首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transneuronal transport in the auditory system of the squirrel monkey and the arctic ground squirrel was studied after implantation of tritiated protein or glycoprotein precursors into the ampulla of a single semicircular duct. In both species, essentially the same pattern of transneuronal transport extended beyond the cochlear nuclei to the central nucleus of the inferior colliculus (CNIC), after survival periods ranging from 9 to 33 days. Animals displayed dense labeling over nearly all auditory receptors, nearly all portions of the spiral ganglion and throughout the cochlear nuclei (CN). Labeled fibers, mainly in the ventral acoustic stria, terminated over the ipsilateral lateral superior olive (LSO) and the lateral aspect of medial superior olive (MSO). Fibers continuing medially, decussated in an orderly manner, and terminated over the opposite medial nucleus of the trapezoid body (MNTB) and medial aspect of MSO. Labeled fibers projecting into the opposite lateral lemniscus (LL) terminated in the ventral nucleus of the lateral lemniscus (VNLL) and the CNIC. Fibers, but few terminals, were noted over the dorsal nucleus of the LL. The ipsilateral LL contained comparatively few labeled fibers, but sparse terminations occurred over portions of VNLL and CNIC. No transport of [3H]precursors was noted in the peripheral nuclei of the inferior colliculus or in the medial geneculate body on either side. Massive transport via the contralateral LL and the profuse terminals in the opposite CNIC suggested transneuronal transport via secondary and higher order auditory fibers. Although the largest number of fibers in the contralateral LL probably arose from the cochlear nuclei, higher order fibers also may have arisen from the ipsilateral LSO and the contralateral MSO and VNLL. Small numbers of fibers in both species descended from the region of the superior olivary complex (SOC) ventral to the facial motor nucleus. In the ground squirrel, scant auditory projections were traced into the opposite cochlear nuclei. Tritiated precursors in the endolymph passed most readily from labyrinth to cochlea, and transneuronal transport was more extensive in the auditory pathways than in the vestibular system at comparable times. Centrally transported [3H]fucose was cleared more promptly than [3H]proline in monkeys.  相似文献   

