首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The severity of renal cystic disease in the major form of autosomal dominant polycystic kidney disease (PKD1) is highly variable. Clinical data was analyzed from 324 mutation-characterized PKD1 patients (80 families) to document factors associated with the renal outcome. The mean age to end-stage renal disease (ESRD) was 54 yr, with no significant difference between men and women and no association with the angiotensin-converting enzyme polymorphism. Considerable intrafamilial variability was observed, reflecting the influences of genetic modifiers and environmental factors. However, significant differences in outcome were also found among families, with rare examples of unusually late-onset PKD1. Possible phenotype/genotype correlations were evaluated by estimating the effects of covariants on the time to ESRD using proportional hazards models. In the total population, the location of the mutation (in relation to the median position; nucleotide 7812), but not the type, was associated with the age at onset of ESRD. Patients with mutations in the 5' region had significantly more severe disease than the 3' group; median time to ESRD was 53 and 56 yr, respectively (P = 0.025), with less than half the chance of adequate renal function at 60 yr (18.9% and 39.7%, respectively). This study has shown that the position of the PKD1 mutation is significantly associated with earlier ESRD and questions whether PKD1 mutations simply inactivate all products of the gene.  相似文献   

2.
Autosomal dominant polycystic kidney disease (ADPKD) is a common Mendelian disorder that affects approximately 1 in 1000 live births. Mutations of two genes, PKD1 and PKD2, account for the disease in approximately 80 to 85% and 10 to 15% of the cases, respectively. Significant interfamilial and intrafamilial renal disease variability in ADPKD has been well documented. Locus heterogeneity is a major determinant for interfamilial disease variability (i.e., patients from PKD1-linked families have a significantly earlier onset of ESRD compared with patients from PKD2-linked families). More recently, two studies have suggested that allelic heterogeneity might influence renal disease severity. The current study examined the genotype-renal function correlation in 461 affected individuals from 71 ADPKD families with known PKD2 mutations. Fifty different mutations were identified in these families, spanning between exon 1 and 14 of PKD2. Most (94%) of these mutations were predicted to be inactivating. The renal outcomes of these patients, including the age of onset of end-stage renal disease (ESRD) and chronic renal failure (CRF; defined as creatinine clearance < or = 50 ml/min, calculated using the Cockroft and Gault formula), were analyzed. Of all the affected individuals clinically assessed, 117 (25.4%) had ESRD, 47 (10.2%) died without ESRD, 65 (14.0%) had CRF, and 232 (50.3%) had neither CRF nor ESRD at the last follow-up. Female patients, compared with male patients, had a later mean age of onset of ESRD (76.0 [95% CI, 73.8 to 78.1] versus 68.1 [95% CI, 66.0 to 70.2] yr) and CRF (72.5 [95% CI, 70.1 to 74.9] versus 63.7 [95% CI, 61.4 to 66.0] yr). Linear regression and renal survival analyses revealed that the location of PKD2 mutations did not influence the age of onset of ESRD. However, patients with splice site mutations appeared to have milder renal disease compared with patients with other mutation types (P < 0.04 by log rank test; adjusted for the gender effect). Considerable renal disease variability was also found among affected individuals with the same PKD2 mutations. This variability can confound the determination of allelic effects and supports the notion that additional genetic and/or environmental factors may modulate the renal disease severity in ADPKD.  相似文献   

