2.
Aoki H  Kimoto K  Hori N  Toyoda M 《Gerontology》2005,51(6):369-374
BACKGROUND: Recently it has become well accepted that neurogenesis occurs in the dentate gyrus of the hippocampus, a region important to memory and learning function in rodents and humans. Reports show that neurogenesis in the hippocampus is regulated by certain factors, such as exposure to an enriched environment, physical activity, aging and stress. The relationship between the change in the task of chewing as one oral environmental factor, and the mechanisms of hippocampal neuron generation are unclear. OBJECTIVE: We examined whether cell proliferation varies by chewing tasks with different food textures in the dentate gyrus of the rat hippocampus. METHODS: Wistar rats were divided into two groups, one was fed a solid diet, known as the hard-diet feeding group, and the soft-diet feeding group, which was fed a powder diet containing the same components as the solid one for 3, 7, 16 and 24 weeks. Thymidine analog 5-bromo-2'-deoxyuridine (BrdU) was used as a marker of cell proliferation within the dentate gyrus of the hippocampus and olfactory bulb. RESULTS: The results of this study indicated that the total number of BrdU-positive cells in the hippocampal dentate gyrus significantly decreased with aging and were significantly fewer in the soft-diet feeding group than in hard-diet feeding group in 7-, 16- and 24-week-old rats after the BrdU injection. The change of BrdU-positive cell expression between soft and hard diets in 3- and 24-week-old rats was not observed in the olfactory bulb. CONCLUSION: It has been suggested that cell proliferation in the dentate gyrus of the rat hippocampus is characteristically suppressed by soft diet feeding.  相似文献   

3.
Neurogenesis occurs within the adult dentate gyrus of the hippocampal formation and it has been proposed that the newly born neurons, recruited into the preexistent neuronal circuits, might be involved in hippocampal-dependent learning processes. Age-dependent spatial memory impairments have been related to an alteration in hippocampal plasticity. The aim of the current study was to examine whether cognitive functions in aged rats are quantitatively correlated with hippocampal neurogenesis. To this end, we took advantage of the existence of spontaneous individual differences observed in aged subjects in a hippocampal-dependent task, the water maze. We expected that the spatial memory capabilities of aged rats would be related to the levels of hippocampal neurogenesis. Old rats were trained in the water maze, and, 3 weeks after training, rats were injected with 5-bromo-2'-deoxyuridine (BrdUrd, 50 or 150 mg/kg) to label dividing cells. Cell proliferation was examined one day after the last BrdUrd injection, whereas cell survival and differentiation were determined 3 weeks later. It is shown that a quantitative relationship exists between learning and the number of newly generated neurons. Animals with preserved spatial memory, i.e., the aged-unimpaired rats, exhibited a higher level of cell proliferation and a higher number of new neurons in comparison with rats with spatial memory impairments, i.e., the aged-impaired rats. In conclusion, the extent of memory dysfunction in aged rats is quantitatively related to the hippocampal neurogenesis. These data reinforce the assumption that neurogenesis is involved in memory processes and aged-related cognitive alterations.  相似文献   

4.
Increased neurogenesis in dentate gyrus of long-lived Ames dwarf mice   总被引:8,自引:0,他引:8  
Sun LY  Evans MS  Hsieh J  Panici J  Bartke A 《Endocrinology》2005,146(3):1138-1144
Neurogenesis occurs throughout adult life in the dentate gyrus of mammalian hippocampus and has been suggested to play an important role in cognitive function. Multiple trophic factors including IGF-I have been demonstrated to regulate hippocampal neurogenesis. Ames dwarf mice live considerably longer than normal animals and maintain physiological function at youthful levels, including cognitive function, despite a deficiency of circulating GH and IGF-I. Here we show an increase in numbers of newly generated cells [bromodeoxyuridine (BrdU) positive] and newborn neurons (neuronal nuclear antigen and BrdU positive) in the dentate gyrus of adult dwarf mice compared with normal mice using BrdU labeling. Despite the profound suppression of hippocampal GH expression, hippocampal IGF-I protein levels are up-regulated and the corresponding mRNAs are as high in Ames dwarf as in normal mice. Our results suggest that local/hippocampal IGF-I expression may have induced the increase in hippocampal neurogenesis, and increased neurogenesis might contribute to the maintenance of youthful levels of cognitive function during aging in these long-lived animals.  相似文献   

