首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary  Low calcium intake hampers bone mineral acquisition in adolescent girls. This study explores dietary calcium sources and nutrients possibly associated with vertebral mass. Milk intake is not influenced by genetic variants of the lactase gene and is positively associated with serum IGF-1 and with lumbar vertebrae mineral content and density. Introduction  Low calcium intake hampers bone mineral acquisition during adolescence. We identified calcium sources and nutrients possibly associated with lumbar bone mineralization and calcium metabolism in adolescent girls and evaluated the possible influence of a genetic polymorphic trait associated with adult-type hypolactasia. Methods  Lumbar bone mineral content (BMC), bone mineral density (BMD), and area, circulating IGF-1, markers of bone metabolism, and −13910 LCT (lactase gene) polymorphism; and intakes of milk, dairy products, calcium, phosphorus, magnesium, proteins, and energy were evaluated in 192 healthy adolescent girls. Results  After menarche, BMC, BMD, serum IGF-1, and serum PTH were tightly associated with milk consumption, but not with other calcium sources. All four parameters were also associated with phosphorus, magnesium, protein, and energy from milk, but not from other sources. Girls with milk intakes below 55 mL/day have significantly lower BMD, BMC, and IGF-1 and higher PTH compared to girls consuming over 260 mL/day. Neither BMC, BMD, calcium intakes, nor milk consumption were associated with −13910 LCT polymorphism. Conclusions  Milk consumption, preferably to other calcium sources, is associated with lumbar BMC and BMD in postmenarcheal girls. Aside from being a major source of calcium, milk provides phosphates, magnesium, proteins, and as yet unidentified nutrients likely to favor bone health.  相似文献   

2.
A group of 60 healthy early postmenopausal women participating in an ongoing study on the effect of habitual calcium intake on the rate of cortical bone loss at the radius, were subjected to additional skeletal measurements at the lumbar spine and femoral neck. The women were between 58 and 64 years of age, and 3 to 10 years postmenopausal. No correlations were found between habitual calcium intake (range 560 to 2580 mg/day) and either bone mineral content of the radius, the lumbar spine and the femoral neck, or spine deformity index. Body mass index was found to be positively correlated with bone mass indices of the radius (decrease of BMD and BMD) and femoral neck (BMC), but not with of the lumbar spine (BMC, BMD and SDI), even after adjustments had been made for confounding factors. Although the rate of cortical bone loss at the radius correlated significantly with bone mineral content of lumbar spine and femoral neck, the error in predicting bone mass of the lumbar spine or the femoral neck from longitudinal measurements of cortical bone at the radius was high. The rate of cortical bone loss did not correlate with the spine deformity index. We conclude that in healthy women in early menopause, the bone mineral content of both the appendicular and the axial skeleton are not influenced by habitual calcium intake. A higher body mass index has a protective effect on the appendicular skeleton but appears to be less protective to the axial skeleton. Longitudinal measurements of cortical bone mass are of limited value to predict bone density of the appendicular and axial skeleton.  相似文献   

3.
No previous longitudinal studies of calcium intake, anthropometry and bone health in young children with a history of avoiding cows milk have been undertaken. We report the 2-year changes of a group of 46 Caucasian children (28 girls, l8 boys) aged 8.1±2.0 years (mean ± SD) who had low calcium intakes at baseline and were short in stature, with elevated body mass index, poor skeletons and lower Z scores for both areal bone mineral density (BMD, in grams per square centimeter) and volumetric density (bone mineral apparent density, BMAD, in grams per cubic centimeter), compared with a reference population of milk drinkers. At follow-up, adverse symptoms to milk had diminished and modest increases in milk consumption and calcium intake had occurred. Total body bone mineral content (BMC) and bone area assessed by dual energy X-ray absorptiometry had increased (P<0.05), and calcium intake from all sources was associated with both these measures (P<0.05). However, although some catch-up in height had taken place, the group remained significantly shorter than the reference population (Z scores –0.39±1.14), with elevated body mass index (Z scores 0.46±1.0). The ultradistal radius BMC Z scores remained low (–0.31±0.98). The Z scores for BMD had improved to lie within the normal range at predominantly cortical sites (33% radius, neck of femur and hip trochanter) but had worsened at predominantly trabecular sites (ultradistal radius and lumbar spine), where values lay below those of the reference group (P<0.05). Similarly, although volumetric BMAD Z scores at the 33% radius had normalized, BMAD Z scores at the lumbar spine remained below the reference population at follow-up (–0.67±1.12, P<0.001). Our results demonstrate persisting height reduction, overweight and osteopenia at the ultradistal radius and lumbar spine in young milk avoiders over 2 years of follow-up.  相似文献   