3.
The phenotypes that are associated with the common forms of polycystic kidney disease (PKD)--autosomal dominant (ADPKD) and autosomal recessive (ARPKD)--are highly variable in penetrance. This is in terms of severity of renal disease, which can range from neonatal death to adequate function into old age, characteristics of the liver disease, and other extrarenal manifestations in ADPKD. Influences of the germline mutation are at the genic and allelic levels, but intrafamilial variability indicates that genetic background and environmental factors are also key. In ADPKD, the gene involved, PKD1 or PKD2, is a major factor, with ESRD occurring 20 yr later in PKD2. Mutation position may also be significant, especially in terms of the likelihood of vascular events, with 5' mutations most detrimental. Variance component analysis in ADPKD populations indicates that genetic modifiers are important, but few such factors (beyond co-inheritance of a TSC2 mutation) have been identified. Hormonal influences, especially associated with more severe liver disease in female individuals, indicate a role for nongenetic factors. In ARPKD, the combination of mutations is critical to the phenotypic outcome. Patients with two truncating mutations have a lethal phenotype, whereas the presence of at least one missense change can be compatible with life, indicating that many missense changes are hypomorphic alleles that generate partially functional protein. Clues from animal models and other forms of PKD highlight potential modifiers. The information that is now available on both genes is of considerable prognostic value with the prospects from the ongoing genetic revolution that additional risk factors will be revealed.  相似文献   

4.
5.
The course of autosomal dominant polycystic kidney disease (ADPKD) varies among individuals, with some reaching ESRD before 40 years of age and others never requiring RRT. In this study, we developed a prognostic model to predict renal outcomes in patients with ADPKD on the basis of genetic and clinical data. We conducted a cross-sectional study of 1341 patients from the Genkyst cohort and evaluated the influence of clinical and genetic factors on renal survival. Multivariate survival analysis identified four variables that were significantly associated with age at ESRD onset, and a scoring system from 0 to 9 was developed as follows: being male: 1 point; hypertension before 35 years of age: 2 points; first urologic event before 35 years of age: 2 points; PKD2 mutation: 0 points; nontruncating PKD1 mutation: 2 points; and truncating PKD1 mutation: 4 points. Three risk categories were subsequently defined as low risk (0–3 points), intermediate risk (4–6 points), and high risk (7–9 points) of progression to ESRD, with corresponding median ages for ESRD onset of 70.6, 56.9, and 49 years, respectively. Whereas a score ≤3 eliminates evolution to ESRD before 60 years of age with a negative predictive value of 81.4%, a score >6 forecasts ESRD onset before 60 years of age with a positive predictive value of 90.9%. This new prognostic score accurately predicts renal outcomes in patients with ADPKD and may enable the personalization of therapeutic management of ADPKD.  相似文献   

6.
BACKGROUND: Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by intrafamilial variability in renal disease progression, which could result from a combination of environmental and genetic factors. Although a role for modifier genes has been evidenced in mouse models, direct evidence in ADPKD patients is lacking. The analysis of variability in affected siblings and monozygotic (MZ) twins would help evaluate the relative contribution of environment and genetic factors on renal disease progression in ADPKD. METHODS: The difference in the age at end-stage renal disease (ESRD) and the intraclass correlation coefficient (ICC) were quantified in a large series of ADPKD siblings from western Europe and compared with the values obtained in a series of MZ ADPKD twins from the same geographic area. RESULTS: Fifty-six sibships (including 129 patients) and nine pairs of MZ twins were included. The difference in the age at ESRD was significantly higher in siblings (6.9 +/- 6.0 years, range 2 months to 23 years) than in MZ twins (2.1 +/- 1.9 years, range 1 month to 6 years; P = 0.02). Furthermore, the intraclass correlation coefficient was significantly lower in siblings than in MZ twins (0.49 vs. 0.92, respectively; P = 0.003). The intrafamilial difference in the age at ESRD was not influenced by gender. CONCLUSION: These data substantiate the existence of a large intrafamilial variability in renal disease progression in ADPKD siblings. The fact that the variability in siblings is in a significant excess of that found in MZ twins strongly suggests that modifier genes account for a significant part of this variability.  相似文献   

