首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper reports the microwave-assisted synthesis and the binding assays on the 5-HT(1A), 5-HT(2A) and 5-HT(2C) receptors of new benzotriazinone derivatives, in order to identify selective ligands for the 5-HT(1A) subtype receptor. Conventional and microwave heating of the reactions were compared. Good yields and short reaction times are the main advantages of our synthetic route. More active compounds were selected and further evaluated for their binding affinities on D(1), D(2) dopaminergic and alpha(1), alpha(2) adrenergic receptors. The 3-(2-(4-(naphthalen-1-yl)piperazin-1-yl)ethyl)benzo[d][1,2,3]triazin-4(3H)-one 5 with K(i)= 0.000178 nM was the most active and selective derivative for the 5-HT(1A)receptor with respect to other serotonin receptors and the most selective derivative compared to dopaminergic and adrenergic receptors.  相似文献   

2.
A series of new compounds containing a benzimidazole, benzothiazole, or benzoxazole nucleus linked to an arylpiperazine by different thioalkyl chains was prepared. They were tested in radioligand binding experiments to evaluate their affinity for 5-HT 1A and 5-HT 2A serotonergic, alpha 1 adrenergic, D1, and D2 dopaminergic receptors. Many of tested compounds showed an interesting binding profile; in particular, 36 displayed very high 5-HT 1A receptor affinity and selectivity over all the other investigated receptors. Selected compounds, evaluated in functional assays, showed antagonistic or partial agonistic activity at 5-HT 1A receptor. An extensive conformational research using both NMR and modeling techniques indicated that extended conformations predominated in vacuum, in solution and during interactions with 5-HT 1A receptor. Finally, the elaborated binding mode of selected compounds at 5-HT 1A receptor was used to explain the influence of spacer length on ligands affinity.  相似文献   

3.
New arylpiperazine derivatives were prepared to identify highly selective and potent ligands for the 5-hydroxytryptamine 1A (5-HT(1A)) receptor as potential pharmacological tools in studies of central nervous system (CNS) disorders. The combination of structural elements (heterocyclic nucleus, oxyalkyl chain, and arylpiperazine) known to introduce 5-HT(1A) receptor affinity and the proper selection of substituents led to compounds with higher receptor specificity and affinity. In binding studies, several molecules showed affinity in the nanomolar and subnanomolar ranges at 5-HT(1A) and moderate to no affinity for other relevant receptors (5-HT(2A), 5-HT(2C), D(1), D(2), alpha(1), and alpha(2)). The 4-[3-[4-(o-methoxyphenyl)piperazin-1-yl]propoxy]-4-aza-tricyclo[5.2.1.02,6]dec-8-ene-3,5-dione, with K(i) = 0.021 nM, was the most active and selective derivative for the 5-HT(1A) receptor with respect to other serotonin receptors, whereas the most selective derivative for dopaminergic and adrenergic receptors was a CF(3)-substituted arylpiperazine. As a general trend, compounds with a piperazinylpropoxy chain showed a preferential affinity for the 5-HT(1A) receptor, suggesting that the alkyl chain length represents a critical structural feature in determining 5-HT(1A) receptor affinity and selectivity, as confirmed by the molecular modeling invoked for explaining the differential binding affinities of the new arylpiperazines.  相似文献   