2.
Attempts were made to determine the afferent and efferent connections of the medial (MVN), inferior (IVN) and lateral (LVN) vestibular nuclei (VN) in the cat and monkey using retrograde and anterograde axoplasmic transport technics. Injections of HRP and [3H]amino acids were made selectively into MVN, IVN and LVN and into: (1) MVN and IVN, (2) LVN and IVN and (3) all 4 VN. Contralateral afferents to MVN arise from (1) the nuclei prepositus (NPP) and intercalatus (NIC), (2) all parts of MVN and cell group 'y' and (3) parts of the superior vestibular nucleus (SVN), IVN and the fastigial nucleus (FN). Ipsilateral projections to MVN arise from: (1) a central band of the flocculus and the nodulus and uvula, (2) the interstitial nucleus of Cajal (INC), and (3) visceral nuclei of the oculomotor nuclear complex (OMC). Efferent projections of MVN are to: (1) the ipsilateral supraspinal nucleus (SSN), and (2) the contralateral central cervical nucleus (CCN), MVN, SVN, cell group 'y', the rostroventral region of LVN, the trochlear nucleus (TN) and the INC. Projections to the abducens nuclei (AN) and the OMC are bilateral. Some ascending fibers in the cat cross within the OMC. In the monkey fibers from MVN end in a central band of the ipsilateral flocculus. Afferents to IVN arise ipsilaterally from SVN, the nodulus, the uvula and the anterior lobe vermis. Contralateral afferents arise from: (1) parts of CCN, MVN, SVN, IVN and cell group 'y' and (2) the central third of the FN. IVN receives bilateral projections from the perihypoglossal nuclei (PH) and the visceral nuclei of the OMC. Efferents from IVN project: (1) ipsilaterally to nucleus beta of the inferior olive, (2) contralaterally to parts of MVN, SVN and cell group 'y' and (3) bilaterally to the paramedian reticular nuclei. No commissural fibers interconnect cell groups 'f' and 'x'. Ascending fibers from IVN terminate contralaterally in the TN and the OMC. In the monkey fibers from IVN terminate in the ipsilateral nodulus, uvula and anterior lobe vermis; no fibers project to FN in either the cat or the monkey. Afferents to the LVN arise primarily from the ipsilateral anterior lobe vermis and bilaterally from rostral parts of the FN. No commissural fibers interconnect the LVN. Projections of the LVN are primarily to spinal cord via the vestibulospinal tract (VST); collaterals of the VST terminate in the lateral reticular nucleus (LRN). Ascending uncrossed projections from LVN in the cat terminate in the medial rectus subdivision of the OMC.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Attempts were made to determine brainstem and cerebellar afferent and efferent projections of the superior vestibular nucleus (SVN) and cell group 'y' ('y') in the cat using axoplasmic tracers. Injections of HRP, WGA-HRP and [3H]amino acids were made into SVN and 'y' using two different infratentorial stereotaxic approaches. Controls were provided by unilateral HRP injections involving the oculomotor nuclear complex (OMC), the interstitial nucleus of Cajal (INC) and the deep cerebellar nuclei (DCN). Large injections of SVN almost invariably involved 'y' and dorsal parts of the lateral vestibular nucleus (LVN). Smaller injections involved central and ventral peripheral parts of SVN. Discrete injections of 'y' involved small dorsal parts of LVN. Afferents to SVN are derived mainly from the vestibular nuclei (VN) and parts of the vestibulocerebellum. SVN receives afferents: bilaterally from caudal portions of the medial (MVN) and inferior (IVN) vestibular nuclei and 'y'; contralaterally from ventral and lateral parts of SVN and rostral MVN; and ipsilaterally from the nodulus, uvula and medial parts of the flocculus. Purkinje cells (PC) in medial parts of the flocculus project to central regions of SVN, while PC in the nodulus and uvula appear to project mainly to dorsal peripheral regions of SVN. SVN receives sparse projections from the ipsilateral INC, the contralateral central cervical nucleus (CCN) and virtually no projections from the reticular formation. SVN projects via the medial longitudinal fasciculus (MLF) to the ipsilateral trochlear nucleus (TN), the inferior rectus subdivision of the OMC, the INC, the nucleus of Darkschewitsch (ND) and the rostral interstitial nucleus of the MLF (RiMLF). Contralateral projections of SVN cross in the ventral tegmentum caudal to most of the decussating fibers of the superior cerebellar peduncle and terminate in the dorsal rim of the TN and the superior rectus and inferior oblique subdivisions of the OMC; sparse crossed projections enter the INC and the ND. Cerebellar projections of SVN end as mossy fibers in the ipsilateral nodulus, uvula and in medial parts of the flocculus bilaterally. Retrograde transport from unilateral injections of the OMC indicate that afferents from SVN arise ipsilaterally from central and dorsal regions and contralaterally from dorsal peripheral regions. Ventral cell group 'y' receives small numbers of afferent fibers from caudal central parts of the ipsilateral flocculus. No fibers from ventral 'y' could be traced to other vestibular nuclei, the OMC or the cerebellum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Attempts were made to determine the central projections of ganglion cells innervating individual semicircular ducts in the monkey by implanting or injecting tritiated amino acids (leucine and/or proline), or horseradish peroxidase (HRP), selectively into a single ampulla. Central transport via the vestibular ganglion in animals receiving isotope implants or injections fell into three categories: (1) transport from ganglion cells innervating all receptive elements of the labyrinth, (2) transport from ganglion cells innervating the three semicircular ducts, and (3) transport from cells of the inferior vestibular ganglion innervating the posterior semicircular duct. Transneuronal transport of isotope was observed in secondary vestibular fibers in animals where proline was used and survival exceeded 12 days. Transneuronal labeling of secondary auditory fibers was independent of the [3H]amino acid used, and occurred with survivals of 10 or more days. HRP implanted into the ampulla of the lateral semicircular duct in several animals produced retrograde transport to efferent vestibular and cochlear neurons, but did not result in transganglionic labeling of primary vestibular or auditory fibers.Primary vestibular fibers terminate throughout the superior (SVN) and medial vestibular nuclei (MVN). Within SVN, terminals are most pronounced in its central large-celled portion, but extend into peripheral parts of the nucleus, except for a small medial area near its junction with the oral pole of MVN. Primary projections to MVN are homogenously distributed throughout the nucleus excepting a small circular area of sparse terminals along its ventral margin. Primary vestibular afferents terminate mainly in rostral and caudal portions of the inferior vestibular nucleus (IVN), but do not reach cell group ‘f’. Projections to the lateral vestibular nucleus (LVN) are restricted to its ventral part. Primary projections to the accessory vestibular nuclei reach the interstitial nucleus of the vestibular nerve (NIVN) and cell group ‘y’. Fibers project beyond the vestibular nuclei (VN) to terminate ipsilaterally in the accessory cuneate nucleus (ACN), the subtrigeminal lateral reticular nucleus (SLRN), and well-defined portions of the reticular formation (RF). Projections to SVN and MVN are derived primarily from ganglion cells innervating the semicircular ducts, while projections to caudal IVN, cell group ‘y’ and ACN are related mainly to macular portions of the vestibular ganglion. NIVN receives both macular and duct afferents. Posterior duct afferents terminate in medial portions of SVN, in rostrolateral portions of MVN, and in rostral IVN.Transneuronal transport of isotope increases the volume of terminal label in the ipsilateral VN, but not in dorsal LVN, or cell groups ‘f’ or ‘x’. The quality of transneuronal transport in secondary vestibular fibers is dependent upon: (1) survival time, (2) proximity to the VN, and (3) the excitatory or inhibitory nature of the projection.Primary vestibulocerebellar fibers terminate heavily in the ipsilateral nodulus and ventral uvula. Lesser projections reach the flocculus, deep folia of vermal lobules V and VI, and the lingula. Primary vestibulocerebellar projections terminate as mossy fiber rosettes in the granular layer of these cortical areas. No primary vestibular fibers terminate in the primate fastigial nuclei.  相似文献   