4.
Differences in bone among racial/ethnic groups may be explained by differences in body size and shape. Previous studies have not completely explained differences among white, Asian, and Hispanic groups during growth. To determine racial/ethnic differences and predictors of bone mass in early pubertal girls, we measured bone mineral content (BMC) in white, Hispanic, and Asian sixth-grade girls across six states in the United States. We developed models for predicting BMC for the total-body, distal radius, total-hip, and lumbar spine for 748 subjects. For each of the bone sites, the corresponding area from dual-energy X-ray absorptiometry (DXA) was a strong predictor of BMC, with correlations ranging 0.78–0.98, confirming that larger subjects have more BMC. Anthropometric measures of bone area were nearly as effective as bone area from DXA at predicting BMC. For total-body, distal radius, lumbar spine, and total-hip BMC, racial/ethnic differences were explained by differences in bone area, sexual maturity, physical activity, and dairy calcium intake. Bone size explained most of the racial/ethnic differences in BMC, although behavioral indicators were also significant predictors of BMC.  相似文献   

5.
This 2-year prospective study examined associations among bone mineral acquisition and physical, maturational, and lifestyle variables during the pubertal transition in healthy girls. Forty-five girls, initially 10.5+/-0.6 years, participated. Body composition and bone mineral content (BMC) at the spine and total body (TB) were assessed at baseline and annually thereafter using dual-energy X-ray absorptiometry (DXA). Nutrient intakes were assessed using 3-day diet records and a calcium food frequency questionnaire (FFQ), physical activity by questionnaire, sexual maturation using Tanner's stages of breast and pubic hair maturation, growth by height and weight, and eating attitudes using the children's Eating Attitudes Test (Children's EAT). Mean children's EAT subscale scores (dieting, oral control [OC], and bulimia) were stable over time. Median split of OC subscale scores was used to form high and low OC groups. Groups had similar body composition, dietary intake, activity, and Tanner stage at baseline and 2 years. Using height, weight, and Tanner breast stage as covariates, girls with low OC scores had greater TB BMC at baseline (1452+/-221 g vs. 1387+/-197 g; p = 0.030) and 2 years (2003+/-323 g vs. 1909+/-299 g; p = 0.049) and greater lumbar spine (LS) BMC at 2 years (45.2+/-8.8 g vs. 41.2+/-9.6 g; p = 0.042). In multiple regression analysis, OC score predicted baseline, 2 years, and 2-year change in TB and spinal BMC, contributing 0.9-7.6% to explained variance. Calcium intake predicted baseline, 2 years, and 2-year change in TB BMC, explaining 1.6-5.3% of variance. We conclude that both OC and habitual calcium intake may influence bone mineral acquisition.  相似文献   

6.
7.
Physical activity during childhood is advocated as one strategy for enhancing peak bone mass (bone mineral content [BMC]) as a means to reduce osteoporosis-related fractures. Thus, we investigated the effects of high-intensity jumping on hip and lumbar spine bone mass in children. Eighty-nine prepubescent children between the ages of 5.9 and 9.8 years were randomized into a jumping (n = 25 boys and n = 20 girls) or control group (n = 26 boys and n = 18 girls). Both groups participated in the 7-month exercise intervention during the school day three times per week. The jumping group performed 100, two-footed jumps off 61-cm boxes each session, while the control group performed nonimpact stretching exercises. BMC (g), bone area (BA; cm2), and bone mineral density (BMD; g/cm2) of the left proximal femoral neck and lumbar spine (L1-L4) were assessed by dual-energy X-ray absorptiometry (DXA; Hologic QDR/4500-A). Peak ground reaction forces were calculated across 100, two-footed jumps from a 61-cm box. In addition, anthropometric characteristics (height, weight, and body fat), physical activity, and dietary calcium intake were assessed. At baseline there were no differences between groups for anthropometric characteristics, dietary calcium intake, or bone variables. After 7 months, jumpers and controls had similar increases in height, weight, and body fat. Using repeated measures analysis of covariance (ANCOVA; covariates, initial age and bone values, and changes in height and weight) for BMC, the primary outcome variable, jumpers had significantly greater 7-month changes at the femoral neck and lumbar spine than controls (4.5% and 3.1%, respectively). In repeated measures ANCOVA of secondary outcomes (BMD and BA), BMD at the lumbar spine was significantly greater in jumpers than in controls (2.0%) and approached statistical significance at the femoral neck (1.4%; p = 0.085). For BA, jumpers had significantly greater increases at the femoral neck area than controls (2.9%) but were not different at the spine. Our data indicate that jumping at ground reaction forces of eight times body weight is a safe, effective, and simple method of improving bone mass at the hip and spine in children. This program could be easily incorporated into physical education classes.  相似文献   