4.
The present paper concerns the influence of conformational parameters on the recognition by rat 5-HT1A receptors of derivatives 4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]-1-(2-pyridinyl)piperazine (1a) and 3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)-N-[2-(2-pyridyloxy)ethyl]propanamine (3b), two highly potent and selective 5-HT1A receptor ligands. Fifteen corresponding flexible and rigid analogues were prepared following several synthetic routes and were tested in binding assays with radioligands at 5-HT1A, D2, and alpha1 receptors from rat brain membranes. Among the new derivatives emerged trans-4-[4-(3-methoxyphenyl)cyclohexyl]-1-(2-pyridinyl)piperazine (trans-8a) and trans-N-[4-(3-methoxyphenyl)cyclohexyl]-2-(2-pyridyloxy)ethylamine (trans-8b). These compounds can be considered as conformationally constrained analogues of compounds 1a and 3a, respectively. In fact, compounds trans-8a and trans-8b showed a marked enhancement in 5-HT1A receptor affinity when compared to the corresponding cis isomers. Because compound trans-8a was a potent and selective 5-HT1A ligand (K(i), nM: 5-HT1A = 0.028, D2 = 2194, alpha1 = 767), it was chosen as a lead to prepare other analogues that were tested at 5-HT1A, D2, and alpha1 receptors from rat brain membranes, showing high affinity at the 5-HT1A and selectivity vs D2 and alpha1 receptors. Selected compounds were tested for their affinity at the human cloned 5-HT1A, alpha1a, alpha1b, alpha1d receptor subtypes. They were also submitted to the [35S]GTPgammaS binding assay stimulating the 5-HT1A receptor-mediated G-protein activation, therefore behaving as full or as partial agonists. Finally, the ability of iv administration of trans-8a to induce fore-paw treading in rats was evaluated in comparison with 8-OH-DPAT. Although the affinity (K(i)) and in vitro activity (pD'2) of trans-8a at the 5-HT1A receptor were higher than those of 8-OH-DPAT, the compound was less potent than the reference standard in inducing the symptom.  相似文献   

5.
Clinical properties of atypical antipsychotics are based on their interaction with D(2) dopamine receptor and serotonin 5-HT(1A) and 5-HT(2A) receptors. As a part of our research program on new antipsychotics, we synthesized various derivatives of 1-cinnamyl-4-(2-methoxyphenyl)piperazines, and evaluated their affinities for D(2), 5-HT(1A), 5-HT(2A), and adrenergic (alpha(1)) receptors using radioligand-binding assays. In addition, we performed docking analysis using models for the D(2) and 5-HT(1A) receptors. All compounds exhibited low to moderate affinity to 5-HT(1A) and 5-HT(2A) receptors, high affinity to the D(2 )receptor and large variability in affinities for the alpha(1) receptor. Docking analysis indicated that the binding to D(2) and 5-HT(1A) receptors is based on (i) interaction between protonated N1 of the piperazine ring and various aspartate residues, (ii) hydrogen bonds between various moieties of the ligand and the residues of threonine, serine, histidine or tryptophane, and (iii) edge-to-face interactions of the aromatic ring of the arylpiperazine moiety with phenylalanine or tyrosine residues. Docking data for the D(2) receptor can account for the binding properties obtained in binding assays, suggesting that the model is reliable and robust. However, docking data for the 5-HT(1A) receptor cannot account for actual binding properties, suggesting that further refinement of the model is required.  相似文献   

6.
Atypical antipsychotic drugs have revolutionized the treatment of schizophrenia and related disorders. The current clinically approved atypical antipsychotic drugs are characterized by having relatively low affinities for D(2)-dopamine receptors and relatively high affinities for 5-HT(2A) serotonin receptors (5-HT, 5-hydroxytryptamine (serotonin)). Aripiprazole (OPC-14597) is a novel atypical antipsychotic drug that is reported to be a high-affinity D(2)-dopamine receptor partial agonist. We now provide a comprehensive pharmacological profile of aripiprazole at a large number of cloned G protein-coupled receptors, transporters, and ion channels. These data reveal a number of interesting and potentially important molecular targets for which aripiprazole has affinity. Aripiprazole has highest affinity for h5-HT(2B)-, hD(2L)-, and hD(3)-dopamine receptors, but also has significant affinity (5-30 nM) for several other 5-HT receptors (5-HT(1A), 5-HT(2A), 5-HT(7)), as well as alpha(1A)-adrenergic and hH(1)-histamine receptors. Aripiprazole has less affinity (30-200 nM) for other G protein-coupled receptors, including the 5-HT(1D), 5-HT(2C), alpha(1B)-, alpha(2A)-, alpha(2B)-, alpha(2C)-, beta(1)-, and beta(2)-adrenergic, and H(3)-histamine receptors. Functionally, aripiprazole is an inverse agonist at 5-HT(2B) receptors and displays partial agonist actions at 5-HT(2A), 5-HT(2C), D(3), and D(4) receptors. Interestingly, we also discovered that the functional actions of aripiprazole at cloned human D(2)-dopamine receptors are cell-type selective, and that a range of actions (eg agonism, partial agonism, antagonism) at cloned D(2)-dopamine receptors are possible depending upon the cell type and function examined. This mixture of functional actions at D(2)-dopamine receptors is consistent with the hypothesis proposed by Lawler et al (1999) that aripiprazole has "functionally selective" actions. Taken together, our results support the hypothesis that the unique actions of aripiprazole in humans are likely a combination of "functionally selective" activation of D(2) (and possibly D(3))-dopamine receptors, coupled with important interactions with selected other biogenic amine receptors--particularly 5-HT receptor subtypes (5-HT(1A), 5-HT(2A)).  相似文献   