7.
Significant intrafamilial phenotypic variability is well documented in autosomal dominant polycystic kidney disease (ADPKD) and suggests a modifier effect. In this study, variance components analysis was performed to estimate the contribution of genetic factors for within-family renal disease variability in 406 patients from 66 type 1 ADPKD families. Overall, 39% of the study patients had ESRD at their last follow-up, and their renal survival did not differ by gender (P = 0.35, log-rank test). Because their frequency plot of creatinine clearance (Ccr) assumed a bimodal distribution with a marked kurtosis that was not improved by transformations, the study cohort was decomposed into two separate groups (non-ESRD [n = 247] and ESRD [n = 159]) in which the Ccr plots were normally distributed. The heritability (h(2)) of Ccr and age at ESRD (age(ESRD)) and the genetic correlations between these measures and their covariates were estimated. In patients without ESRD, a significant heritability was found for Ccr (h(2) = 0.42; P = 0.0015) after adjusting for age (P = 0.0001), systolic BP (P = 0.0006), and treatment with angiotensin-converting enzyme inhibitor/angiotensin receptor blocker (P = 0.00001). Birth year, gender, BMI, diastolic and mean BP, and pack-years of cigarette smoking did not significantly influence the heritability of this trait. In patients with ESRD, age(ESRD) provides a better measure than Ccr, which was very narrowly distributed. A significant heritability was found for age(ESRD) (h(2) = 0.78; P = 0.00009) in these latter patients. None of the above covariates influenced the heritability of this trait. It is concluded that a significant modifier gene effect influences the progression of renal disease in type 1 ADPKD.  相似文献   

8.
BACKGROUND: We recently showed that there were clear regional differences in the dynamics of end-stage renal disease (ESRD) within Japan, which has an ethnically homogenous population. We speculate on the reason for these regional differences by correlating the regional distributions in the incidence of ESRD due to each of the following individual causes of ESRD: chronic glomerulonephritis (CGN), diabetic nephropathy (DMN) and polycystic kidney disease (PKD). METHODS: The number of ESRD patients entering maintenance dialysis therapy due to individual causes of renal disease in each prefecture was reported annually for a 6-year period by the Japanese Society for Dialysis Therapy. After combining data from several prefectures into 11 geopolitical regions in Japan, the mean annual incidence of ESRD across the 11 regions was correlated among the three causes of ESRD. RESULTS: There were significant regional differences in the incidence of ESRD due to CGN (P<0.0001) and DMN (P=0.0015), the distributions of which were similar to each other across the 11 regions. In contrast, no regional differences were found in the incidence of ESRD due to PKD (P=0.6) as the major genetic disorder of the kidneys, suggesting that genetic backgrounds are relatively uniform throughout Japan. The regional distributions due to PKD were not correlated with those due to other causes: CGN and DMN. CONCLUSION: Risk factors common to nephropathy progression, rather than an underlying disease incidence and genetic predisposition, might contribute to regional differences in the overall ESRD incidence in Japan. Other possibilities such as the prevalence of underlying diseases, and acceptance or rejection rates into treatment programmes must be considered further for better explanations.  相似文献   