8.
Peak spine and femoral neck bone mass in young women   总被引:4,自引:0,他引:4  
Achievement of higher peak bone mass early in life may play a critical role against postmenopausal bone loss. Bone mineral density (BMD) of the spine, femoral neck, greater trochanter, Ward's triangle, and spine bone mineral content (BMC) and bone surface area (BSA) were assessed by dual energy x-ray absorptiometry in 300 healthy females (age 6-32 years). Bone measurements were described by using nonlinear models with age, weight, height, or dietary calcium intake as the explanatory variables. At the spine, femoral neck, greater trochanter, and Ward's triangle, the highest BMD level was observed at 23.0 +/- 1.4, 18.5 +/- 1.6, 14.2 +/- 2.0, and 15.8 +/- 2.1 years, respectively. The age of attaining peak spine BMC and BSA cannot be estimated, as significant increases in these two measures were observed through this age group. Age, weight, and height were all significant predictors of all these bone measurements. Weight was a stronger predictor than age for all sites. Dietary calcium intake was not a significant predictor for any of these bone measurements. We conclude that age of attaining peak bone mass at the hip is younger than at the spine, and BMC and BSA at the spine continue to increase through the early thirties in females.  相似文献   

9.
The aim of the study was to determine the relationship of dietary nutrients and bone mineral density (BMD) in North Indian women. This cross-sectional study was conducted from April 2006 to March 2008. Subjects included 255 healthy women, aged 20–69 years, who were relatives of patients being admitted in the hospital. Various demographic characteristics including socioeconomic status and serum parameters in relationship to BMD were evaluated. In addition, the daily dietary intake of energy, protein, fat, and calcium and the amount of physical activity were assessed. BMD at the lumbar spine, femoral neck, and Ward’s triangle was measured by dual-energy X-ray absorptiometry (DXA). Body mass index (BMI), physical activity, and educational level were positively correlated with BMD. The daily intakes of energy (1563.4 ± 267.2 kcal) and protein (48.7 ± 8.7 g) were below the recommended dietary allowance. Daily dietary energy, protein, and calcium intakes were correlated with BMD at the lumbar spine. Stepwise multiple linear regression analyses showed that age, BMI, and physical activity were significant predictors for BMD at all sites. In addition, energy intake was also a predictor for BMD at the lumbar spine. The protein intake was associated with BMD at the spine (P = 0.02 and β = 0.163) even after making adjustments for energy intake. Thus, dietary pattern coupled with higher education levels and greater physical activity favored bone health.  相似文献   

10.
11.
Lifestyle factors, such as diet, are believed to be involved in modifying bone health, although the results remain controversial, particularly in children and adolescents. The objective of the study was to identify associations between dietary factors and whole body bone measurements in 10-year-old children. The study was a cross-sectional analysis of a random sample of 105 healthy Danish children, aged 10 years (9.97 ± 0.09). Whole body bone mineral content (BMC) and bone area (BA) were determined by dual-energy X-ray absorptiometry. The influence of diet (7 day food records) on BMC and BA were examined in bi- and multivariate analyses. The mean intakes of calcium, protein, phosphorus and sodium were 1226 mg, 78 g, 1523 mg and 3.3 g, respectively. In bivariate analyses, BMC and BA were strongly positively correlated with height (p<0.001) and weight (p<0.001), and with intakes of energy (p<0.005) and several nutrients. BMC was adjusted for size by including BA, height and weight in the multiple linear regression, and BA was adjusted for size by including height and weight in the multiple linear regression. In multivariate analyses, size-adjusted BMC was positively associated with calcium intake (p = 0.02). Size-adjusted BA was positively associated with dietary protein (p = 0.003), and negatively associated with intakes of sodium (p = 0.048) and phosphorus (p = 0.01). In conclusion, calcium intake was positively associated with bone mineralization. There was a positive association between protein and BA, while for phosphorus and sodium the association was negative. The findings suggest that in addition to calcium, the intake of other nutrients influences bone development in prepubertal children. Received: 31 December 1999 / Accepted: 23 June 2000  相似文献   