7.
A new class of 5-heteroaryl-substituted 1-(4-fluorophenyl)-3-(4-piperidinyl)-1H-indoles as highly selective and potentially CNS-active alpha 1-adrenoceptor antagonists is described. The compounds are derived from the antipsychotic sertindole. The structure-affinity relationships of the 5-heteroaryl substituents, and the substituents on the piperidine nitrogen atom were optimized with respect to affinity for alpha 1 adrenoceptors and selectivity in respect to dopamine (D(1-4)) and serotonin (5-HT(1A-1B) and 5-HT(2A,2C)) receptors. The most selective compound obtained, 3-[4-[1-(4-fluorophenyl)-5-(1-methyl-1,2,4-triazol-3-yl)-1H-indol-3-yl]-1-piperidinyl]propionitrile (15c), has affinities of 0.99, 3.2, and 9.0 nM for the alpha(1a), alpha(1b), and alpha(1d) adrenoceptor subtypes, respectively, and a selectivity for adrenergic alpha(1a) receptors in respect to dopamine D2, D3, and D4 and serotonin 5-HT(2A) and 5-HT(2C) higher than 900, comparable to the selectivity of prazosin. In addition, the compound is more than 150-fold selective in respect to serotonin 5-HT(1A) and 5-HT(1B) receptors. A new basic pharmacophore for alpha 1-adrenoceptor antagonists based on a previously reported pharmacophore model for dopamine D2 antagonist is suggested.  相似文献   

8.
New 1H,3H-pyrimido[2,1-f]purine-2,4-dione derivatives of arylpiperazine (11-22) were prepared and evaluated in vitro for their affinity for 5-HT(1A), 5-HT(2A), alpha(1), and D(2) receptors. The tested compounds showed high affinity for 5-HT(1A) and alpha(1) receptors (K(i) = 1.1-87 and 10-62 nM, respectively) and moderate to low affinity for 5-HT(2A) (K(i) = 56-881 nM) and D(2) receptors (K(i) = 94-1245 nM). Compounds 14, 15, 18, 19, and 21, mostly 3'-chlorophenylpiperazine derivatives, can be classified as mixed 5-HT(1A)/5-HT(2A)/alpha(1) ligands. Compound 13, which showed the highest 5-HT(1A) receptor affinity (K(i) = 1.1 nM), was 50-fold selective in relation to alpha(1) adrenoceptors and at least 250-fold over 5-HT(2A) and D(2) sites. On the basis of in vivo functional tests, 8-phenylpiperazinoethylamino (11), 8-(2'-methoxyphenylpiperazino)ethylamino (13), and 8-phenylpiperazinopropylamino (14) derivatives of 1,3-dimethyl-1H,3H-pyrimido[2,1-f]purine-2,4-dione were identified as potent pre- and postsynaptic 5-HT(1A) receptor antagonists. 1,3-Dimethyl-7-bromo-8-(phenylpiperazinopropylamino)-1H,3H-pyrimido[2,1-f]purine-2,4-dione (20) behaved like an agonist of presynaptic and as a partial agonist of postsynaptic 5-HT(1A) receptors and resembled ipsapirone in terms of functional intrinsic activity. It revealed marked anxiolytic-like activity in the Vogel test in rats, comparable to that of the reference drug diazepam, and exhibited antidepressant-like activity in the Porsolt test in rats. The sedative effect of 20, evaluated in the open field test in rats, appeared at doses twice as high as those inducing a minimal anxiolytic-like effect and was similar to the effects of diazepam.  相似文献   