5.
Comparisons were made of projections from the vestibular nuclei (VN) and abducens internuclear neurons (AIN) to cell group A of the medial rectus subdivision (MRS) of the oculomotor nuclear complex. Cell group A, the major component of the MRS, receives projections only from the ipsilateral VN and the contralateral AIN. Neither ipsilateral vestibular projections to cell group A, arising from the medial vestibular nucleus, nor projections from MVN to the opposite abducens nucleus, match the massive projection of AIN to the MRS.  相似文献   

6.
The morphology of 35 vestibular neurons whose firing rate was related to vertical eye movements was studied by injection of horseradish peroxidase intracellularly into physiologically identified vestibular axons in alert squirrel monkeys. The intracellularly injected cells were readily classified into four main groups. One group of cells, down position-vestibular-pause neurons (down PVPs; N = 12), increased their firing rate during downward eye positions, paused during saccades, and were located in the medial vestibular nucleus (MV) and the adjacent ventrolateral vestibular nucleus (VLV). They had axons that crossed the midline and ascended in the medial longitudinal fasciculus (MLF) to terminate in the trochlear nucleus, the lateral aspect of the caudal oculomotor nucleus, and the dorsal aspect of the rostral oculomotor nucleus. A second group of cells (N = 15) were also located in the MV and VLV, but increased their firing rate during upward eye positions, and paused during saccades. These cells had axons that crossed the midline and ascended in the contralateral MLF to terminate in the medial aspect of the oculomotor nucleus. A third group of cells (N = 4) were located in the superior vestibular nucleus, generated bursts of spikes during upward saccades, and increased their tonic firing rate during upward eye positions. These cells had axons that ascended laterally to the ipsilateral MLF to terminate in regions of the trochlear and oculomotor nuclei similar to those in which down PVPs terminated. A fourth group of cells (N = 4), located in the VLV, had axons that projected to the spinal cord, although they had firing rates that were significantly correlated with vertical eye position. Electrical stimulation of the vestibular nerve evoked spikes at monosynaptic latencies in each of the above classes of cells, six of which were injected with horseradish peroxidase. Each group of cells had collateral projections to other areas of the brainstem. Some of the neurons that projected to the contralateral trochlear and oculomotor nuclei had collaterals that crossed the midline to terminate in the oculomotor nucleus ipsilateral to the soma, and some gave rise to small collaterals that terminated in the abducens nucleus. Other areas of the brainstem that received collateral inputs from neurons projecting to oculomotor and trochlear nuclei included the interstitial nucleus of Cajal, the caudal part of the dorsal raphe nucleus, the nucleus raphe obscurus, Roller's nucleus, the intermediate and caudal interstitial nuclei of the MLF, and the nucleus prepositus.  相似文献   