12.
Exercise and improved nutrition offer safe, low-cost and widely applicable approaches to potentially reduce the burden of fractures. We conducted a cross-sectional study of 30 monozygotic and 26 dizygotic male twin pairs, aged 7–20 years to test the following hypotheses: (1) Associations between bone mass and dimensions and exercise are greater than between bone mass and dimensions and protein or calcium intakes; (2) exercise or nutrient intake are associated with appendicular bone mass before puberty and axial bone mass during and after puberty. Total body and posteroanterior (PA) lumbar spine bone mineral content (BMC) and mid-femoral shaft dimensions were measured using dual energy X-ray absorptometry (DEXA). Relationships between within-pair differences in nutrient intake (determined by weighed-food diaries) or exercise duration (determined by questionnaire) and within-pair differences in BMC and bone dimensions were tested using linear regression analysis. In multivariate analyses, within-pair differences in exercise duration were associated with within-pair differences in total body, leg and spine BMC, and cortical thickness. Every-hour-per-week difference in exercise was associated with a 31-g (1.2%) difference in total body BMC, a 10-g (1.4%) difference in leg BMC, a 0.5-g difference in spine BMC and a 0.1-mm difference in cortical thickness ( p <0.01- p <0.1). A 1-g difference in protein intake was associated with a 0.8-g (0.4%) difference in arm BMC ( p <0.05). These relationships were present in peri-pubertal and post-pubertal pairs but not in pre-pubertal pairs. Exercise during growth appears to have greater skeletal benefits than variations in protein or calcium intakes, with the site-specific effects evident in more mature twins.  相似文献   

13.
Soy protein consumption and bone mass in early postmenopausal Chinese women   总被引:11,自引:0,他引:11  
Recent interest has been shown in the potential beneficial effects of phytoestrogens on bone health. As the early years of menopause are a period of rapid bone loss, and the risk for osteoporosis increases substantially, the habitual intake of soy protein and isoflavones may play a role in the retardation of bone loss. This paper reports the results of the baseline cross-sectional analysis of the association between dietary soy protein intake and bone mineral density/content in a population-based study of Chinese women. The sample comprised 454 healthy Chinese women (mean age 55.1±3.57) within the first 12 years of postmenopause. We estimated the dietary intake of soy protein and isoflavones, and other key nutrients, including dietary protein and calcium, using the quantitative food frequency method. Bone mineral density (BMD) and content (BMC) at the spine, hip and total body were measured with a dual energy X-ray densitometer (Hologic 4500A). Soy protein consumption was categorized as quartiles of intake, and related to BMD values at the spine and hip, and BMC of total body. Stratified analyses were carried out among women within or at least 4 years postmenopausal. We observed few differences in BMD/BMC values among the intake quartiles in women within the first 4 years of menopause. However, among the later postmenopausal women, we noted a dose-response relationship with increasing higher BMD values at the trochanter, intertrochanter as well as the total hip and total body with increasing soy protein intake quartiles (P<0.05 from tests for trend). The BMD values differed by about 4–8% between the first and fourth soy protein intake quartiles. Though women from the fourth intake quartile had a 2.9% higher BMD value compared with those from the first intake quartile, the difference was not statistically significant. Stepwise multiple linear regression analyses showed the association between soy intake quartiles and hip BMD as well as total body BMC values remained after adjusting for body weight, which was retained in the final model. Analyses based on soy isoflavones content yielded similar results. This study demonstrated that, among women after the initial few years postmenopausal, soy protein/isoflavones intake had a modest but significant association with hip BMD as well as total body BMC. The effects of soy protein and soy isoflavones on bone health should be further explored in populations with habitual dietary soy intake.  相似文献   

14.
We investigated the contribution of ethnicity, physical activity, body composition, and calcium intake to bone accrual across 7 years of growth. We assessed 80 Caucasian and 74 Asian boys and 81 Caucasian and 64 Asian girls at baseline and retained 155 children across all 7 years. Ethnicity, physical activity, and calcium intake were assessed by questionnaire; fat mass, lean mass, and bone mineral content (BMC) of the whole body (WB), lumbar spine (LS), total proximal femur (PFTOT), and femoral neck (FN) were measured using DXA (Hologic QDR 4500). We aligned children on peak height velocity and utilized multilevel modeling to assess bone mineral accrual. Height and lean mass accounted for 51.8% and 44.1% of BMC accrual in children. There was a significant difference in physical activity, calcium intake, and lean mass between Asians and Caucasian boys and girls at baseline and conclusion (p < 0.05). In boys, physical activity and ethnicity significantly predicted BMC accrual at the FN. In girls, Asians had significantly lower PFTOT and FN BMC. Calcium was a significant predictor of WB BMC accrual in boys and girls. In conclusion, our findings highlight the importance of accounting for ethnicity in pediatric studies. Physical activity, dietary calcium, and lean mass positively influence bone accrual and are lower in Asian compared to Caucasian children from a very young age.  相似文献   