5.
Running increases neurogenesis in the dentate gyrus of the hippocampus, a brain structure that is important for memory function. Consequently, spatial learning and long-term potentiation (LTP) were tested in groups of mice housed either with a running wheel (runners) or under standard conditions (controls). Mice were injected with bromodeoxyuridine to label dividing cells and trained in the Morris water maze. LTP was studied in the dentate gyrus and area CA1 in hippocampal slices from these mice. Running improved water maze performance, increased bromodeoxyuridine-positive cell numbers, and selectively enhanced dentate gyrus LTP. Our results indicate that physical activity can regulate hippocampal neurogenesis, synaptic plasticity, and learning.  相似文献   

6.
Although hippocampal neurogenesis has been described in many adult mammals, the functional impact of this process on physiology and behavior remains unclear. In the present study, we used two independent methods to ablate hippocampal neurogenesis and found that each procedure caused a limited behavioral deficit and a loss of synaptic plasticity within the dentate gyrus. Specifically, focal X irradiation of the hippocampus or genetic ablation of glial fibrillary acidic protein-positive neural progenitor cells impaired contextual fear conditioning but not cued conditioning. Hippocampal-dependent spatial learning tasks such as the Morris water maze and Y maze were unaffected. These findings show that adult-born neurons make a distinct contribution to some but not all hippocampal functions. In a parallel set of experiments, we show that long-term potentiation elicited in the dentate gyrus in the absence of GABA blockers requires the presence of new neurons, as it is eliminated by each of our ablation procedures. These data show that new hippocampal neurons can be preferentially recruited over mature granule cells in vitro and may provide a framework for how this small cell population can influence behavior.  相似文献   

7.
Exercise training increases size of hippocampus and improves memory   总被引:1,自引:0,他引:1  
The hippocampus shrinks in late adulthood, leading to impaired memory and increased risk for dementia. Hippocampal and medial temporal lobe volumes are larger in higher-fit adults, and physical activity training increases hippocampal perfusion, but the extent to which aerobic exercise training can modify hippocampal volume in late adulthood remains unknown. Here we show, in a randomized controlled trial with 120 older adults, that aerobic exercise training increases the size of the anterior hippocampus, leading to improvements in spatial memory. Exercise training increased hippocampal volume by 2%, effectively reversing age-related loss in volume by 1 to 2 y. We also demonstrate that increased hippocampal volume is associated with greater serum levels of BDNF, a mediator of neurogenesis in the dentate gyrus. Hippocampal volume declined in the control group, but higher preintervention fitness partially attenuated the decline, suggesting that fitness protects against volume loss. Caudate nucleus and thalamus volumes were unaffected by the intervention. These theoretically important findings indicate that aerobic exercise training is effective at reversing hippocampal volume loss in late adulthood, which is accompanied by improved memory function.  相似文献   

8.
We present evidence for continuous generation of neurons, oligodendrocytes, and astrocytes in the hippocampal dentate gyrus of adult macaque monkeys, using immunohistochemical double labeling for bromodeoxyuridine and cell-type-specific markers. We estimate that the relative rate of neurogenesis is approximately 10 times less than that reported in the adult rodent dentate gyrus. Nevertheless, the generation of these three cell types in a discreet brain region suggests that a multipotent neural stem cell may be retained in the adult primate hippocampus. This demonstration of adult neurogenesis in nonhuman Old World primates-with their phylogenetic proximity to humans, long life spans, and elaborate cognitive abilities-establishes the macaque as an unexcelled animal model to experimentally investigate issues of neurogenesis in humans and offers new insights into its significance in the adult brain.  相似文献   