7.
Attempts were made to co-define afferents of the oculomotor nuclear complex (OMC) and their putative neurotransmitters in the squirrel monkey. Wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) and wheat germ agglutinin conjugated to enzymatically inactive HRP and coupled to colloidal gold (WGAapoHRP-AU) were used as retrograde tracers in combination with immunocytochemical methods. Primarily unilateral injections were made into portions of the OMC. Stabilized tetramethylbenzidine (TMB) and silver enhanced sections were immunoreacted with antisera for choline acetyltransferase (ChAT), glutamate (GLU), aspartate (ASP), aminobutyric acid (GABA), serotonin (5-HT) and cholecystokinin (CCK). Moderate numbers of ChAT-IR neurons in caudal regions of the medial vestibular nuclei (MVN) projected to the OMC. Tracer labeled ChAT-IR cells in the MVN projected ipsilaterally to the ventral nucleus (medial rectus subdivision) of the OMC and bilaterally with contralateral dominance to other OMC subdivisions. Cholinergic neurons in the dorsal paragigantocellular reticular nucleus (DPG) projected bilaterally to each half of the OMC. Cells of the DPG, considered to contain inhibitory burst neurons impinging upon the contralateral abducens nucleus, were shown to project to virtually all subdivision of the OMC. Abducens motor neurons were ChAT-IR, but abducens internuclear neurons were not. Cells in caudal parts of the nucleus prepositus (NPP) projecting to the ipsilateral ventral nucleus of the OMC were not ChAT-positive; ChAT-IR cells in rostral NPP did not project to the OMC. Unilateral OMC injections labeled cells ipsilaterally in the RiMLF, contralaterally in the pretectal olivary nucleus, the interstitial nucleus of Cajal and the infracerebellar nucleus and bilaterally in the superior vestibular nucleus, none of which were ChAT-IR. A small number of cells in the locus ceruleus projected ipsilaterally to the OMC. Although large numbers of vestibular neurons were GLU-IR and ASP-IR, only a few tracer labeled ASP-IR neurons in the contralateral MVN projected to the OMC. No other GLU- or ASP-positive neurons were immunoreactive for GABA, 5-HT or CCK, but cells of the lateral vestibular nucleus were surrounded by CCK-IR fibers and terminals.  相似文献   

8.
The morphology of horizontal canal second-order type I neurons was investigated by intracellular staining with horseradish peroxidase (HRP) and three-dimensional reconstruction of the cell bodies and axons. Axons penetrated in and around the abducens nucleus were identified as originating from type I neurons by their characteristic firing pattern to horizontal rotation and by their monosynaptic response to stimulation of the ipsilateral vestibular nerve. A total of 47 type I neurons were stained. The cell bodies were located in the rostral portion of the medial vestibular nucleus (MVN) and were large or medium sized and had rather elongated shapes and rich dendritic arborizations. The neurons were divided into two groups: those which projected to the contralateral side of the brain stem (type Ic neurons) and those which projected to the ipsilateral side of the brainstem (type Ii neurons). All stem axons of type Ic neurons crossed the midline and bifurcated into rostral and caudal branches in the contralateral medial longitudinal fasciculus (MLF). Two or three collaterals arising close to this bifurcation distributed terminals in a relatively wide area in the contralateral abducens nucleus. Some of these collaterals projected further to the contralateral MVN and thus are vestibular commissural axons. Some of the rostral and caudal stem axons had collaterals which projected to the contralateral nucleus prepositus hypoglossi (PH), nucleus raphe pontis, or medullary reticular formation. There were at least six classes of type Ii neurons, most of which distributed to a relatively limited region in the ipsilateral abducens nucleus and they were categorized according to their future projections into the following categories: A) no further collaterals beyond the abducens nucleus; B) collaterals in the abducens nucleus and a branch descending and terminating in ipsilateral PH; C) projected to the abducens nucleus, PH, and an area rostral to the abducens nucleus; D) projected to the abducens nucleus and to ipsilateral reticular formation rostral and caudal to the abducens nucleus; E) collaterals in the abducens nucleus and a thick caudal stem axon entering and descending in ipsilateral MLF; F) a thick caudal stem axon entering and descending in ipsilateral MLF and no collaterals to the abducens nucleus. Some type Ii neurons also had recurrent collaterals which projected back to the ipsilateral MVN; these may inhibit type II neurons during ipsilateral rotation.  相似文献   