15.
Thalassemia and the blood transfusion complications associated with it predispose children to poor bone health. This study was conducted to determine the prevalence of bone-related abnormalities and identify the bone health predictors within this population. One hundred and forty transfusion-dependent beta thalassemic subjects 8–18 years old in Mashhad, Iran, participated in this cross-sectional study. Anthropometric measures, dietary intake, bone-related biomarkers and bone densitometry, were assessed. The incidence of underweight and short stature was 33.6 and 41.4 %, respectively, which were indicators of malnutrition among thalassemic subjects in this study. Low bone density was detected in the lumbar spine and femoral region in 82 and 52 % of subjects, respectively. Hypocalcemia and hypophosphatemia were seen in 22 and 18.2 %, whilst vitamin D deficiency was present in more than 85 % of thalassemic children and adolescents. The relationships between weight, height and other anthropometric indices, serum calcium and bone markers, intake of macronutrients, zinc and vitamin E with bone mineral density (BMD) and bone mineral content (BMC) in the lumbar spine and femoral area were positively related, indicating that better nutritional status were associated with higher BMD and BMC values. Puberty, gender and serum osteocalcin were negative predictors for BMD and BMC values, whereas age, weight and height were the positive predictors. High incidence of low bone density and deficit in other aspects of bone health among thalassemia patients makes routine bone health assessment necessary for this vulnerable group. Considering influencing factors, dietary counseling and preventive supplementation therapy for this high risk group of children and adolescents may be necessary, although this should be assessed by intervention studies.  相似文献   

16.
Low milk intakes hamper bone mineral acquisition during adolescence, especially in European girls. We hypothesized that ethnic‐specific polymorphisms of the vitamin D receptor gene promoter (VDRp) influence this milk/bone association. We evaluated lumbar spine BMC and BMD, milk/dairy products and calcium intakes, markers of P‐Ca metabolism, and VDRp polymorphisms at the Cdx‐2 binding (rs11568820) and ?1012 (rs4516035) loci in 117 healthy European peri‐ and postmenarcheal girls (14.9 ± 1.6 yr) during a 4‐yr follow‐up. Calcium intakes from milk, nonmilk dairy products, and nondairy products averaged 199, 243, and 443 mg/d at the initiation of the study. Results show no association between milk intakes and bone mass accrual in girls bearing an A/A genotype at the ?1012 VDRp locus (30% of the cohort). In contrast, A/G or G/G girls had lower spine BMC (?13%, p = 0.031), BMD (?10%, p = 0.004), and BMD Z‐score (?0.84 SD, p = 0.0003) when their milk intakes were <260 ml/d compared with genotype‐matched girls with higher milk intakes and with girls with an A/A genotype. The negative impact of low milk intake persisted up to 19.0 ± 1.7 yr. These findings suggest that European girls bearing a ?1012 A/G or G/G VDRp genotype should have higher milk/calcium intakes for optimal vertebral mass accrual during adolescence than girls bearing an A/A genotype, a genotype found in 30% of European and 98% of Asian and Sub‐Saharan African populations. VDRp genotype diversity may contribute to the ethnic differences observed in milk requirements for bone health during adolescence.  相似文献   

17.
A study on the determinants of bone mass in young women is being carried out among 287 young Chinese women aged 21–40 years. The baseline cross-sectional data show that the mean dietary calcium intake, estimated from the quantitative food frequency method, was 448 mg/day (standard deviation = 219). About 50% of the calcium source was from vegetables and 22% from dairy products. Among women aged 21–30 years, those with a dietary calcium intake of at least 600 mg/day had a 4%–7% higher mean bone mineral density at the spine and femur when compared with those with a mean intake below 300 mg/day. In women aged 31–40 years, subjects belonging to the highest quartile of calcium density (35 mg/420 kJ) had a 3%–8% higher mean bone mineral density at the spine and femur when compared with those in the lowest quartile (<20.8 mg/420 kJ). Favorable calcium intake is beneficial in this population of young women with habitual low dietary calcium intake.  相似文献   