9.
10.
Significant variation in the course of autosomal dominant polycystic kidney disease ( ADPKD) within families suggests the presence of effect modifiers. Recent studies of the variation within families harboring PKD1 mutations indicate that genetic background may account for 32 to 42% of the variance in estimated GFR (eGFR) before ESRD and 43 to 78% of the variance in age at ESRD onset, but the genetic modifiers are unknown. Here, we conducted a high-throughput single-nucleotide polymorphism (SNP) genotyping association study of 173 biological candidate genes in 794 white patients from 227 families with PKD1. We analyzed two primary outcomes: (1) eGFR and (2) time to ESRD (renal survival). For both outcomes, we used multidimensional scaling to correct for population structure and generalized estimating equations to account for the relatedness among individuals within the same family. We found suggestive associations between each of 12 SNPs and at least one of the renal outcomes. We genotyped these SNPs in a second set of 472 white patients from 229 families with PKD1 and performed a joint analysis on both cohorts. Three SNPs continued to show suggestive/significant association with eGFR at the Dickkopf 3 (DKK3) gene locus; no SNPs significantly associated with renal survival. DKK3 antagonizes Wnt/β-catenin signaling, which may modulate renal cyst growth. Pending replication, our study suggests that genetic variation of DKK3 may modify severity of ADPKD resulting from PKD1 mutations.Autosomal dominant polycystic kidney disease ( ADPKD) is the most common monogenic kidney disease worldwide, affecting one in 500 to 1000 births.1,2 It is characterized by focal development of renal cysts in an age-dependent manner. Typically, only a few renal cysts are clinically detectable during the first three decades of life; however, by the fifth decade, tens of thousands of renal cysts of different sizes can be found in most patients.3 Progressive cyst expansion with age leads to massive enlargement and distortion of the normal architecture of both kidneys and, ultimately, ESRD in most patients. ADPKD is also associated with an increased risk for cardiac valvular defects, colonic diverticulosis, hernias, and intracranial arterial aneurysms. Overall, ADPKD accounts for approximately 5% of ESRD in North America.2Mutations of PKD1 and PKD2 respectively account for approximately 85% and approximately 15% of linkage-characterized European families. Polycystin-1 (PC-1) and PC-2, the proteins encoded by PKD1 and PKD2, respectively, function as a macromolecular complex and regulate multiple signaling pathways to maintain the normal tubular structure and function.1 Monoclonal expansion of individual epithelial cells that have undergone a somatic “second hit” mutation, resulting in biallelic inactivation of either PKD1 or PKD2, seems to provide a major mechanism for focal cyst initiation,4 possibly through the loss of polycystin-mediated mechanosensory function in the primary cilium.5 In addition, a large prospective, observational study indicated that renal cysts in ADPKD expand exponentially with increasing age, and patients with large polycystic kidneys are at higher risk for developing kidney failure6; however, the key factors that modulate renal disease progression in ADPKD remain incompletely understood.Renal disease severity in ADPKD is highly variable, with the age of onset of ESRD ranging from childhood to old age.711 A strong genetic locus effect has been noted in ADPKD. Adjusted for age and gender, patients with PKD1 have larger kidneys and earlier onset at ESRD than patients with PKD2 (mean age at ESRD 53.4 versus 72.7 years, respectively).8,9 By contrast, a weak allelic effect (based on the 5′ versus 3′ location of the germline mutations) on renal disease severity may be present for PKD110 but not PKD2.11 Marked intrafamilial variability in renal disease is well documented in ADPKD and suggests a strong modifier effect.1015 In an extreme example, large polycystic kidneys were present in utero in one of a pair of dizygotic twins affected with the same germline PKD1 mutation, whereas the kidneys of the co-twin remained normal at 5 years of age.12 Several studies have quantified the role of genetic background in the phenotypic expression of ADPKD. In a comparison of monozygotic twins and siblings, greater variance in the age of onset of ESRD in the siblings supported a role for genetic modifiers.13 Two other studies of intrafamilial disease variability in PKD1 have estimated that genetic factors may account for 32 to 42% of the variance of creatinine clearance before ESRD and 43 to 78% of the variance in age at ESRD.14,15 The magnitude of the modifier gene effect from these studies suggests that mapping such factors is feasible. Here, we report the results of an association study of modifier genes for PKD1 renal disease severity.  相似文献   