9.
The anatomical characteristics of vestibular neurons, which are involved in controlling the horizontal vestibulo-ocular reflex, were studied by injecting horseradish peroxidase (HRP) into neurons whose response during spontaneous eye movements had been characterized in alert squirrel monkeys. Most of the vestibular neurons injected with HRP that had axons projecting to the abducens nucleus or the medial rectus subdivision of the oculomotor nucleus had discharge rates related to eye position and eye velocity. Three morphological types of cells were injected whose firing rates were related to horizontal eye movements. Two of the cell types were located in the ventral lateral vestibular nucleus and the ventral part of the medial vestibular nucleus (MV). These vestibular neurons could be activated at monosynaptic latencies following electrical stimulation of the vestibular nerve; increased their firing rate when the eye moved in the direction contralateral to the soma; had tonic firing rates that increased when the eye was held in contralateral positions; and had a pause in their firing rate during saccadic eye movements in the ipsilateral or vertical directions. Eleven of the above cells had axons that arborized exclusively on the contralateral side of the brainstem, terminating in the contralateral abducens nucleus, the dorsal paramedian pontine reticular formation, the prepositus nucleus, medial vestibular nucleus, dorsal medullary reticular formation, caudal interstitial nucleus of the medial longitudinal fasciculus, and raphé obscurus. Eight of the cells had axons that projected rostrally in the ascending tract of Deiters and arborized exclusively on the ipsilateral side of the brainstem, terminating in the ipsilateral medial rectus subdivision of the oculomotor nucleus and, in some cases, the dorsal paramedian pontine reticular formation or the caudal interstitial nucleus of the medial longitudinal fasciculus. Two MV neurons were injected that had discharge rates related to ipsilateral eye position, generated bursts of spikes during saccades in the ipsilateral direction, and paused during saccades in the contralateral direction. The axons of those cells arborized ipsilaterally, and terminated in the ipsilateral abducens nucleus, MV, prepositus nucleus, and the dorsal medullary reticular formation. The morphology of vestibular neurons that projected to the abducens nucleus whose discharge rate was not related to eye movements, or was related primarily to vertical eye movements, is also briefly presented.  相似文献   

10.
Electrophysiological and intracellular labelling studies in the cat have identified a population of saccadic burst neurons in the medullary reticular formation that have an inhibitory, monosynaptic projection to the contralateral abducens nucleus. In the present study, intraaxonal recording and injection of horseradish peroxidase were used to identify and characterize the corresponding population of inhibitory burst neurons (IBNs) in the alert squirrel monkey. Squirrel monkey IBNs are located in the reticular formation ventral and caudal to the abducens nucleus and project contralaterally to the abducens. Additional contralateral projections are present to the vestibular nuclei, the nucleus prepositus, and the pontine and medullary reticular formation rostral and caudal to the abducens. All neurons fire a burst of spikes during saccades and are silent during fixation. In most neurons the burst begins 5-15 msec before saccade onset. The number of spikes in the saccadic burst is linearly related to the amplitude of the component of the saccade in the neuron's on-direction. Linear relationships also exist between burst duration and saccade duration and between firing frequency and instantaneous eye velocity. For all neurons, the on-direction is in the ipsilateral hemifield, with a vertical component that may be either upward or downward. Neurons with projections to the vertically related descending and superior vestibular nuclei tend to have on-directions with larger vertical components than neurons that lack these projections. These results, together with those on excitatory burst neurons reported in the preceding paper, demonstrate a reciprocal organization of burst neuron input to the abducens in the monkey similar to that found in the cat and indicate a major role for these neurons in generating the oculomotor activity in motoneurons as well as in other classes of premotor neurons.  相似文献   

11.
Using an antibody against GABA conjugated to bovine serum albumin, GABA-like immunoreactivity was measured in vestibular nuclei and adjacent structures in normal and unilaterally vestibular-deafferentiated squirrel monkeys. Three and 6 days after end-organ ablation, GABA levels increased in lateral vestibular nucleus (LVN) on the side ipsilateral to the lesion, while GABA decreased in LVN on the side contralateral to the lesion. GABA levels in ventral cochlear nucleus or inferior cerebellar peduncle did not differ from normal in either case.  相似文献   

12.
Commissural and ipsilateral intrinsic connections of the vestibular nuclear complex of cats were investigated using retrograde transport of horseradish peroxidase (HRP). HRP was microiontophoretically injected into limited areas (0.2-0.5 mm in diameter) of the respective vestibular nuclei. In the commissural connections, major fibers were observed between the bilateral superior vestibular nuclei (SVN) and between the bilateral descending vestibular nuclei (DVN); a moderate number of fibers was found from the medial vestibular nucleus (MVN) to the contralateral MVN, SVN and lateral vestibular nucleus (LVN) and from the DVN to the contralateral LVN. Minor commissural connections were detected between the bilateral LVN. The ipsilateral internuclear connections of the vestibular nuclear complex were: (1) from the LVN, MVN and DVN to the SVN, (2) from the MVN and DVN to the LVN and (3) from the MVN to the DVN. Minor ipsilateral intrinsic connections were found from the SVN to the MVN.  相似文献   