9.
Although the functions of alpha-Ca(2+)/calmodulin-dependent kinase II (CaMKII) have been studied extensively, the role of betaCaMKII, a coconstituent of the CaMKII holoenzyme in synaptic plasticity, learning, and memory has not been examined in vivo. Here we produce a transgenic mouse line in which the inducible and reversible manipulation of betaCaMKII activity is restricted to the hippocampal dentate gyrus, the region where long-term potentiation was originally discovered. We demonstrate that betaCaMKII activity in the dentate gyrus selectively impaired long-term potentiation in the dentate perforant path, but not in the CA1 Schaffer collateral pathway. Although the transgenic mice showed normal 1-day memories, they were severely impaired in 10-day contextual fear memory. Systematic manipulations of dentate betaCaMKII activity during various distinct memory stages further reveal the initial day within the postlearning consolidation period as a critical time window that is highly sensitive to changes in betaCaMKII activity. This study provides evidence not only for the functional role of betaCaMKII in the dentate gyrus plasticity and hippocampal memory, but also for the notion that the mismatch between the actual learning pattern and reactivation patterns in the dentate gyrus circuit can underlie long-term memory consolidation.  相似文献   

10.
Background: Excessive alcohol intake produces structural and functional deficits in corticolimbic pathways that are thought to underlie cognitive deficits in the alcohol use disorders (AUDs). Animal models of binge alcohol administration support the direct link of high levels of alcohol consumption and neurotoxicity in the hippocampus and surrounding cortex. In contrast, voluntary wheel running enhances hippocampal neurogenesis and generally promotes the health of neurons. Methods: We investigated whether voluntary exercise prior to binge alcohol exposure could protect against alcohol‐induced cell loss. Female Long‐Evans rats exercised voluntarily for 14 days before undergoing 4 days of binge alcohol consumption. Brains were harvested immediately after the last dose of alcohol and examined for various histological markers of neurodegeneration, including both cell death (FluoroJade B) and cell birth (Ki67) markers. Results: Rats that exercised prior to binge exposure were significantly less behaviorally intoxicated, which was not a result of enhanced hepatic metabolism. Rats that exercised prior to binge alcohol consumption had reduced loss of dentate gyrus granule cells and fewer FluoroJade B positive cells in the dentate gyrus and associated entorhinal‐perirhinal cortex compared to nonexercisers. However, exercise did not protect against cell death in the piriform cortex nor protect against alcohol‐induced decreases in cell proliferation, evidenced by a similar alcohol‐induced reduction in Ki67 labeled cells between exercise and sedentary rats. Conclusions: We conclude that exercise can reduce behavioral sensitivity to ethanol intoxication and protect vulnerable brain areas from alcohol‐induced cell death. Exercise neuroprotection of alcohol‐induced brain damage has important implications in understanding the neurobiology of the AUDs as well as in developing novel treatment strategies.  相似文献   

11.
Hippocampal neuron loss is widely viewed as a hallmark of normal aging. Moreover, neuronal degeneration is thought to contribute directly to age-related deficits in learning and memory supported by the hippocampus. By taking advantage of improved methods for quantifying neuron number, the present study reports evidence challenging these long-standing concepts. The status of hippocampal-dependent spatial learning was evaluated in young and aged Long-Evans rats using the Morris water maze, and the total number of neurons in the principal cell layers of the dentate gyrus and hippocampus was quantified according to the optical fractionator technique. For each of the hippocampal fields, neuron number was preserved in the aged subjects as a group and in aged individuals with documented learning and memory deficits indicative of hippocampal dysfunction. The findings demonstrate that hippocampal neuronal degeneration is not an inevitable consequence of normal aging and that a loss of principal neurons in the hippocampus fails to account for age-related learning and memory impairment. The observed preservation of neuron number represents an essential foundation for identifying the neurobiological effects of hippocampal aging that account for cognitive decline.  相似文献   