11.
Autosomal dominant polycystic kidney disease (ADPKD) is heterogeneous with regard to genic and allelic heterogeneity, as well as phenotypic variability. The genotype-phenotype relationship in ADPKD is not completely understood. Here, we studied 741 patients with ADPKD from 519 pedigrees in the Genkyst cohort and confirmed that renal survival associated with PKD2 mutations was approximately 20 years longer than that associated with PKD1 mutations. The median age at onset of ESRD was 58 years for PKD1 carriers and 79 years for PKD2 carriers. Regarding the allelic effect on phenotype, in contrast to previous studies, we found that the type of PKD1 mutation, but not its position, correlated strongly with renal survival. The median age at onset of ESRD was 55 years for carriers of a truncating mutation and 67 years for carriers of a nontruncating mutation. This observation allows the integration of genic and allelic effects into a single scheme, which may have prognostic value.Autosomal dominant polycystic kidney disease (ADPKD) is the most common kidney disorder with a Mendelian inheritance pattern, with a prevalence ranging from 1/400 to 1/1000 worldwide.1 ADPKD shows both locus and allelic heterogeneity. Two causative genes—PKD1, located at 16p13.3,2 and PKD2, located at 4q213—have been identified, and the ADPKD mutation database (http://pkdb.mayo.edu/) describes >1000 pathogenic mutations (929 in PKD1 and 167 in PKD2 as of June 5, 2012), not including our most recent data.4ADPKD also shows high phenotypic variability, as exemplified by the wide variation in the age at onset of ESRD,5 which is defined as the requirement of dialysis or transplantation. Genotype-phenotype correlation studies underscore two major issues. First, on average, ESRD occurs 20 years earlier in patients with PKD1 than those with PKD2,6,7 indicating a genic influence on the ADPKD phenotype. Second, the position of the PKD1 mutation is associated with the age at ESRD onset,8 suggesting an allelic influence on ADPKD phenotype. However, these observations were made >10 years ago, when mutational analysis of the PKD1 and PKD2 genes (particularly of the nonunique portion of the PKD1 gene2,9) was substantially less comprehensive and sophisticated than it is currently,4,10 the methods for predicting the potential pathogenicity of missense mutations were in their infancy, and the studied patient cohorts were relatively small. To confirm (or refute) these earlier observations, we performed a genotype and phenotype correlation study using the Genkyst cohort, which comprises patients with ADPKD recruited from all private and public nephrology centers in the Brittany region, namely, the western part of France.  相似文献   

12.
Low-birth-weight individuals have a higher risk of hypertension and end-stage renal disease (ESRD). Here we investigated whether low birth weight was associated with earlier onset of ESRD in patients with autosomal dominant polycystic kidney disease (ADPKD). In collaboration with all Danish departments of nephrology, 307 of 357 patients with ADPKD and ESRD born and living in Denmark were recruited. We were able to analyze complete data of 284 patients obtained from both hospital medical files and midwife protocols in the Danish State Archives. Multivariable linear regression adjusted for birth weight, adult height, mean arterial pressure, gender, birth decade, and type of antihypertensive treatment showed that for every kilogram increase in birth weight, the age at onset of ESRD significantly increased by 1.7 years. Male gender and increased mean arterial pressure were both associated with earlier onset of ESRD. Patients treated with renin-angiotensin system blockade or calcium channel blockers during follow-up had significantly later onset of ESRD by 4.3 years and 2.1 years, respectively. Treatment with beta-blockade or a diuretic was not associated with the age at onset of ESRD. Thus, low birth weight may contribute to considerable phenotypic variability in the progression of renal disease between individuals with ADPKD.  相似文献   

13.
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) shows a variable clinical course that is not fully explained by the genetic heterogeneity of this disease. We looked for a possible genetic modifier, the ACE I/D polymorphism, and its influence on progression towards end-stage renal failure (ESRF). METHODS: Forty-nine ADPKD patients who reached ESRF <40 years, and 21 PKD1 patients who reached ESRF > 60 years or were not on dialysis at 60 years of age were recruited. Clinical data were provided by questionnaires. Blood was collected for the determination of the ACE insertion/deletion (I/D) polymorphism genotype. The ACE genotype was also determined in a general, control PKD1 group (n=59). RESULTS: Patients who reached ESRF <40 years had significantly more early onset hypertension than patients reaching ESRF >60 years (80% vs 21%; P<0.001). The ACE genotype distribution showed no differences between the groups of the rapid progressors (DD 20%, ID 56%, II 24%), the slow progressors (DD 29%, ID 52%, II 19%) and the general PKD1 control population (DD 31%, ID 47%, II 22%). CONCLUSION: There is no relationship between progression towards ESRD and the ACE I/D polymorphism in ADPKD patients.  相似文献   