9.
The pharmacological characteristics of hindlimb scratching induced by serotonergic compounds were studied. We conclude that hindlimb scratching induced by serotonergic compounds is mediated by a serotonin1D (5-HT1D) or 5-HT1D-like receptor outside the blood-brain barrier because hindlimb scratching could be induced by s.c. injection of 5-methoxytryptamine (5-MeOT), 5-carboxamidotryptamine (5-CT), bufotenine, 5-hydroxytryptamine (5-HT) and tryptamine. These compounds have high affinity for 5-HT1A and 5-HT1D receptors. The 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), the 5-HT1C receptor agonist MK 212, and the mixed 5-HT1C/5-HT2 receptor agonists (dl)-1-(2,5 dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and quipazine did not induce hindlimb scratching. Rather, the latter compounds attenuated 5-MeOT-induced hindlimb scratching. The 5-HT releasing compounds fenfluramine and p-chloroamphetamine (PCA) inhibited whereas the 5-HT re-uptake inhibitors fluvoxamine and indalpine potentiated 5-MeOT-induced hindlimb scratching. 5-MeOT-induced hindlimb scratching could be inhibited dose dependently by the alpha 2-adrenoceptor blockers yohimbine and rauwolsince, which also have high affinity for 5-HT1D receptors, whereas the alpha 2-adrenoceptor blocker piperoxan only weakly counteracted hindlimb scratching. Haloperidol, apomorphine, morphine, clonidine and methiothepin strongly attenuated hindlimb scratching, atropine, naloxone and ICS 205930 attenuated it weakly whereas domperidone, methylatropine and mepyramine were inactive in doses up to 10 mg/kg. Hindlimb scratching induced by 5-MeOT was potentiated by the 5-HT receptor antagonists metergoline, methysergide, mesulergine, mianserin, ritanserin and xylamidine. Hindlimb scratching was not induced by i.c.v. injection of 5-MeOT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Asenapine is a novel psychopharmacologic agent under development for the treatment of schizophrenia and bipolar disorder. We determined and compared the human receptor binding affinities and functional characteristics of asenapine and several antipsychotic drugs. Compounds were tested under comparable assay conditions using cloned human receptors. In comparison with the antipsychotics, asenapine showed high affinity and a different rank order of binding affinities (pKi) for serotonin receptors (5-HT1A [8.6], 5-HT1B [8.4], 5-HT2A [10.2], 5-HT2B [9.8], 5-HT2C [10.5], 5-HT5 [8.8], 5-HT6 [9.6] and 5-HT7 [9.9]), adrenoceptors (alpha1 [8.9], alpha2A [8.9], alpha2B [9.5] and alpha2C [8.9]), dopamine receptors (D1 [8.9], D2 [8.9], D3 [9.4] and D4 [9.0]) and histamine receptors (H1 [9.0] and H2 [8.2]). It had much lower affinity (pKi相似文献   

11.
A number of 1,9-alkano-bridged 2,3,4,5-tetrahydro-1H-3-benzazepines were prepared and evaluated for 5-HT1A receptor and alpha 2-adrenoceptor affinity by using radioligand receptor binding techniques. Several compounds displayed 5-HT1A receptor affinity comparable to, or greater than, the known 5-HT1A ligand buspirone. The highest affinity 5-HT1A receptor ligands were N-alkyl-, N-allyl-5-chloro-, and 5-methoxy-1,2,3,4,8,9,10,10a-octahydronaphth[1,8-cd]azapines (4c, 4m, 4n), which had pKi values of 7.9-8.1. The S enantiomer of 4c had a higher affinity for the 5-HT1A receptor than the corresponding R isomer (pKi of 8.2 for (S)-4c vs 7.7 for (R)-4c). These compounds had a relatively low affinity for the alpha 2-adrenoceptor (pKi of 7 or less). On the other hand, the closely related 5-chloro-2-methyl-2,3,4,8,9,9a-hexahydro-1H-indeno[1,7-cd]azepine (3b) had high affinity for both the alpha 2-adrenoceptor (pKi = 8.1) and 5-HT1A receptor (pKi = 7.6). These results indicate that the two receptors may share common recognition sites.  相似文献   