12.
It is now well established that neurogenesis in the rodent subgranular zone of the hippocampal dentate gyrus continues throughout adulthood. Neuroblasts born in the dentate subgranular zone migrate into the granule cell layer, where they differentiate into neurons known as dentate granule cells. Suppression of neurogenesis by irradiation or genetic ablation has been shown to disrupt synaptic plasticity in the dentate gyrus and impair some forms of hippocampus-dependent learning and memory. Using a recently developed transgenic mouse model for suppressing neurogenesis, we sought to determine the long-term impact of ablating neurogenesis on synaptic plasticity in young-adult mice. Consistent with previous reports, we found that ablation of neurogenesis resulted in significant deficits in dentate gyrus long-term potentiation (LTP) when examined at a time proximal to the ablation. However, the observed deficits in LTP were not permanent. LTP in the dentate gyrus was restored within 6 wk and this recovery occurred in the complete absence of neurogenesis. The recovery in LTP was accompanied by prominent changes within the dentate gyrus, including an increase in the survival rate of newborn cells that were proliferating just before the ablation and a reduction in inhibitory input to the granule cells of the dentate gyrus. These findings suggest that prolonged suppression of neurogenesis in young-adult mice results in wide-ranging compensatory changes in the structure and dynamics of the dentate gyrus that function to restore plasticity.  相似文献   

13.
Reversible modulations of neuronal plasticity by VEGF   总被引:3,自引:0,他引:3  
Neurons, astrocytes, and blood vessels are organized in functional "neurovascular units" in which the vasculature can impact neuronal activity and, in turn, dynamically adjust to its change. Here we explored different mechanisms by which VEGF, a pleiotropic factor known to possess multiple activities vis-à-vis blood vessels and neurons, may affect adult neurogenesis and cognition. Conditional transgenic systems were used to reversibly overexpress VEGF or block endogenous VEGF in the hippocampus of adult mice. Importantly, this was done in settings that allowed the uncoupling of VEGF-promoted angiogenesis, neurogenesis, and memory. VEGF overexpression was found to augment all three processes, whereas VEGF blockade impaired memory without reducing hippocampal perfusion or neurogenesis. Pertinent to the general debate regarding the relative contribution of adult neurogenesis to memory, we found that memory gain by VEGF overexpression and memory impairment by VEGF blockade were already evident at early time points at which newly added neurons could not yet have become functional. Surprisingly, VEGF induction markedly increased in vivo long-term potentiation (LTP) responses in the dentate gyrus, and VEGF blockade completely abrogated LTP. Switching off ectopic VEGF production resulted in a return to a normal memory and LTP, indicating that ongoing VEGF is required to maintain increased plasticity. In summary, the study not only uncovered a surprising role for VEGF in neuronal plasticity, but also suggests that improved memory by VEGF is primarily a result of increasing plasticity of mature neurons rather than the contribution of newly added hippocampal neurons.  相似文献   

14.
Intracerebral hemorrhage (ICH) is a severe complication in diabetic patients. Currently, physical exercise is recommended as a behavioral intervention to promote functional recovery in brain diseases, including ICH. Recently, hyperglycemia is known to aggravate brain injury in experimental ICH. Here, we examined the effect of treadmill exercise on the intrastriatal hemorrhage-induced neuronal cell death and cell proliferation in the dentate gyrus of hyperglycemic rats. Hyperglycemia was induced by the intraperitoneal injection of 50 mg/kg streptozotocin (STZ). Intrastriatal hemorrhage was induced by the infusion of 0.2 U collagenase into the striatum using stereotaxic instrument. Rats in the exercise groups were forced to run on a treadmill for 30 min daily for 10 days. Apoptosis was assessed by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. Cell proliferation was assessed by the 5-bromo-2′-deoxyuridine (BrdU) immunohistochemistry. Our data showed that in rats started treadmill exercise 24 h after ICH induction, the size of lesion induced by hemorrhage and the number of apoptotic cells were decreased significantly. The number of proliferating cells in the dentate gyrus was significantly decreased in hyperglycemic rats. Treadmill exercise markedly enhanced cell proliferation in the dentate gyrus of hyperglycemic rats. The data suggest that treadmill exercise may provide therapeutic value to ICH patients with hyperglycemia by suppressing neuronal apoptosis and increasing cell proliferation.  相似文献   