14.
BACKGROUND: The clinical variability in the rate of progression of autosomal dominant polycystic kidney disease (ADPKD) has been attributed to genetic heterogeneity, though environmental factors and modifying genes very likely play an important role as well. We examined the association between clinical outcome, defined by age at onset of end-stage renal disease (ESRD) in 46 ADPKD patients, and a polymorphism in the epidermal growth factor receptor (EGFR) gene, a candidate modifying gene. EGFR is a key element in renal tubular proliferation. METHODS: This study comprised 46 unrelated patients with ADPKD and ESRD, and 58 healthy controls. The patients had prevalently PKD 1 mutations. The EGFR microsatellite polymorphism was genotyped according to Gebhardt et al (11). RESULTS: The allele frequencies of the EGFR polymorphism were different in the ADPKD sample and the control population (G2=17.19; P=0.009). In particular, the frequencies of the 122 and 118bp length alleles had a different distribution (P=0.010 and P=0.047 respectively). Patients with the 122bp length polymorphism had ESRD at an earlier age,but this finding was not statistically significant. CONCLUSIONS: These findings suggest an association between the EGFR microsatellite polymorphism and ADPKD. However, it is difficult to establish which alleles are protective and which harmful. A larger, multicenter study may help clarify these results and is also required to replicate our preliminary finding of an association between ADPKD and the EGFR polymorphism.  相似文献   

15.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic disease that causes kidney failure and accounts for 10% of all patients who are on renal replacement therapy. However, the marked phenotypic variation between patients who carry the same PKD1 or PKD2 mutation suggests that nonallelic factors may have a greater influence on the cystic phenotype. Endothelin-1 (ET-1) transgenic mice have been reported to develop profound renal cystic disease and interstitial fibrosis without hypertension. The hypothesis that ET-1 acts as a modifying factor for cystic disease progression was tested in an orthologous mouse model of ADPKD (Pkd2(WS25/-)). Four experimental groups (n = 8 to 11) were treated from 5 to 16 wk of age with the highly selective orally active receptor antagonists ABT-627 (ETA) and A-192621 (ETB) singly or in combination. Unexpected, ETB blockade led to accelerated cystic kidney disease. Of significance, this was associated with a reduction in urine volume and sodium excretion and increases in urine osmolarity and renal cAMP and ET-1 concentrations. The deleterious effect of chronic ETB blockade was neutralized by simultaneous ETA blockade. ETA blockade alone resulted in a significant increase in tubular cell proliferation but did not alter the cystic phenotype. It is concluded that the balance between ETA and ETB signaling is critical for maintaining tubular structure and function in the cystic kidney. These results implicate ET, acting via vasopressin-dependent and independent pathways, as a major modifying factor for cystic disease progression in human ADPKD.  相似文献   

16.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by a variable renal disease progression, which is observed both between (inter-familial variability) and within (intra-familial variability) affected families. Inter-familial variability is primarily due to genetic heterogeneity (PKD1 vs. PKD2), although an influence of the nature/type of mutation may also interfere (at least for PKD1). The major factor influencing intra-familial variability is probably the occurrence of a somatic mutation in the intact allele within epithelial tubular cells ("second hit"). Studies of variability in siblings and twins, as well as in animal models, suggest that modifier genes also influence renal disease progression in ADPKD, in addition to environmental or toxic factors. These modifier loci could affect cystogenesis and/or cyst progression, but also more general factors such as blood pressure regulation or endothelial function. Substantiating the role of modifier genes will require large familial studies but will probably offer new perspectives to slow renal disease progression in ADPKD.  相似文献   

17.
Numerous mouse models of polycystic kidney disease (PKD) have been described in which the mutant phenotypes closely resemble human PKD with regard to morphology, cyst localization, and disease progression. As in human PKD, genetic background affects the disease phenotype in mouse PKD models. Using experimental crosses, these modifying effects can be dissected into discrete genetic factors referred to as quantitative trait loci. The locus for the mouse bpk model was recently mapped to chromosome (Chr) 10. In the course of these studies, marked variability was observed in the renal cystic disease expressed in F2 bpk/bpk homozygotes of a (BALB/c-+/bpk x CAST/Ei)F1 intercross. The current study was undertaken to further characterize the renal cystic disease as quantitative trait in this F2 cohort and to map the genetic modifiers that modulate this phenotype. Whole-genome scans revealed a CAST-derived locus on distal Chr 6, near D6Mit14, that affects renal cystic disease severity. Additional analyses identified loci on Chr 1, Chr 2, and Chr 4, as well as a possible interaction between the Chr 6 locus and a locus on distal Chr 1, near D1Mit17. Interestingly, the gene encoding RGS7, a regulator of G protein signaling that binds to polycystin-1, was mapped to the same Chr 1 interval. It is concluded that the severity of the bpk renal cystic disease phenotype is modulated by multiple loci and possibly by epistatic interaction among them. It is hypothesized that the gene encoding the polycystin-binding partner RGS7 is a candidate for the Chr 1 genetic modifier.  相似文献   