18.
We examined a Hutterite population (n = 243) to determine if their agriculturally diverse, self-sufficient communal lifestyle promotes optimal bone mass attainment because of adequate calcium intake and high physical activity levels during growth and young adulthood. We measured total body (TB) and lumbar bone mineral content (BMC) and bone mineral density (BMD) in 39 school-age (younger) females and 204 working (older) females. Forty-five percent of older females and 79% of younger females currently consumed > or = 3 servings (svg) of dairy per day. Older females had lumbar (0.6 +/- 1.3) and TB (1.1 +/- 1.1) BMD Z scores greater than 0 (both, p < 0.001). The lumbar BMD Z score of younger females was not different from 0 (-0.1 +/- 1.0; p = 0.5). Both lumbar (r = 0.46; p < 0.001) and TB (r = 0.20; p = 0.02) BMD Z scores increased with increasing age. In multiple regression analyses for older females, lumbar bone area (p < 0.001), weight (p < 0.001), current hours on feet per day (p = 0.01), colony workload (p < 0.01), and estrogen status (p = 0.06) predicted lumbar BMC. TB bone area (p < 0.001), current hours on feet per day (p < 0.001), and colony workload (p < 0.01) predicted TB BMC. For younger females, lumbar bone area (p < 0.001), weight (p < 0.01), years in present colony (p = 0.02), and menses (p < 0.001) predicted lumbar BMC. TB bone area (p < 0.001), height (p < 0.01), years in present colony (p = 0.03), and menses (p < 0.01) predicted TB BMC. The effect of colony workload could not be separated from other factors different by colony. A heritability estimate of 0.66 was calculated for lumbar BMD using mother and daughter Z scores. Adequate calcium intake during growth, high physical activity early in life, and genetic factors may be contributing to above normal BMD levels in adult female Hutterites.  相似文献   

19.
To determine the relationships among nutrient intake, bone mass, and bone turnover in women we have investigated these issues in a population-based, crosssectional, observational study in one county in central Sweden. A total of 175 women aged 28–74 at entry to the study were included. Dietary assessment was made by both a semiquantitative food frequency questionnaire and by four 1-week dietary records. Dual energy X-ray absorptiometry was performed at five sites: total body, L2–L4 region of the lumbar spine, and three regions of the proximal femur. Serum concentrations of osteocalcin (an osteoblast-specific protein reflecting bone turnover) were measured by a radioimmunoassay. Linear regression models, with adjustment for possible confounding factors, were used for statistical analyses. A weak positive association was found between dietary calcium intake as calculated from the semiquantitative food frequency questionnaire and total body bone mineral density (BMD) among premenopausal women. No association emerged between dietary calcium intake and sitespecific bone mass, i.e., lumbar spine and femoral neck, nor was an association found between dietary calcium intake and serum osteocalcin. BMD at some of the measured sites was positively associated with protein and carbohydrates and negatively associated with dietary fat. In no previous studies of diet and bone mass have dietary habits been ascertained so carefully and the results adjusted for possible confounding factors. Neither of the two methods of dietary assessment used in this study revealed any effect of calcium intake on BMD at fracture-relevant sites among these healthy, mostly middle-aged women. A weak positive association was found between calcium intake estimates based on the food frequency questionnaire and total body BMD. In this study population the preventive effect of high dietary calcium on osteoporosis is probably very weak. The independent significance of protein, carbohydrates, and fat is uncertain.  相似文献   

20.
We investigated the associations of vitamin C, calcium and protein intakes with bone mass at the femoral neck and lumbar spine in postmenopausal Mexican American women. Bone mass was measured by dual-energy X-ray absorptiometry (DXA) and expressed as areal (BMD, g/cm2) and volumetric (bone mineral apparent density or BMAD, g/cm3) bone mineral density. Diet was assessed using a modified version of the National Cancer Institute Food Questionnaire, which was administered by trained bilingual interviewers familiar with Mexican dietary practices. Data gathered from 125 subjects were analyzed using multiple linear regression analysis with age, body mass index (BMI), acculturation, years of estrogen use, physical activity, total energy intake, and the nutrient of interest as independent variables. Neither calcium nor calcium/protein ratio was associated with bone mineral density. There was evidence of a positive association between dietary vitamin C intake and femoral neck BMD (β=0.0002 g/cm2 per mg/day, SE=0.0001,p=0.07) and BMAD (β=0.0001 g/cm3 per mg/day, SE=0.00006,p<0.05), but vitamin C was not associated with lumbar spine bone mass. Further investigation of the role of vitamin C in skeletal health is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号