15.
The role of the hippocampus in imagining the future has been of considerable interest. Preferential right hippocampal engagement is observed for imagined future events relative to remembered past events, and patients with hippocampal damage are impaired when imagining detailed future events. However, some patients with hippocampal damage are not impaired at imagining, suggesting that there are conditions in which the hippocampus may not be necessary for episodic simulation. Given the known hippocampal role in memory encoding, the hippocampal activity associated with imagining may reflect the encoding of simulations rather than event construction per se. The present functional (f)MRI study investigated this possibility. Participants imagined future events in response to person, place, and object cues. A postscan cued-recall test probing memory for detail sets classified future events as either successfully encoded or not. A contrast of successfully versus unsuccessfully encoded events revealed anterior and posterior right hippocampal clusters. When imagined events were successfully encoded, both anterior and posterior hippocampus showed common functional connectivity to a network including parahippocampal gyrus, medial parietal and cingulate cortex, and medial prefrontal cortex. However, when encoding was unsuccessful, only the anterior hippocampus, and not the posterior, exhibited this pattern of connectivity. These findings demonstrate that right hippocampal activity observed during future simulation may reflect the encoding of the simulations into memory. This function is not essential for constructing coherent scenarios and may explain why some patients with hippocampal damage are still able to imagine the future.  相似文献   

16.

Alzheimer's disease (AD) is a fastest growing neurodegenerative condition with no standard treatment. There are growing evidence about the beneficial effects of exercise in brain health promotion and slowing the cognitive decline. The aim of this study was to review the protective mechanisms of treadmill exercise in different models of rodent memory deficits. Online literature database, including PubMed-Medline, Scopus, Google scholar were searched from 2003 till 2017. Original article with English language were chosen according to following key words in the title: (exercise OR physical activity) AND (memory OR learning). Ninety studies were finally included in the qualitative synthesis. The results of these studies showed the protective effects of exercise on AD induced neurodegerative and neuroinflammatory process. Neuroperotective effects of exercise on the hippocampus seem to be increasing in immediate-early gene c-Fos expression in dentate gyrus; enhancing the Wnt3 expression and inhibiting glycogen synthase kinase-3β expression; increasing the 5-bro-mo-2'-deoxyridine-positive and doublecortin-positive cells (dentate gyrus); increasing the level of astrocytes glial fibrillary acidic protein and decrease in S100B protein, increasing in blood brain barrier integrity; prevention of oxidative stress injury, inducing morphological changes in astrocytes in the stratum radiatum of cornu ammonis 1(CA1) area; increase in cell proliferation and suppress apoptosis in dentate gyrus; increase in brain-derived neurotrophic factor and tropomyosin receptor kinase B expressions; enhancing the glycogen levels and normalizing the monocarboxylate transporter 2 expression.

  相似文献   

17.
Cranial radiation therapy is commonly used in the treatment of childhood cancers. It is associated with cognitive impairments tentatively linked to the hippocampus, a neurogenic region of the brain important in memory function and learning. Hippocampal neurogenesis is positively regulated by voluntary exercise, which is also known to improve hippocampal-dependent cognitive functions. In this work, we irradiated the brains of C57/BL6 mice on postnatal day 9 and evaluated both the acute effects of irradiation and the effects of voluntary running on hippocampal neurogenesis and behavior 3 months after irradiation. Voluntary running significantly restored precursor cell and neurogenesis levels after a clinically relevant, moderate dose of irradiation. We also found that irradiation perturbed the structural integration of immature neurons in the hippocampus and that this was reversed by voluntary exercise. Furthermore, irradiation-induced behavior alterations observed in the open-field test were ameliorated. Together, these results clearly demonstrate the usefulness of physical exercise for functional and structural recovery from radiation-induced injury to the juvenile brain, and they suggest that exercise should be evaluated in rehabilitation therapy of childhood cancer survivors.  相似文献   