18.
BACKGROUND: Two genetic loci, PKD I and PKD2, have been identified as being responsible for ADPKD, and PKD1 is known to be associated with a poor prognosis. However, the presence of an intrafamilial study clinical diversity suggests that there are disease-modifying loci. Because the mechanism ofthe renal failure in ADPKD includes a cystic growth and tubulointerstitial atrophy and fibrosis, we studied the associations between 2 polymorphisms in the TGF-beta1 gene, which are known to be associated with chronic tubulointerstitial inflammation, and ADPKD progression in Korean patients. PATIENTS AND METHODS: One hundred and twenty-five individuals who had ADPKD and 47 normal control subjects were genotyped by PCR-RFLP, the T869C (Leu10Pro) variant of TGF-beta gene leader sequence was discriminated with MspA1I and the G915C (Arg25Pro) variants with Bg1I. Statistical significances were determined using the Chi-square test. RESULTS: The distribution of the alleles for the TGF beta1 Leu10Pro polymorphism in ADPKD was: T 54%, C 46%, which was similar to the Korean (56: 44, p = 0.887) and Western controls (65: 35). In addition, no differences were found between the ESRD and the non-ESRD groups (p = 0.888) or the early hypertension and the normotension groups (p = 0.249). The distribution of alleles for the TGF beta1 Arg25Pro polymorphism showed only the GG type which was different from the Western population controls (G:C = 90:10, p = 0.000). CONCLUSIONS: Our results suggest that the polymorphism at Arg25Pro of TGF-beta1 in the Korean population has an allele distribution different from that ofthe Western population and that the polymorphism at Leu10Pro of TGF-beta1 has no association with the renal progression in Korean ADPKD patients.  相似文献   

19.
Autosomal dominant polycystic kidney disease is a genetic disorder associated with substantial variability in its natural course within and between affected families. Understanding predictors for rapid progression of this disease has become increasingly important with the emergence of potential new treatments. This systematic review of the literature since 1988 evaluates factors that may predict and/or effect autosomal dominant polycystic kidney disease progression. Predicting factors associated with early adverse structural and/or functional outcomes are considered. These factors include PKD1 mutation (particularly truncating mutation), men, early onset of hypertension, early and frequent gross hematuria, and among women, three or more pregnancies. Increases in total kidney volume and decreases in GFR and renal blood flow greater than expected for a given age also signify rapid disease progression. Concerning laboratory markers include overt proteinuria, macroalbuminuria, and perhaps, elevated serum copeptin levels in affected adults. These factors and others may help to identify patients with autosomal dominant polycystic kidney disease who are most likely to benefit from early intervention with novel treatments.  相似文献   

20.
Autosomal dominant polycystic kidney disease (ADPKD) is typically a late-onset disease caused by mutations in PKD1 or PKD2, but about 2% of patients with ADPKD show an early and severe phenotype that can be clinically indistinguishable from autosomal recessive polycystic kidney disease (ARPKD). The high recurrence risk in pedigrees with early and severe PKD strongly suggests a common familial modifying background, but the mechanisms underlying the extensive phenotypic variability observed among affected family members remain unknown. Here, we describe severely affected patients with PKD who carry, in addition to their expected familial germ-line defect, additional mutations in PKD genes, including HNF-1β, which likely aggravate the phenotype. Our findings are consistent with a common pathogenesis and dosage theory for PKD and may propose a general concept for the modification of disease expression in other so-called monogenic disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号