13.
Afferent connections of the oculomotor nucleus in the chick   总被引:1,自引:0,他引:1  
Horseradish peroxidase was injected into the oculomotor nucleus of the chick in order to locate and characterize the neurons projecting to this nucleus. In the rostral mesencephalon, 120-180 neurons were labelled in the medial area of the ipsilateral nucleus campi Foreli; 190-220 in the interstitial nucleus of Cajal (most of them contralateral); and smaller numbers bilaterally in the medial mesencephalic reticular formation, the nucleus of the basal optic root complex, and the central grey matter. More caudally, numerous neurons were labelled in the contralateral abducens nucleus and the vestibular complex and a few in the nucleus reticularis pontis caudalis. Labelled neurons appeared ipsilaterally in the caudal region of the nucleus vestibularis superior and in the rostral tip of the nucleus descendens just lateral to the tractus lamino-olivaris. In the contralateral vestibular complex, a group of labelled cells observed in the dorsolateral area may be homologous to the mammalian cell group Y. At the level of the contralateral abducens nucleus, the most numerous group of cells (625-700) projecting to the oculomotor nucleus formed a lateromedial fringe that affected the nucleus tangentialis, the rostral tip of the nucleus descendens, and the ventrolateral region of the nucleus medialis. Only a few labelled neurons were seen in the contralateral nucleus vestibularis superior, the ipsilateral cell group A, and the ipsilateral nucleus vestibularis medialis.  相似文献   

14.
Experimental evidence suggests that brain stem lesions producing paralysis of lateral gaze and dissociation of conjugate horizontal eye movements have certain common features. Both of these disturbances involve abducens internuclear neurons (Abd IN) or their projections. Attempts were made to determine the course and terminal distribution of Abd IN in the monkey by autoradiographic techniques. Tritiated amino acids injected in the abducens nucleus (Abd N) labeled: (1) root fibers ipsilaterally, and (2) fibers that ascended in medial parts of the contralateral medial longitudinal fasciculus (MLF). In the opposite oculomotor complex (OMC) silver grains were profuse over the ventral nucleus (VN, medial rectus muscle) and patchy over caudal parts of the dorsal nucleus (DN, inferior rectus muscle). Labeling of cells in the reticular formation nucleus to Abd N resulted in transport ipsilaterally, outside the MLF, to the rostral interstitial nucleus of the MLF (RiMLF), a cell group considered to be concerned with vertical eye movements. Bilateral labeling of Abd N and cells of the nucleus prepositus (NPP) resulted in bilateral: (1) transport of isotope via root fibers and the MLF, and (2) selective distribution of silver grains in the OMC. Bilateral silver grain distribution in the OMC suggested profuse terminations in VN, patchy terminations in DN and vertical, linear terminations in caudal parts of the medial nucleus (MN, superior rectus muscle). Comparisons with more discrete unilateral labeling of cells in Abd N suggested that cells of the NPP project selectively to terminations in MN, and may be related to upward eye movements. Two conclusions were drawn: (1) The paresis of ocular adduction which occurs in both anterior internuclear ophthalmophlegia and in paralysis of lateral gaze results from involvement of Abd IN or their ascending projections, and (2) the NPP appears to project selectively to parts of MN of the OMC, a cell group said to provide crossed innervation for the superior rectus muscle.  相似文献   