18.
To explore the function of adult hippocampal neurogenesis, we ablated cell proliferation by using two independent and complementary methods: (i) a focal hippocampal irradiation and (ii) an inducible and reversible genetic elimination of neural progenitor cells. Previous studies using these methods found a weakening of contextual fear conditioning but no change in spatial reference memory, suggesting a supportive role for neurogenesis in some, but not all, hippocampal-dependent memory tasks. In the present study, we examined hippocampal-dependent and -independent working memory using different radial maze tasks. Surprisingly, ablating neurogenesis caused an improvement of hippocampal-dependent working memory when repetitive information was presented in a single day. These findings suggest that adult-born cells in the dentate gyrus have different, and in some cases, opposite roles in distinct types of memory.  相似文献   

19.
Age-related memory deficits have recently been associated with the impaired expression of d-serine-dependent synaptic plasticity in neuronal networks of the hippocampal CA1 area. However, whether such functional alterations are common to the entire hippocampus during aging remains unknown. Here, we found that d-serine was also required for the induction of N-methyl-D-aspartate receptor (NMDA-R)-dependent long-term potentiation (LTP) at perforant path-granule cell synapses of the dentate gyrus. LTP as well as isolated NMDA-R synaptic potentials were impaired in slices from aged rats, but in contrast to the CA1, this defect was not reversed by exogenous d-serine. The lower activation of the glycine-binding site by the endogenous co-agonist does not therefore appear to be a critical mechanism underlying age-related deficits in NMDA-R activation in the dentate gyrus. Instead, our data highlight the role of changes in presynaptic inputs as illustrated by the weaker responsiveness of afferent glutamatergic fibers, as well as changes in postsynaptic NMDA-R density. Thus, our study indicates that although NMDA-R-dependent mechanisms driving synaptic plasticity are quite similar between hippocampal circuits, they show regional differences in their susceptibility to aging, which could hamper the development of effective therapeutic strategies aimed at reducing cognitive aging.

Electronic supplementary material

The online version of this article (doi:10.1007/s11357-014-9698-0) contains supplementary material, which is available to authorized users.  相似文献   

20.
BACKGROUND: Chronic ethanol consumption is known to induce adaptive changes in the hippocampal glutamatergic transmission and alter NMDA receptor binding and subunit expression. Metabotropic glutamate (mGlu) receptors have been shown to function as modulators of neuronal excitability and can fine tune glutamatergic transmission. This study was aimed to determine whether chronic ethanol treatment could change the messenger RNA (mRNA) expression of mGlu receptors in the hippocampus. METHODS: Male Sprague Dawley rats were fed a Lieber-DeCarli liquid diet with 5% (w/v) ethanol or isocaloric amount of maltose for 2 months. Quantitative in situ hybridization was carried out using coronal brain sections through the hippocampus. RESULTS: The results revealed decreases in mRNA expression of several mGlu receptors in different subregions of the hippocampus. In the dentate gyrus, mGlu3 and mGlu5 receptor mRNA levels were significantly lower in the ethanol-treated rats than in the control rats. In the CA3 region, the mRNA expression of mGlu1, mGlu5, and mGlu7 receptors showed substantial decreases after ethanol exposure. The mGlu7 receptor mRNA levels were also declined in the CA1 region and the polymorph layer of the dentate gyrus. No changes were found in mRNA expression of mGlu2, mGlu4, and mGlu8 receptors. CONCLUSIONS: Considering the involvement of hippocampal mGlu receptors in learning and memory processes as well as in neurotoxicity and seizure production, the reduced expression of these receptors might contribute to ethanol withdrawal-induced seizures and also may play a role in cognitive deficits and brain damage caused by long-term ethanol consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号