12.
A series of beta-carbolines were prepared and their affinities for imidazoline (I(1) and I(2)) sites evaluated. Selected compounds were also examined at alpha(2)-adrenoceptors. Some of the beta-carbolines were found to bind with high affinity to I(2)-sites and this affinity was dependent on both the planarity of the molecule and the presence of the aryl ring substituents. Good I(1)-affinity was observed with two of the compounds but none of the tested compounds bound to alpha(2)-adrenoceptors. The hallucinogenic properties of beta-carbolines have been linked to activity at 5-HT receptors, in particular 5-HT(2), however, it is apparent from this study that many of these compounds display substantially higher affinity for the imidazoline sites. This finding, and those showing modulation of some behavioural effects of morphine by I(2)-ligands, suggests that imidazoline sites may be interesting new targets in drug abuse research.  相似文献   

13.
WB 4101 (1)-related benzodioxanes were synthesized by replacing the ethylene chain separating the amine and the phenoxy units of 1 with a cyclopentanol moiety, a feature of 6, 7-dihydro-5-[[(cis-2-hydroxy-trans-3-phenoxycyclopentyl)amino]meth yl] -2-methylbenzo[b]thiophen-4(5H)-one that was reported to display an intriguing selectivity profile at alpha(1)-adrenoreceptors. This synthesis strategy led to 4 out of 16 possible stereoisomers, which were isolated in the case of (-)-3, (+)-3, (-)-4, and (+)-4 and whose absolute configuration was assigned using a chiral building block for the synthesis of (-)-3 starting from (+)-(2R)-2, 3-dihydro-1,4-benzodioxine-2-carboxylic acid ((+)-9) and (1S,2S, 5S)-2-amino-5-phenoxycyclopentan-1-ol ((+)-10). The aim of this project was to further investigate whether it is possible to differentiate between these compounds with respect to their affinity for alpha(1)-adrenoreceptor subtypes and the affinity for 5-HT(1A) receptors, as 1 binds with high affinity at both receptor systems. The biological profiles of reported compounds at alpha(1)-adrenoreceptor subtypes were assessed by functional experiments in isolated rat vas deferens (alpha(1A)), spleen (alpha(1B)), and aorta (alpha(1D)) and by binding assays in CHO and HeLa cells membranes expressing the human cloned alpha(1)-adrenoreceptor subtypes and 5-HT(1A) receptors, respectively. Furthermore, the functional activity of (-)-3, (+)-3, (-)-4, and (+)-4 toward 5-HT(1A) receptors was evaluated by determining the induced stimulation of [(35)S]GTPgammaS binding in cell membranes from HeLa cells transfected with human cloned 5-HT(1A) receptors. The configuration of the cyclopentane unit determined the affinity profile: a 1R configuration, as in (+)-3 and (-)-4, conferred higher affinity at alpha(1)-adrenoreceptors, whereas a 1S configuration, as in (-)-3 and (+)-4, produced higher affinity for 5-HT(1A) receptors. For the enantiomers (+)-4 and (-)-4 also a remarkable selectivity was achieved. Functionally, the stereoisomers displayed a similar alpha(1)-selectivity profile, that is alpha(1D) > alpha(1B) > alpha(1A), which is different from that exhibited by the reference compound 1. The epimers (-)-3 and (+)-4 proved to be agonists at the 5-HT(1A) receptors, with a potency comparable to that of 5-hydroxytryptamine.  相似文献   