15.
In order to describe the central relations of both the afferent and efferent components of the VIIIth cranial nerve in one reptile, the methods of anterograde and retrograde axonal transport and anterograde degeneration were used to study the vestibular and cochlear projections and the efferent system of this nerve in Varanus exanthematicus. On the basis of cresyl violet and Klüver-Barrera staining, five vestibular nuclei, four cochlear nuclei, and two clusters of small cells which could not be designated as strictly auditory or vestibular are distinguished. The vestibular nuclei include the nucleus dorsolateralis, nucleus ventrolateralis, nucleus tangentialis, nucleus ventromedialis, and nucleus descendens. The well-developed cochlear nuclear complex includes the nucleus angularis, nuclei magnocellulares medialis and lateralis, and nucleus laminaris. The two cell clusters are located dorsolaterally in the brainstem just ventrolateral to the acoustic tubercle. The primary afferent vestibular fibers coursing in the anterior VIIIth nerve root distribute to the ventral portions of all vestibular nuclei except nucleus ventromedialis, whereas the fibers coursing in the posterior root project to the dorsal portions of these nuclei. In nucleus ventromedialis fibers of both roots do not segregate into ventral and dorsal portions. Other targets of the vestibular fibers are the two cell clusters, the granular layer of the ipsilateral cerebellum, the reticular formation, and the descending trigeminal tract and its nucleus. The primary cochlear fibers coursing in the posterior root terminate in nucleus angularis, nuclei magnocellulares medialis and lateralis, and the inner cell strand of nucleus laminaris. The efferent system is, ipsi- and contralaterally in the brainstem, composed of ventral and dorsal cell groups that extend from the level of the principal abducens nucleus caudally where they overlap with the facial motor nucleus. The fibers, which originate from the contralaterally located efferent cells, course beneath the IVth ventricle to exit the brainstem on the ipsilateral side.  相似文献   

16.
Internuclear neurons in the ocular motor system of frogs.   总被引:1,自引:0,他引:1  
Medial and lateral rectus motoneurons of frogs were localized after retrograde labeling with horseradish peroxidase (HRP) injected in the medial rectus muscle or applied on the cut end of the abducens nerve. Coordinates of these cell columns were used as target areas for the injection of small amounts of HRP (20-60 nl) and [3H]leucine (25-40 nl) and as search areas for retrogradely and anterogradely labeled internuclear neurons (INT) in in vivo and in vitro experiments. HRP injection in the medial rectus subdivision of the oculomotor nucleus (n = 6) resulted in retrograde labeling of cell bodies in the contralateral principal abducens nucleus. On the average about 16 cells per animal were found. Somatic diameters were about 13.5 +/- 2.8 microns (n = 32). The number and the size of these abducens internuclear neurons (AbINT) are smaller than those of lateral rectus motoneurons (n = 75; diameter: 19 +/- 3.2 microns). A crossed projection of AbINT to medial rectus motoneurons in the contralateral oculomotor nucleus is further supported by autoradiographic results. Following injection of [3H]leucine into the abducens nucleus, a high density of silver grains was visible within the contralateral oculomotor nucleus, mainly in the caudal part of the oculomotor nucleus, where medial rectus motoneurons are located. Injection of [3H]leucine in vivo (n = 4) and in vitro (n = 3) resulted in a similar high density of silver grains within the contralateral oculomotor nucleus, but the background level of silver grains was significantly higher after in vitro (264 +/- 38/2,500 microns2) than after in vivo injections (195 +/- 17/2,500 microns2). HRP injection in the principal abducens nucleus (n = 9) resulted in retrograde labeling of cell bodies in the medial rectus subdivisions of the bilateral oculomotor nuclei. Ipsilateral projections predominated, with about 10 (+/- 8) labeled cells over contralateral projections (about 3 +/- 2). Average diameters of these oculomotor internuclear neurons (OcINT) were again smaller (10.8 +/- 2 microns; n = 18) than those of medial rectus motoneurons (14.4 +/- 3 microns; n = 52). In addition, retrogradely labeled cells were consistently encountered in the bilateral vestibular nuclei, the cerebellar nuclei, the dorsal brainstem caudal to the abducens nuclei, and ipsilaterally in the pretectum. Most of the vestibular neurons were located in the rostral part of the vestibular nuclear complex. These neurons might constitute part of the three-neuronal arc of the vestibulo-ocular reflex in the frog. Labeled cells in the pretectum were restricted to the ipsilateral posterior thalamic nucleus (P).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Origins of vestibular efferent fibers to ampulla of semicircular canals in cats were examined using retrograde transport of horseradish peroxidase. The anterior canal was innervated from bilateral parvocellular reticular nucleus (PCRN), contralateral gigantocellular reticular nucleus and ipsilateral lateral reticular nucleus (LRN); the lateral canal, from ipsilateral PCRN and LRN as well as ipsilateral lateral vestibular nucleus; and the posterior canal, from bilateral PCRN and ipsilateral medial and lateral vestibular nuclei.  相似文献   