14.
The affinities of the enantiomers of 1,3,4,14b-tetrahydro-2,10-dimethyl-2H,10H-pyrazino[2,1-d]pyrrolo[1,2-b] [1,2,5]benzotriazepine (10-methyl-10-azaaptazepine, 5) and 2-methyl-1,3,4,14b-tetrahydro-2H-pyrazino[2,1-d]pyrrolo[1,2-b] [1,2,5]benzothiadiazepine 10,10-dioxide (tiaaptazepine, 6) were evaluated in receptor binding assays. Compound (+)-(S)-5, the most significant tested enantiomer, showed good affinities for 5-HT1A, 5-HT2A 5-HT2C and alpha2NA receptors, moderate affinities for DA1, DA3r and 5-HT3 receptors and it was devoid of affinity for DA2, alpha(1NA) and muscarinic receptors. Compound (+)-(S)-5 showed an interesting pharmacological profile different from those of the reference compounds mirtazepine, mianserin and 6-methoxymianserin.  相似文献   

15.
Three series of cycloalkanecarboxylic esters derived from the naturally occurring clavine alkaloids lysergol, dihydrolysergol-I, and elymoclavine were synthesized to study their interaction with 5-HT2A receptors and alpha1-adrenoceptors in rat tail artery and aorta, respectively. Especially cycloalkanecarboxylic esters derived from lysergol showed complex behavior as partial agonists and antagonists of the contractile effect of 5-HT. Within this group, partial 5-HT2A receptor agonist activity was most potent for cyclopropanecarboxylic ester 6a (pKP = 7.67, alpha = 0.21) and decreased as the volume requirement of the alicyclic ring increased. This tendency was echoed in experiments where the compounds were used as antagonists of the contractile effect of 5-HT. From the structure-activity study, the N-1-isopropyl homologue of 6a, compound 6b, emerged as the ligand with the highest affinity for rat 5-HT2A receptors (pA2 = 8.74). For cycloalkanecarboxylic esters derived from dihydrolysergol-I and elymoclavine, no clear structure-affinity relationship could be deduced, although those compounds that had smaller cycloalkyl rings in the acyl portion and an isopropyl substituent at N-1 showed the highest 5-HT2A receptor affinity. On the other hand, cycloalkanecarboxylic esters derived from lysergol, dihydrolysergol-I, and elymoclavine displayed low or marginal affinity at alpha1-adrenoceptors. A further aim of the study was to examine to what extent the complete removal of the acyl portion of the esters would affect 5-HT2A receptor affinity. The parent alcohols of the three series of N-1-isopropyl homologues, 1-isopropyllysergol (1b), 1-isopropyldihydrolysergol-I (2b), and 1-isopropylelymoclavine (3b), displayed higher affinity for 5-HT2A receptors (pA2 = 9.15, 8.50, 9.14) than the corresponding esters. Compounds 1b-3b had no contractile effects by themselves and displayed low affinity at guinea-pig 5-HT1B receptors and rat alpha1-adrenoceptors. The high affinity for rat 5-HT2A receptors was retained when clavines even more simple in structure than 1b-3b, compounds 4b and 5b, were examined as 5-HT2A receptor antagonists. The nanomolar antagonist activity of simple clavines (1b-5b) in the rat suggests that the indolo[4,3-fg]quinoline system of the ergolines is the molecular fragment that is responsible for 5-HT2A receptor affinity, and not the substituent at position C-8.  相似文献   

16.
Iloperidone is a novel psychotropic compound currently undergoing Phase III trials. Its affinity for human dopamine and 5-HT(2A) and 5-HT(2C) receptors has been reported previously. This report presents the affinity of iloperidone for a largely extended number of human neurotransmitter receptors. In a few instances human receptors were not available and receptor studies were performed on tissues from laboratory animals. The present data, supplemented with those of, indicate that iloperidone displays high affinity (K(I) < 10 nM) for norepinephrine alpha(1)-adrenoceptors, dopamine D(3) and serotonin 5-HT(2A) receptors. Intermediate affinity (10-100 nM) was found for norepinephrine alpha(2C)-adrenoceptors, dopamine D(2A) and D(4) receptors and serotonin 5-HT(1A), 5-HT(1B), 5-HT(2C) and 5-HT(6) receptors. The affinity for all other receptors was below 100 nM, including norepinephrine alpha(2A), alpha(2B), beta(1), and beta(2), muscarine M(1)-M(5), histamine H(1), dopamine D(1) and D(5), CCK(A) and CCK(B), 5-HT(7), dopamine and norepinephrine transporters. Thus, iloperidone targets a selective set of dopamine, norepinephrine and serotonin receptor subtypes. The affinity for this particular set of receptors indicates that iloperidone has the potential to be a broad spectrum antipsychotic, with efficacy against positive, negative, depressive and cognitive symptoms of schizophrenia, and a low propensity to induce side effects.  相似文献   

17.
A series of 17 long-chain arylpiperazines containing bulky, complex imide systems (5,8-dimethyl-3b,9-epoxy-(3a,4,5,6,7,8,9,9a)-octahydro-1H-benzo[e]isoindole-1,3(2H)-dione or 4,9-diphenyl-4,9-epoxy-3a,4,9,9a-tetra-hydro-1H-benzo[f]isoindole-1,3(2H)-dione) was synthesized and evaluated for their affinity for serotonin 5-HT1A, 5-HT2A and dopamine D2 receptors. Most of the new compounds showed moderate activity at 5-HT1A binding sites (Ki = 100-492 nM), and two derivatives were found to have marked affinity for the 5-HT2A receptor subtype. None of the tested compounds displayed appreciable binding to dopamine D2 receptors Structure-activity relationships were discussed in respect to an arylpiperazine fragment, whereas the comparison of different imide terminals enabled determination of the size of a hydrophobic pocket (approximately 300 A3) within the 5-HT1A receptor.  相似文献   

18.
危红兵  钮心懿 《药学学报》1990,25(12):881-885
用放射配体受体结合法测定表明:克塞平对多巴胺D1受体的亲和力较异戊塞平高近20倍。两药对其它各受体的亲和力差別不大。慢性给药后,异戊塞平和克塞平均能使大鼠脑皮层5-HT2受体的密度显著下降,而亲和力变化不明显。这种下调5-HT2受体的作用发生在给异戊塞平后1~2周之间,给克塞平后的2~3周之间。慢性给药3周,异戊塞平和克塞平均未使大鼠脑皮层的β受体密度及亲和力产生显著变化。  相似文献   

19.
A series of new enantiomerically pure 3-amino-3,4-dihydro-2H-1-benzopyrans (3-aminochromans) has been synthesized from (R)- and (S)-5-methoxy-3-amino-3,4-dihydro-2H-1-benzopyran. The absolute configuration of the respective (R)- and (S)-enantiomers was deduced from X-ray crystallography of (R)-3-(N-isopropylamino)-5-methoxy-3,4-dihydro-2H-1-benzopyran, (R)-9a. Various 5-substituents were introduced via palladium-catalyzed carbonylation of N-substituted 3-amino-5-trifluoromethanesulfonyloxy-3,4-dihydro-2H-1-benzopyran. The effect of N- and 5-substitution on affinity for the 5-HT1A receptor was evaluated in competition experiments using rat hippocampal membranes and [3H]8-OH-DPAT as radioligand. Selected compounds were also tested for their affinity to the D1 (rat striatum), D2 (rat striatum), D2A (human cloned), and 5-HT2A (rat cortex) receptors. The intrinsic activity of the compounds was evaluated by measuring their effect on VIP-stimulated cAMP production in GH4ZD10 cells stably transfected with the 5-HT1A receptor. High-affinity compounds with high selectivity for the 5-HT1A receptor were found among structures substituted with carboxylate esters, amides, and ketones in the 5-position. Primary and secondary amines bound with lower affinity than tertiary amines. Larger substituents were well-tolerated by the receptor, but the smaller N-ethyl-N-isopropyl bound with lower affinity. Generally, the (R)-enantiomers displayed higher affinity for the 5-HT1A receptor than the corresponding (S)-enantiomers. In the present series of compounds, both full and partial agonists were found.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号