18.
A mixture of tritiated proline and fucose was injected into the endolymph of one of the membranous labyrinths of each of 5 white king pigeons (Columba livia). The membranous labyrinth was resealed and the animals were allowed to survive for 15 days. Brains and upper parts of the spinal cords were sectioned and processed by standard autoradiographic procedures. Clear labeling was noted in structures usually associated with both the ascending auditory pathways and the ascending and descending vestibular pathways. Vestibular structures ipsilateral to the injected labyrinth which contained heavy labeling were Scarpa's ganglion and all 6 vestibular nuclei. No labeling was noted in the contralateral Scarpa's ganglion and sparce, if any, labeling was noted in the contralateral vestibular nuclei. Contralateral structures associated with ascending vestibulo-ocular pathways which contained heavy labeling were the medial longitudinal fasciculus, abducens nucleus, trochlear nucleus, and two parts of the oculomotor nucleus--the dorsolateral part and the ventromedial part. Less heavily labeled ipsilateral vestibulo-ocular-related structures included the medial longitudinal fasciculus, abducens nucleus and the ventrolateral edge of the trochlear nucleus. The dorsomedial part of the oculomotor nucleus was heavily labeled on the side ipsilateral to the injected labyrinth. Slight, if any, labeling was noted in either the ipsilateral or contralateral brachium conjunctivum or regions corresponding to the mammalian ascending tract of Deiters. The medullary core of most folia but primarily the medullary core and granular areas of folia IX and X of the cerebellum were labeled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Saccadic burst neurons in the pontine reticular formation have been implicated in the generation of saccades in the horizontal plane on the basis of lesion and extracellular recording studies in the cat and monkey. In the present study, saccadic burst neurons were anatomically and physiologically characterized with intraaxonal recording and injection of horseradish peroxidase in the alert squirrel monkey. A population of burst neurons were found that appear analogous to the excitatory burst neurons (EBNs) described previously in the cat. All neurons are located in the caudal pontine reticular formation and have a major axonal projection to the ipsilateral abducens nucleus. Additional projections were found to the medial vestibular nucleus, the nucleus prepositus, and regions of the pontine and medullary reticular formation rostral, ventral, and caudal to the abducens. All neurons fire exclusively during saccades and have a discharge pattern similar to that of medium-lead burst neurons described previously in the cat and monkey. In most neurons the saccadic burst begins 5-15 msec before saccade onset. Linear relationships exist between burst duration and saccade duration, number of spikes in the burst and saccade amplitude, and firing frequency and instantaneous velocity. Physiological activity of each neuron shows the closest relationship with the amplitude of the saccade component in a particular direction. For all neurons, this on-direction is in the ipsilateral hemifield and is predominantly horizontal, but may have either an upward or downward vertical component. These results support a major role for the EBNs in the monkey in generating the saccadic burst in abducens motoneurons, as well as in contributing to the oculomotor activity in other classes of premotor neurons.  相似文献   

20.
We studied the anatomical pathway underlying the nictitating reflex in the monitor lizard Varanus exanthematicus by the anterograde degeneration technique combined with retrograde transport of horseradish peroxidase (HRP) and electron microscopy. After application of HRP to the abducens nerve, retrogradely labeled neurons were observed in the ipsilateral principal and accessory abducens motor nuclei. The transection, in the same experiments, of the root of the trigeminal nerve resulted in massive degeneration of myelinated fibers in the descending trigeminal tract. In the ipsilateral accessory abducens nucleus, we observed electron-dense degenerating axon terminals that formed asymmetric synaptic contacts with the primary and secondary dendrites of large neurons retrogradely labeled with HRP. A few of the degenerating terminals could be traced in serial sections to myelinated axons. No terminal degeneration was found in the contralateral accessory abducens nucleus or in the ipsilateral and contralateral principal abducens nuclei. The present results are complementary with the findings of previous light microscopic experimental tracing studies (Barbas-Henry, H.A., and A.H.M. Lohman, J. Comp. Neurol. 1986, 254:314-329; see also J. Comp. Neurol. 1988, 267:370-386), and strongly suggest the existence in Varanus of a monosynaptic, unilateral reflex pathway in which trigeminal fibers, presumably originating from the cornea, synapse with motoneurons of the bursalis and retractor bulbi muscles, which are located in the accessory abducens nucleus. This monosynaptic pathway may mediate a rapid unilateral eyeball retraction and nictitating membrane extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号